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Abstract: To improve scalability and understandability of search-based
refactoring, in this paper, we propose a formulation based on graph transfor-
mation which allows us to make use of partial order semantics and an associ-
ated analysis technique, the approximated unfolding of graph transformation
systems. We use graphs to represent object-oriented software architectures
at the class level and graph transformations to describe their refactoring
operations. In the unfolding we can identify dependencies and conflicts be-
tween refactoring steps leading to an implicit and therefore more scalable
representation of the search space. An optimisation algorithm based on the
Ant Colony paradigm is used to explore this search space, aiming to find a
sequence of refactoring steps that leads to the best design at a minimal costs.

Keywords: Search-based Refactoring, Unfolding of Graph Transformation
Systems, Ant Colony Optimisation Meta-heuristic.

1 Introduction

Refactoring has emerged as a successful technique to enhance object-oriented software
designs by series of small, behaviour-preserving transformations [Fow99]. However, due
to the number of design choices and the complex dependencies and conflicts between
them it is difficult to choose an optimal sequence of refactoring steps, maximising the
quality of the resulting design while minimising the cost of the transformation. In the
case of large systems the situation becomes acute because existing tools offer only limited
support for their automated application [MTR07]. Therefore, search-based approaches
have been suggested in order to provide automation in discovering appropriate refactoring
sequences [SSB06, HPJ01]. The idea is to see the design process as a combinatorial
optimisation problem, attempting to derive the best solution (with respect to a given
quality measure or objective function) from a given initial design [OM02].

Two obvious problems with search-based approaches are scalability, i.e., the ability to
apply to large models [OC08], and traceability, i.e., the ability on behalf of the developer
to understand the changes suggested by the optimisation [HPJ01]. In particular, heavy
modifications make it difficult to relate the improvement to the original design, so that
developers will struggle to understand the new structure. We believe that both problems
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can be mitigated by exploiting the local nature of refactoring operations, which affect only
a certain part of the design while leaving the context unchanged. In terms of scalability,
local operations permit the use of partial order models representing the behaviour of
a system by a set of actions (refactoring steps) equipped with relations of causality
and conflict. Such models provide an implicit representation of the states (designs) of
the system as conflict-free subsets of actions closed under causal dependencies, which
scales better than the explicit representation of reachable states. For traceability, causal
dependency provide a model of explanation of why certain steps are required to perform
later steps, thus reducing the problem to understanding the benefits of the final steps in
a sequence.

In this paper, we use a representation of object-oriented designs as graphs and refac-
toring operations as graph transformation rules [MTR07]. Such rules provide a local
description, identifying and changing a specific part of the design graph only. After
suitably encoding our rules into a hypergraph representation, this enables us to derive
a partial order structure of causality and conflict relations, using the approximated un-
folding of a graph transformation system [BCM99] and its implementation in Augur
2 [KK08]. The result is a structure called Petri graph, presenting the behaviour in terms
of an over-approximation of its transformations and dependencies [BCK01]. Causal de-
pendencies and conflicts, derived directly from the Petri graph, serve as input to our
search problem.

Optimisation algorithms such the Ant Colony Optimisation [dor05] (ACO) metaheuris-
tic rely on an explicit representation of the search space. Thus states and their local
neighbourhoods have to be reconstructed on the fly from the partial order representa-
tion. The desired result is a sequence of transformations leading from the given design
to a design of high(er) quality, using only transformation steps that are necessary to
achieve that improvement.

A more detailed view of the approach is given by the diagram in Figure 1. Using UML
activity diagram notation, boxes represent artifacts while oval nodes are the actions
or transformations performed on them. The class structure of a given Java program
(excluding method bodies, but retaining call and data access dependencies) is encoded
in the GXL format required by Augur 2. This is achieved with the help of the Infusion
environment1 and a subsequent transformation of the resulting MSE2 file into GXL.
The result represents the start graph of the hyper graph grammar to be unfolded. The
rules of the grammar formalising the refactoring operations are derived from the standard
catalogue [Fow99] shared across all Java programs. Augur 2 constructs the approximated
unfolding of a system [BCM99], producing a Petri graph to serve as input to the ACO-
based search algorithm.

ACO is inspired by the behaviour of foraging ants, which search for food individually
and concurrently, but share information about food sources and paths leading towards
them by leaving pheromone trails. This amounts to a distributed traversal of a graph
whose paths represent possible solutions [DMG97]. In our case, the nodes of that graph

1 http://www.intooitus.com/inFusion.html
2 http://www.moosetechnology.org/docs/mse
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are the designs to be explored and its edges are the refactoring steps. Rather than
representing this so-called construction graph explicitly, its nodes and edges are derived
from the partial order structure as and when required. As a result, a path (refactoring
sequence) is produced representing the cheapest way to transform the given design into
an optimal one. Since the unfolding represents an over-approximation, the existence of
this sequence needs to be verified in the real model, possibly leading to a refinement of
the approximation. However, this step is beyond the scope of this paper.

The remainder of the paper is organised as follow. In Section 2, we review the pre-
sentation of refactorings as graph transformations and introduce our example. Section 3
describes the partial order analysis based on unfolding. The mapping into an ACO
problem is addressed in Section 4. Finally we evaluate our approach and conclude.

2 Refactoring as Graph Transformation

In order to provide a localised formal description of refactorings as input to the partial
order analysis, we follow [MTR07] in representing refactoring operations as graph trans-
formation rules. Informally, such a rule p : L → R consists of a rule name p and a pair

of graphs L,R called the left- and right-hand side of p. A transformation t : G
p(m)
=⇒ H

changes graph G into graph H by replacing the occurrence of L specified by m with a
copy of R. Following the algebraic double-pushout approach [EPS73], the change is local
because elements of G outside the occurrence of L are not affected by the transformation.

The graphs we transform represent Java class structures, which can be visualised by
class diagrams. As an example, consider the diagram in Figure 2. We consider the
following set of refactoring operations [Fow99].

• Extract Superclass, creating a common superclass for two existing classes, usually
in order to encapsulate shared features.

• Add Parameter, introducing a new parameter for a method to make data access
explicit.

• Pull Up Method, transferring a method from a sub to a superclass.

• Move Method, transferring a method to any other class.

• Encapsulate Attribute, to increase the modularity by changing a visibility of at-
tribute in a class from public to private.

The rule Extract Superclass is shown in Figure 3 in class diagram notation. Rules can be
applied in different orders and locations, giving rise to a number of refactoring sequences.
Below we describe and motivate some of these for future reference.

T1: Extract superclass E from class B and class C, e.g., in order to encapsulate shared
methods.

T2: Pull up method from class B and class C to superclass E created by T1.
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Figure 1: Abstract view of the Approach
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Figure 2: Initial class model

T3: Move method from class B to class D, because it may be more tightly coupled to
that class (e.g., accessing its attribute).

T4: Move method from class C to class D, with the same motivation as in T3.

T5: Encapsulate attribute a1 in class D, making the attribute private and creating setter
and getter methods.

T6: Add parameter p of type D to method1 in class B to make explicit the access to
instances of D.

T7: Add parameter p of type class D to method1 in class C, for the same motivation.

Note that the transformations listed are not part of a single sequence. For example
T2,T3 are potentially in conflict.

3 Analysis of Dependencies and Conflicts

As outlined in the introduction, we use an implicit representation of the search space
based on causality and conflict relations over rule applications representing refactoring
steps such as T1 to T7 above. These partial orders are derived in two steps. First, the
approximated unfolding of the grammar given by the start graph representing the initial
design and the generic refactoring rules is produced and second partial orders are derived
by analysing the overlaps of pre and postconditions of these rules in the resulting Petri
graph.

5 / 14 Volume 38 (2010)



Search-Based Refactoring based on Unfolding of GTS

Figure 3: Rule for refactoring Extract Superclass, in class diagram notation

3.1 Unfolding of the Refactoring Grammar

The approximated unfolding and its implementation in Augur 2 [BCM99] are defined
for hypergraph grammars. Thus, we have to encode the initial design and refactoring
rules into a hypergraph representation. According to [BCK01] a hypergraph G is a
tuple (VG,EG,CG, lG) where VG and EG are finite sets of nodes and edges respectively,
CG : EG → V ∗

G is a connection function, while lG is a labelling function for edges. The
difference with the more common notions of typed or labelled graphs with binary edges
is that, in hypergraphs, only edges are labelled and that each edge can be connected to
a finite sequence of nodes, rather than just one source and one target. The hypergraph
of the initial class model is depicted in Figure 5. The idea is to introduce a node for
each node in the original graph and plus one edge to carry a label representing the
type of the node. Additional binary hyperedges are introduced to represent edges in
the original binary graphs. Rules undergo a similar transformation, but an additional
restriction (imposed by the theory of unfolding) is that rules can delete and produce, but
not preserve edges, while nodes cannot be deleted. The left-hand side of a rule must be
connected [BCK01]. This does not directly impact on the expressivity of the rules, but
requires us to delete and regenerate edges that are meant to be preserved. The result for
Extract Superclass is shown in Fig 6. Nodes of the left-hand side are mapped to those
in the right-hand side with the same number, while the unnumbered nodes in the right
are newly created. Edges in the left- and right-hand side are disjoint.

Given the hypergraph grammar, the unfolding starts with the initial hypergraph and
produces a branching structure by applying all possible rules on the system at all pos-
sible matches. The resulting Petri graph contains both the graph structure of the sys-
tem (essentially the union of all reachable graphs) and a Petri net with hyperedges as
places and rule applications as transitions. The approximated unfolding creates a more
abstract structure, potentially folding into one several graph elements or rule applica-
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Figure 4: Result of applying rule Extract Superclass to the initial class model

tions [BCK01]. The result is an over approximation of the behaviour, i.e., spurious
sequences may appear that do not exist in the actual behaviour. We use the Augur 2
implementation of this construction [KK08] where initial hypergraph and rules are pre-
sented in the Graph Exchange Language GXL [Tae01]. The output Petri graph produced
is in GXL format as well [DKSR04].

3.2 Analysis of the Unfolding

A Petri graph [BCK01] is a finite data structure which records the behaviour of a graph
transformation system. It combines hypergraphs with Petri nets used to approximate
the behaviour. The hyperedges of the graph component are at the same time the places
of the Petri net. The GXL representation produced by Augur 2 [DKSR04] is a low-level
graph format, which knows about graph elements and their attributes, but not about
transformations. To create a problem-specific data structure to allow for dependency
analysis, we have to extract information about rules and transformations, the graphs
they consist of, etc. Then we can derive conflict and dependency relations by comparing
the pre- and post-sets of transformations. The class diagram in Figure 7 provides the
conceptual data model for the unfolding. A Java object graph representing an instance
of this model is extracted from the GXL representation produced by Augur 2.

From the pre- and post-conditions in this high-level representation we can extract
causality and conflict relations on transitions. Using Petri net-like notation, we represent
the pre- and post-sets for a transition t by •t and t•, respectively [BCM99]. Then, two
transitions are in conflict, t1#t2, if and only if •t1 ∩• t2 6= φ. They are causally dependent,
t1 < t2, if and only if t•

1 ∩• t2 6= φ.
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Figure 5: Initial Hypergraph

The set of transitions t1, t2, . . . representing refactoring steps and relations # and <

provide the input to our search for an optimal sequence of refactorings.

4 Refactoring as ACO Problem

We employ Ant Colony Optimisation (ACO) [dor05] meta-heuristic search to find an
optimal solution. ACO is applicable to a wide range of combinatorial optimisation prob-
lems [dor05]. It is based on a set of artificial ants cooperating to find a solution by
searching a graph independently, but leaving pheromone deposits on the graph’s edges
to indicate promising paths. To do this, ants have to know the local neighbourhood of
their current solution node, from which they will select the most likely edge to traverse
based on the evaluation of the successor node and the pheromone values of the edge
itself. Formally, ACO problem [dor05] consists of the following elements.

1. A finite set of solution components C = {c1, c2, · · · , cn}, and a set of arcs E con-
necting the components in C.

2. The states of the search problem, defined as sequences of components x = 〈ci, cj , · · · 〉
in C. The set of all possible states x is denoted X. The length (number of
components) of a sequence is denoted by | x |.

3. A finite set S of candidate solutions with distinguished subset S̄ ⊆ S of feasible
candidate solutions determined by a set of constraints Ω.
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Figure 6: Hypergraphs for Extract Superclass Refactoring Rule

4. A non-empty subset S∗ of optimal solutions.

5. An evaluation f(s) for each candidate solution s. For some problems it is possible
to calculate partial evaluations fp(x) associated with intermediate states x of the
problem.

Using the formulation above, artificial ants build solutions by performing randomised
walks on the connected graph G = (C,E), based on the following basic operations [DMG97].

• A state transitions takes an ant from a one node to another across an arc;

• A local update changes the pheromone deposit on the arc it currently walks on;

• A global update changes the pheromone deposits on all arcs an ant has traversed
when this ant successfully ends its trip;

In addition, we require a comparison function to evaluate different paths and an end of
activity condition to specify when an ant has completed its trip.

To state refactoring as an ACO problem we consider a graph defined by the set of
transformation steps as nodes with edges representing potential successor relations de-
rived from dependencies and conflicts as obtained from the unfolding construction. These
conflicts include symmetric ones, requiring mutual exclusion of two refactoring steps, and
asymmetric ones, prohibiting two steps to occur in a certain order, but allowing for the
reverse order. Pheromone values τij and heuristic values ηij are associated with the edges
of the graph. The values are determined by partial evaluations fp(x), associated with
incomplete candidate solutions x, which represent preliminary feedback on the success
of the search.
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Figure 7: Metamodel for the Unfolding process

The problem is thus expressed as the search for an optimal path representing the best
sequence of refactoring steps applicable to the original system. The optimisation depends
on an evaluation of paths representing candidate solutions, which takes into account both
the cost of the refactoring transformations and the quality of the end result.

We use a so-called Hybrid Ant System [GD00] where ACO is extended by local search,
in particular, the Java Framework by Chiricom [Chi] implementing [DMG97] in order to
implement and solve a variety of ACS problems.

We adapted this framework to an implicit representation of states based on our partial
order model, deriving states and their local neighbourhood on the fly.

4.1 Deriving States and Transitions

States S are subsets of transitions that are conflict-free and closed under causal depen-
dencies, i.e., S = {t ∈ TN | t′ ∈ S and t < t′ and ∄t′′ ∈ S s.t. t#t′′}, where TN is set of
transitions. The neighbourhood for a state s is characterised by all transitions enabled
in s. A transition t is enabled in s if all its dependencies are satisfied by transitions in s

and it is not in conflict with any transition in that set. Adding such a transition leads to
a new state s∪{t}. While computing the neighbourhood for a state in the search space,
we need to check that the new transition is not yet present in the state. The conditions
for enabled transitions ensure that the new state is well-defined, i.e., the added transition
does not introduce conflicts or unresolved dependencies.

With these prerequisites the algorithms proceeds as follows.

• We initialise each ant by assigning an empty state s0 = ∅.

• In each state s, an ant will determine its local neighbourhood by computing all
transitions ti enabled in s, with successor states si = s ∪ {ti}. It will select one of
its neighbouring states based on the states’ evaluation and the pheromone values

Proc. Doctoral Symposium ICGT 2010 10 / 14
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Table 1: Step sequences computed by ants

Ant ID Computed Path Node ID’s

1. [5, 6, 4, 3, 0]

2. [1, 2, 0, 6, 5]

3. [0, 6, 5, 1, 2]

4. [5, 6, 0, 4, 3]

5. [6, 5, 0, 1, 2]

Best Path Node ID’s: [5, 6, 0, 4, 3]

Corresponding Rule ID’s: [_5291, _5290, _5296, _5292, _5293]

Optimal Sequence of Refactorings: [T7, T6, T5, T1, T2]

associated with the transition.

• Moving to the selected state, the ant will update the pheromone deposit.

• The ant stops if there are no more new transitions to be added, i.e., all remaining
transitions are in conflict with transitions in the current state.

• A global update will take place to increase the pheromone deposits on all arcs
leading to success, or decrease them in case of failure.

4.2 Objective Function

In order to formalise a notion of quality, we define probe rules as patterns to recognise
situations that are desirable or to be avoided in object-oriented designs. Then, we will
look for a state having a maximum number of desirable and a minimum number of unde-
sirable occurrences. Using the unfolding as underlying data structure, such information
about probe rule occurrences is available at little extra cost.

For every probe p and state s, we define #p(s) as the number of occurrences of
probe p in s. It will return negative integers for anti patterns. Assuming probes
p1,p2, · · · ,pn (both positive and negative) the objective function is defined by O(s) =
〈#p1

(s), · · · ,#pn
(s)〉, returning a vector of probe counts.

Thus knowledge about good and bad patterns is embedded in occurrence function #p.
We use pointwise extension of ≤ from integers to vectors to define a partial order on the
states, i.e., v1 ≤ v2 if and only if v1[j] ≤ v2[j] for all 1 ≤ j ≤ n. That means the relation
must holds for every entry in the vectors to holds for the vectors in total.

The probability of choosing the next transition depends on the quality of the successor
state, i.e., the number of occurrence of probe rules. Each ant will compute the probe
vector while it moves from one state to another in the search space.
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Figure 8: Final Class level diagram

4.3 Experimental Results

Given the problem representation as in Section 4, we consider the given set of refactoring
steps as the set of components C. The search space will be defined by the associated set
of transitions and each transition will be assigned an identification number for reference.
We can employ any (finite) number of ants, depending on the size of the problem and
computing resources available. In our example we use five ants, each to start with an
empty state (|x| = 0). They select enabled transitions to move in the search space and
which will enlarge their states and enable more transitions until all remaining transitions
are in conflict. To guide the behaviour of future ants based on preliminary success, each
ant will assign an improvement to the edge traversed when adding component c to path
x. The objective function O(S) will evaluate the best resulting design by assigning a
probe vector.

The best path computed by the algorithm, representing an optimal sequence of refac-
torings is given in Table 1. It represents a sequence of steps of the set in Section 2 for
the initial class model in Figure 2. The resulting class model is visualised in Figure 8.

5 Conclusion

Our approach involves a combination of graph transformation theory and the ACO meta
heuristic, aiming to improve search-based refactoring. Rather than representing the
search space of designs and refactorings explicitly we use the unfolding as a more scalable
representation where designs (states) are given by sets of transformations closed under
causal dependencies. We can thus reconstruct states when needed, for example in order

Proc. Doctoral Symposium ICGT 2010 12 / 14
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to evaluate the objective function, but will deal with the more compact representation
when navigating the search space. As a further tribute to scalability, we are using the
approximated unfolding. Algorithmically, we are following a hybrid approach [GD00]
where the ACO meta heuristic is augmented with local search to improve its performance.
Hybrid ACO has been shown to be effective in situations of large and rugged search spaces
with complex constraints on solutions. In particular, the implicit representation of states
(by a sets of transformations closed under causality and without conflicts) should allow
us to scale the search to larger problems, avoiding state-space explosion.

Traceability will be evaluated through experiments with smaller models, assessing the
effort it takes a human developer to understand the changes proposed by the search-
based approach. The use of dependency information between transformations allows us
to remove steps that are unrelated to the intended change, making each change relevant
and therefore easier to interpret.

We have implemented the approach up to a point where it remains to check that
sequences produced in the approximated model are also executable in the full model. If
the sequence does not exists in the real model then a refinement of the abstraction will
be required [KK06], which will lead to a more accurate unfolding and another round of
optimisation.

Acknowledgements: Fawad Qayum is financed by the Higher Education Commission
of Pakistan under Overseas Faculty Development Programme University of Malakand,
for a PhD studentship at University of Leicester.
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