Electronic Communications of the EASST

Volume 40 (2011)

Proceedings of the
4th International Workshop on Petri Nets and Graph

Transformation
(PNGT 2010)

Modelling Emergency Scenarios using Algebraic High Level Net
Transformation Systems with Net Patterns

Frank Trollmann, Maximilian Kern and Sahin Albayrak

35 pages

Guest Editors: Claudia Ermel, Kathrin Hoffmann

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Modelling Emergency Scenarios using Algebraic High Level Net
Transformation Systems with Net Patterns

Frank Trollmann, Maximilian Kern and Sahin Albayrak

DAI-Labor, TU Berlin
Faculty of Electrical Engineering
and Computer Science
Frank.Trollmann @dai-labor.de, Maximilian.Kern@dai-labor.de, Sahin.Albayrak @dai-labor.de

Abstract: Emergency operations are a good case study for dynamic systems. Their
size and high dynamicity make modelling them a challenging task. Algebraic high
level net transformation systems are a well suited technique for modelling such dy-
namic systems. They consist of an algebraic high level net and a set of graph trans-
formation rules. The net reflects the initial state of the operation and the transforma-
tion rules can be used to adapt this state to reflect the dynamicity of the operation.
The applicability of graph transformation rules depends on the existence of a match
morphism. While designing the algebraic high level net transformation system the
designer has to ensure the existence of the right match morphisms for all reachable
runtime states. This can be a tedious and error prone task for the designer. This
paper uses a case study for modelling emergency operations with algebraic high
level net transformation systems to show how the notion of net patterns can help the
designer to cope with rule applicability.

Keywords: Graph Transformation, Algebraic High Level Nets, Design Patterns

1 Introduction

It is a challenging task to model emergency operations. Their complexity and the fact that the
plan of the operation changes frequently at runtime can cause serious problems to the designer.
Algebraic high level nets (AHL-Nets) are similar to Petri nets but are able to handle and process
data. For this reason they are a well-suited technique to model such complex workflows. An
AHL-Net transformation system additionally contains a set of graph transformation rules. These
transformation rules can be used to adapt the AHL-Net structure in order to reflect a change in
the plan of the emergency operation.

The applicability of graph transformation rules to an AHL-Net depends on the existence of
a morphism between the left hand side of the transformation rule and the net, called match
morphism. While modelling the AHL-Net transformation system the designer has to ensure the
existence of the correct match morphisms. For this task she has to model the AHL-Net and the
left hand sides of the transformation rules in a way that allows for these morphisms to exist.

This task can be tedious and error prone. The reason for this is the fact that the design of
transformation rules and net structure are interrelated. The designer has to assure correct ap-
plicability of the graph transformation rules to all possible runtime structures. Starting from an

1/35 Volume 40 (2011)

mailto:Frank.Trollmann@dai-labor.de, Maximilian.Kern@dai-labor.de, Sahin.Albayrak@dai-labor.de

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns E}

initial net structure at start-up of the application the possible runtime structures can be reached
by incrementally applying transformation rules.

In this paper, we use pipeline emergency operations of the fire brigade as a case study to
illustrate these problems and show how the application of design patterns for rule application,
called net patterns, can be used to ease them. We first model the emergency operation without
regard to rule application and show problems stemming from this approach. Afterwards, we
introduce and apply a net pattern to show how this technique can be used to avoid these problems.

The paper is structured as follows. First, in Section 2 the language of algebraic high level net
transformation systems is introduced. Afterwards the emergency scenario that serves as a case
study for this paper is introduced in Section 3. This section also describes an approach to model
these scenarios without regards to rule application and the resulting problems. A description of
the approach of applying net patterns is then given in Section 4. Section 5 illustrates how such a
pattern can be applied to the case study. This approach is then compared to the first approach in
Section 6. Section 7 concludes this paper and hints at future work.

2 Algebraic High Level Net Transformation Systems

This section introduces AHL-Nets and AHL-Net transformation systems as a foundation for the
case study. For a detailed description of algebraic high level nets the reader may refer to [PER95].
A detailed overview on graph transformation and related concepts can be found in [EEPTO06].
The definitions in this section are also based on the definitions in these two references.

Algebraic high level nets are an extension of Petri nets. They also contain places, transitions
and edges between them. The main difference to Petri nets is that AHL-Nets are able to process
data. The types of data and operations used in the net are given by an algebraic specification.
The actual data and implementation of the operations is contained in an algebra over this speci-
fication.

In an AHL-Net tokens are identified with data elements. Each place is associated with a sort
of the specification and can only hold tokens of this type. Transitions can be used to process
these data elements. Each edge is annotated with a term over the signature. This term specifies
which kind of data is used and produced by the transition. A transition can additionally contain
a set of equations that further constrain in which situations the transition can be fired.

Algebraic high level nets are formally described in Definition 1. An example for an algebraic
high level net is given in Example 1.

Definition 1 (algebraic high level net) An algebraic high level net is consists of an eight-tuple
(SP,P,T, pre, post,cond,type,A), where SP = (S,0P,E,X) is an algebraic specification, A is an
(S,0P,E,X)-algebra, P is a set of places, T is a set of transitions, pre, post : T — (Tpp(X) @ P)¥
are functions denoting the set of places, connected to a transition via incoming and outgoing
edges and the terms inscribed in these edges, type : P — S defines the type of each place and
cond : T — Pyin(Eqns(S,OP, X)) defines the equations for each transition.

Example 1 An example for an algebraic high level net is depicted on the left hand side of
Figure 1. This net consists of one transition compute and four places pl to p4. The purpose

Proc. PNGT 2010 2/35

Eg ECEASST
Signature Nat Algebra Nat
pl:nat Tp2:nat sorts: sorts:
a bl nat, boolean Naty,: = N
Natyoorean = {tTue, false}

compute opns:
p_“ true: boolean Opns:
odd(a) —_tl‘l.le false: boolean trueyg: = true
even(b) = true mult: nat x nat -> boolean falseyq = false
mult(a,b) [add(a,b) add: nat x nat -> boolean Mmultyg(a,b) =a = b
odd: nat -> boolean addyg(a,b) =a+b
even: nat -> boolean oddy. (@) = {true la%2=1
Nat false | else
. . true |a%2=0
p3:nat—p4:nat evenya (a) = {false | else

Figure 1: Example - AHL-Net(left), Signature (middle) and Algebra (right).

of the net is to do some calculations on natural numbers. For this reason the net is typed over
the signature of natural numbers, containing types for natural numbers and boolean values and
several operations. This signature is depicted in the center of Figure 1. The signature does not
contain any equations or variables. The right hand side of this figure shows the algebra that is
used in the AHL-Net.

All places in the AHL-Net are typed with nat. p1 and p2 are already marked with the numbers
one and two. The terms are inscribed on each arc. According to these terms the transition
compute consumes two numbers from pl and p2 and places their product on p3 and their sum
on p4. The equations associated with compute state that this transition can only fire if the number
taken from p1 is odd and the number taken from p2 is even.

The firing behavior of AHL-Nets is similar to that of place/transition nets. In addition to
requiring the correct number of tokens on the pre condition places, a transition in an AHL-Net
also requires the correct data elements to be available on these places. An AHL-Net transition
fires in combination with an assignment of the variables used in its terms and equations. Based
on this assignment, the terms on the pre condition edges are evaluated in order to determine the
data elements required for this transition to fire. The terms in the post condition edges describe
which data elements are produced by the transition. The transition can only fire if its equations
are fulfilled under the assignment.

A morphism between two algebraic high level nets consists of mappings between their places
and transitions. These two mappings have to be consistent with the functions pre and post, the
arc inscriptions, the types of the places and the equations in each transition. An exact definition
of AHL-Net morphisms is given in Definition 2.

Definition 2 (algebraic high level net morphism) An algebraic high level net morphism be-
tween two AHL-Nets N; = (SP, P, T;, pre;, post;,cond;,type;,A), i € {1,2} with SP = (S,0P,E,X)
is defined as a tuple of morphisms f = (fp: P, = P, fr : T} — T) : N; — N, such that the dia-
gram shown in Figure 2 commutes.

Morphisms between AHL-Nets are an important concept for graph transformation on AHL-

3/35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns Eﬁ

pre
TlpoT’(TOP(X)®Pl)€B Py
1
cond, We‘l
Py (Eqns(S,0PX)) (=) &) = S
conds /T (idTOP(X)® /i »)® /p fype

Figure 2: Condition for AHL-Net morphisms.

Nets. An AHL-Net transformation rule is described as a span of injective AHL-Net morphisms
as defined in Definition 3. The application of a transformation rule requires the existence of
a morphim between the left hand side of the transformation rule and the AHL-Net the rule is
applied to. As a foundation for our transformation rules we use graph transformation in the
double pushout approach.

K r

A J
=

D

v

L
m\ (1) (2) n
G+ 7 H

g

Figure 3: Application of an AHL-Net transformation rule.

Definition 3 (algebraic high level net transformation rule and transformation) An algebraic

high level net transformation rule p = (L Ly R) consists of AHL-Nets L, K and R, called
left-hand side, gluing graph and righ-hand side and two injective AHL-Net morphisms / and r.

The application of an AHL-Net transformation rule p to an AHL-Net G requires a morphism
m : L — G. The transformation is given by two pushouts (1) and (2) as depicted in Figure 3. The
AHL-Net H is the result of the transformation.

An AHL-Net transformation system consists of an initial AHL-Net and a set of AHL-Net
transformation rules. Such a transformation system is a way of describing the set of AHL Nets
that can be derived from applying the transformation rules to the initial AHL-Net. A formal
definition can be found in Definition 4.

Definition 4 (algebraic high level net transformation system) An algebraic high level net trans-
formation system 7'S = (N, Rules) consists of an algebraic high level net N and a set of AHL-Net
transformation rules Rules.

Proc. PNGT 2010 4 /35

Eg ECEASST

These formalisms are used in order to model the case study in the next section.

3 Case Study 1 : Emergency Scenarios

The applicability of transformation rules to AHL-Nets depends on the existence of match mor-
phisms. While modelling an AHL-Net transformation system the designer has to ensure the
existence of the correct match morphisms between the transformation rules and all possible run-
time structures of the transformation system. The complexity of this task depends on the number
of transformation rules and possible runtime structures. In this section we follow a modelling
approach that a designer who is not explicitly considering the applicability of transformation
rules might take. After modelling the emergency scenario with this approach we concentrate on
two occasions that require a transformation of the net and use them to showcase the problems in
rule applicability.

As a case study we use pipeline emergency scenarios. As an inspiration and source of infor-
mation for these scenarios the website www.pipelineemergencies.com has been used. In these
case studies, the workflow of a set of firefighters during a gas-leak operation is modelled. Such
a workflow consists of a set of team members executing tasks in a certain order. During these
tasks, additional data can be used or produced. The large size and high number of possible
runtime changes make such scenarios challenging and thus a good case study. In fact, pipeline
emergencies have already been used as a case study in other publications. In [HEPOS] they are
used as a case study for modelling with reconfigurable Petri nets. [Tro09] contains our previous
work on this case study. In this paper, we modelled this case study using algebraic high level nets.
During the modelling process, it became obvious that some kind of general structure or pattern in
the AHL-Nets is required in order to keep an overview in the complexity of all possible scenarios
and runtime changes. The patterns, used as an example for net patterns in this paper are actually
taken from the notions first presented in [Tro09] and slightly altered. However, in [Tro09] the
focus is not on the patterns but on how emergency scenarios in general can be modelled with
reconfigurable AHL-Nets and how the reconfiguration can be controlled in a higher order net.
Higher order nets are AHL-Nets that contain AHL-Nets as tokens and are able to control their
firing behavior and apply transformation rules. The purpose of this paper is to explicitly show
problems that occurred during the design process for [Tro09] and how net patterns can be used
to solve these problems.

For reasons of space we use a simplified version of the case study in our elaborations. We
focus on a limited subset of tasks, team members and data. We distinguish between three types
of team members: a Firefighter, the specially trained Medical Personal and the Team Leader
who leads the operation. Our set of tasks contains four elements: Repair Gas Leak, Treat Injured
Person, Call Reinforcements and Take Gas Reading. We only use one type of data which is called
Gas Reading and represents the results of a gas reading. The case study in [Tro09] contains more
elements. Especially the set of task types is way larger.

Not all tasks can be executed by every team member type. The task Treat Injured Person
requires medical knowledge and can therefore only be executed by a team member of the type
Medical Personal. A table on which of our tasks can be executed by which team member types
can be found in Figure 4. Data types are also restricted to be available only in certain tasks. The

5/35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns E}

Firefighter | Medical Personal | Team Leader | Gas Reading
Repair Gas Leak X - - X
Treat Injured Person - X - -
Call Reinforcements X - X -
Take Gas Reading X - - _

Figure 4: Compatibility of tasks with team member and data types

Gas Reading can only be handled by the task Take Gas Reading.

Tasks can be adapted to the current situation. For instance the task Repair Gas Leak can
involve an arbitrary number of firefighters and the task Take Gas Reading may take into account
a previous gas reading if available.

An intuitive way to model the workflow of these emergency operations is to model each team
member and data element as a token and each task as a transition. This is similar to the way this
case study is modelled in [HEP08] with the addition that we use AHL-Nets instead of Petri nets.
Each place of the AHL-Net is typed over the team member type or data type it may hold. In our
example, the set of sorts of the algebraic specification of the AHL-Net contains firefighter, med-
ical personal, team leader and gas reading. Tasks may involve different numbers and types of
team members and data. The corresponding transition has one input place for each team member
and each used data element and one output place for each team member and each produced data
element.

: firefighter : firefighter : medical personal : firefighter :team leader
i 5 | a a
Treat Injured Call Call
Repair Gas Leak Person Reinforcements Reinforcements
: firefighter : firefighter : medical personal : firefighter :team leader
: firefighter : firefighter : gas reading

: firefighter : gasreading : firefighter : gas reading

Figure 5: Possible transition structures for the tasks in the running example

Proc. PNGT 2010 6/35

Eg ECEASST

The possible structures of transitions for our four example tasks are depicted in Figure 5. The
structure of the task Repair Gas Leak of a Firefighter depends on the number of Firefighters
that participate in this task. In order to avoid problems that may stem from an infinite number
of possible structures, we assume that no more than five firefighters can participate in this task.
Treat Injured Person is only executed by the team member type Medical Personal and thus only
has one possible structure. Call Reinforcements can be executed by a Firefighter or Team Leader.
For this reason two versions of this task do exist. Take Gas Reading is executed by a Firefighter
and produces a Gas Reading. It may or may not take into account a previous reading. For this
reason a second possible runtime structure exists where a gas reading is consumed and a new
and updated version of the reading is produced. Depending on the newly determined gas values
the new reading may differ from the old reading. This is expressed by using different variables
in the arcs for the produced and consumed gas reading.

The restricted set of four tasks yields nine different transition structures. Five for the task
Repair Gas Leak with different numbers of Firefighters, one for the task Treat Injured Person,
one for the task Call Reinforcements (the version of this task for a firefighter actually has the
same structure as Repair Gas Leak for one firefighter) and two possible structures for the task
Take Gas Readings.

One key feature of emergency operations is their dynamic nature. The plan of an emergency
operation changes frequently during its execution. Causes for such changes are reassessments
of the situation. Possible changes are changes in the overall task order like the introduction,
deletion or relocation of tasks or a change in the structure of an existing task.

Team Arrives

b d

: team leader : firefighter : medical personal

: firefighter
b

d

Team Leaves

Figure 6: A model of the initial state of the application

For this reason the emergency scenario is modelled as an algebraic high level net transfor-
mation system rather than just as an AHL-Net. At startup the initial state of the transformation
system is used as a model. This initial structure can be seen in Figure 6. It contains the transi-
tions Team Arrives and Team Leaves. These transitions represent the team of firefighters arriving
at the scene and leaving after the operation is finished. The team consists of one team leader, two
firefighters and one medical personal. After the scenario is started the transformation rules are
used to adapt the initial net to fit the current situation. This can happen while the net is executed.

Figure 7 shows the net at a later state of the operation. The initial net has been extended by
adding several new tasks. The team leader has already set up the command post and assessed
the situation. Her next task is to call for reinforcements. One firefighter has taken a gas reading

7/35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns E}

Team Arrives

a b c d
:team leader . . : firefighter ’ : firefighter . : medical personal
3 s B b
Evacuate
Set Up Take Gas surrounding
Command Post Reading Area

a

a b
: firefighter : firefighter : medical personal

A 2
Treat Injured
Person

: team leader

: gas reading

b

a

Assess
Situation

a Repair Gas
Leak

:team leader

a a b
Call El
Reinforcements

a
- team leader . : firefighter . : firefighter : medical personal

Team Leaves

Figure 7: A model of a later state of the operation

while the other one evacuated the surrounding area with a medical personal. Both firefighters
still need to repair the pipeline leak while the medical personal has to treat an injured person she
encountered during the evacuation. In order to illustrate the complexity of emergency operations
this example uses more than our four example tasks. However, this example is still considered
one of the smallest emergency operations. Realistic scenarios involve a larger number of team
members and tasks. The steps for transforming the initial net into this one and the used transfor-
mation rules can be found in Appendix A.

The firing of the AHL-Net and the execution of transformation rules represent different di-
mensions of runtime dynamics. Firing the AHL-Net represents an execution of the operation.
Whenever a task is finished its transition is fired and leads to a new runtime state. The appli-
cation of transformation rules represents a change in the operation. Whenever the team leader
requires the plan of the operation to change she triggers the execution of one or more transfor-
mation rules. Their purpose is to introduce the required changes into the net.

Until now the intuitive approach of modelling the AHL-Net has worked. The workflow of the
team of firefighters can be represented. The actions of each team member can be executed and
tracked. This model is a well-suited way to model a fixed operation. However, it is far from
optimal for rule applicability. The remainder of this chapter serves to show the problems that
occur in this area. For this task we focus on two occasions that require the transformation of the
AHL-Net and analyse how these changes can be achieved in this approach.

The first occasion is the introduction of a new task into the workflow of a firefighter. As

Proc. PNGT 2010 8/35

Eg ECEASST

an example, we aim to insert the task Repair Gas Leak into the workflow of a firefighter at an
arbitrary position (after any other task).

[
[.

_——— e . — e ——— = — -
- e - - - - ———————

T S

-——

Figure 8: A transformation rule for inserting the task Repair Gas Leak after the task Take Gas
Reading

A transformation rule for inserting this task after the task Take Gas Reading is depicted in
Figure 8. This rule targets the task Take Gas Reading on its left hand side, temporarily removes
it and reinserts it together with the new task. This rule can only be applied where the structure
of Take Gas Reading occurs. It cannot be used to insert the task after a differently structured
task. For this purpose additional transformation rules are required. In order to be able to insert
this task anywhere into the workflow of a firefighter a total number of seven transformation rules
is required (one for each possible task structure of a firefighter), even in our limited set of four
tasks. The case study in [Tro09] contains a much larger set of tasks. This shows that the designer
has to define a large set of transformation rules only for the purpose of inserting one task.

-
-

- _—_—— - -

_— e — - —
N e e e e e e = = = -

-~

Figure 9: A transformation rule for adding a firefighter to the task Repair Gas Leak

A second occasion for a transformation is the requirement to change the existing task Repair

9/35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns E}

Gas Leak in order to add an additional firefighter. This is required if the leak is dangerous and
an additional firefighter is needed for security reasons. This occasion also proves problematic. A
rule for inserting a second firefighter into the task done by one firefighter can be seen in Figure 9.
This rule can only be applied if currently one firefighter is doing the task and the other firefighter
is doing the task Call Reinforcements or a similarly structured task before he joins the task Repair
gas Leak. Again, in order to insert an additional firefighter in any situation several transformation
rules are required; one for every combination of number of firefighters already in the task and
previous task of the added firefighter.

However, there is another problem in this transformation rule. It is also applicable to the task
Call Reinforcements of a firefighter. The structures and place types of this task and the task
Repair Gas Leak for one firefighter are identical. AHL-Net Morphisms do not have to preserve
the name of transitions. For this reason this transformation rule is applicable to the wrong task.

These two problems can be avoided if the designer considers rule application while modelling
the AHL-Net. However, this also makes the modelling process much more complicated as she
has to find a way to enable both correct rule application and correct execution logic of her net.
The next section proposes to provide net patterns to the designer in order to ease these problems.

4 Net Patterns

While designing an algebraic high level net transformation system the design of the initial model
and the design of the transformation rules are interwoven. If the model has not been designed for
easy rule application, designing rules can become a difficult task and may even involve a revision
of the original model structure. However, designing an AHL-Net for easy rule application is no
trivial task. The fact that AHL-Nets are executable and thus every change in the net also changes
its execution behaviour adds to this complexity.

In order to take these problems out of the hands of the designer we propose to provide her
with structures she may use during the modelling process. This saves her the effort of having to
come up with solutions for enabling easy rule application on her own. We call such structures
net patterns. A net pattern is a subnet that has to be inserted by the designer in order to model
a certain situation. This subnet may not be complete i.e. there may be parts of the net pattern
where the designer is able to fill in a custom structure or define the types of certain places.

This is similar to the idea of design patterns originating in the work of Christopher Alexander
[AIS77]. Such patterns are available for programming languages as guidelines for modelling
certain reoccurring tasks such as making a class singleton. These patterns consist of a problem
specification and a description on how it can be solved in a certain programming language. We
can see net patterns as design patterns on AHL-Nets where the problem description is that the
designer wants to model a certain situation and the solution is a description of the subnet the
designer may use.

Net patterns can be used for several purposes. In this paper we propose to use them to ease the
problems in rule application. The basic idea is to use net patterns in the AHL-Net to guarantee
the existence of certain structures. These structures can be targeted by the transformation rules.
A good design in the patterns can ease the tasks of rule application considerably.

The problems in the first case study can be solved by such patterns. This case study has two

Proc. PNGT 2010 10/35

Eg ECEASST

main problems. The first problem stems from the large variety of different structures of tasks in
the case study. This variety leads to the problem that targeting an arbitrary task, for example in
order to add another task after it, requires an impracticable large set of transformation rules. In
general, this problem occurs whenever a transformation rule should be general and applicable
in a large variety of places inside the AHL-Net. In order to write such a general transformation
rule one has to rely on the structural commonalities of the possible applications. If no such
commonalities exist multiple versions of the transformation rule are required.

The second problem in the case study stems from the fact that a transformation rule can be
applied for any match morphism that can be found. Some of these possible applications might not
have been intended by the designer and thus are possible misapplication. In the first case study,
a transformation rule that was intended to change the structure of one task can be applied to a
different task it has not been intended for because this task has the same structure. One technique
for achieving such a restriction is the use of application conditions for graph transformation rules
[EH85, EEHP06, HP09]. Application conditions restrict the applicability of a transformation rule
by restricting the surrounding context of the application. By using such conditions, additional
structural requirements to the application context of the rule can be made. In normal application
conditions the designer can specify which additional structures should exists in order to apply
the transformation rule. There are also negative application conditions [HHT95] that can be used
to forbid the existence of certain structures. These application conditions have been generalized
to the more expressive nested application conditions [HPO5]. Such application conditions also
rely on the existence or non-existence of morphisms. Although these application conditions
considerably increase the possibilities of the designer to constrain where her transformation rule
can be applied, there are still some problems that cannot be solved with these techniques. These
are the cases where two alternate applications, one correct and one incorrect, are completely
identical in their structure. In our example from the case study the structures of the tasks Call
Reinforcements and Repair Gas leak are identical. This means even with additional application
conditions they cannot be distinguished from each other on a structural basis. These tasks can
only be distinguished by actively modelling them with a different structure.

On the one hand, the different properties of tasks lead to so many different task structures
that being able to target an arbitrary task requires an impracticable large set of transformation
rules. On the other hand, the representations of some tasks have the same structure. This leads to
possible misapplications of transformation rules that where meant to be applicable only for one
task.

These problems can be solved by introducing a net pattern for tasks. In this approach each
task consists of a subnet of the AHL-Net. The pattern then prescribes parts of the structure of
this subnet. It contains parts that are identical for every task and parts that are specific to one task
type only. This way transformation rules for generic purposes, such as the insertion, deletion or
relocation of an arbitrary task, can target the parts of the pattern that are the same for all tasks
while specific rules, e.g. a change that can only be applied to one task type, can target the parts
that only occur in this task.

In Section 5 the emergency scenario is modelled with the help of such a net pattern.

11/35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns Eﬁ

5 Case Study 2: Modelling Emergency Scenarios with Net Patterns

As stated in Section 4 the modelling process of the case study can be considerably eased for the
designer by the introduction of net patterns. We use a pattern that prescribes a structure for tasks
done by certain team members. This pattern has to be applied on the nets algebraic specification
and its AHL-Net structure. The specification needs to contain all sorts and operations used in the
net structure.

The pattern on the specification level is based on the description of which team member type
can execute which task types, defined in the case study. If this information is known the specifi-
cation can be generated. The generated signature contains:

e Team Members and Data: For each team member and data type (rm) the sorts (tm),
preprocessing_(tm), post processing_(tm) and constructing operations preprocessing_(tm) :
(tm) — preprocessing_(tm) and post processing_(tm) : (tm) — post processing _(tm).

e Task Types: For each task type (task) and all team members and data types (tm) that
are allowed to execute this task the sort doing_(task)_(tm) and the constructing operation
doing_(task)_(tm) : (tm) — doing_(task)_(tm).

sorts: opns:
firefighter preprocessing_firefighter: firefighter -> preprocessing_firefighter
preprocessing_firefighter postpraocessing firefighter: firefighter -> postprocessing firefighter
postprocessing firefighter
doing_repair gas leak_firefighter: firefighter
-> doing_repair gas leak_firefighter
doing_repair gas leak_firefighter

Figure 10: Excerpt from the induced specification of the example.

Part of the induced specification for the team member type Firefighter and the task Repair Gas
Leak is depicted in Figure 10. The specification does not require any equations and variables.
Based on the types and operations in this specification the net pattern for a task is defined. In
addition, an algebra for the induced specification can be generated. This can be done based
on an implementation for the team members and data types. For a data type of the sort tm,
the implementation of preprocessing_tm, post processing tm and doing task_tm are exactly the
same as tm for all tasks task. The operations for constructing these sorts out of the normal tm
simply generate an identical piece of data. The implementations for the sorts for each team
members could for example consist of the name of the team member and a set of additional
attributes

The left hand side of Figure 11 shows the scheme for the net pattern for a task done by one
team member. In order to be able to distinguish a general and a task-specific part of a task,
the pattern introduces a preprocessing and postprocessing phase before and after the task. The
preprocessing phase consists of the net around the transitions Start Preprocessing and Finish

Proc. PNGT 2010 12/35

E} ECEASST

: <teammember> :<teammember>o
a Ta
Start Finish
Preprocessing Postprocessing

preprocessing_

postprocessing_
<teammember>(a)

<teammember>(a)

v

1 preprocessing_ : postprocessing
. <teammember> <teammember>
preprocessing_]
<teammember>(a) postprocessing_ Task
<teammember>(a)
Finish Start
Preprocessing Postprocessing
doing_<task> doing_<task>

<teammember>(a) <teammember>(a)

B

: doing_<task> : doing_<task>
<teammember> <teammember> : <teammember>

Figure 11: Left: The pattern of Places and Transitions used to represent a task. Right: A visual
abbreviation for the pattern.

Preprocessing. This sub-pattern represents one team member preparing and then starting the
task. Similarly, the task pattern ends with a postprocessing pattern that represents the ending of
the task. This pattern consists of the net around the transitions Start Postprocessing and Finish
Postprocessing. A Task may have multiple preprocessing and postprocessing patterns; one for
each team member and piece of data participating in this task. In our general version, the core of
the task is indicated by a dashed arrow. This is where the implementation of the task is inserted.
Here, the designer is free to model the actual implementation of the task. Since the pattern
contains several places and can get quite big in complex nets, Figure 11 also contains a visual
abbreviation for the pattern. In this abbreviation Pre represents the preprocessing phase, Post
represents the postprocessing phase and Task represents the inner implementation of a task. This
abbreviation is be used in several figures to save space.

The types of the places are also part of the pattern. In Figure 11, diamond brackets are used
as a placeholder for a certain type. For instance, the type doing_(task)_(teammember) has to
be instantiated with a task name and a team member type. For the task Treat Injured Person of
the team member Medical Personal, the type of the places used in the inner implementation of
a task is doing _treatin jured person_medical personal. For the net pattern all placeholders of the
same name have to be instantiated with the same type. Two dependent types are contained in
this pattern. One represents the executing team member and the other one the executed task. The
types that are used in the pattern are all part of the induced specification.

These types are used to accomplish the general and task-dependent parts of a task. The general
parts of the task pattern are the ones whose place-types do not contain the task name. These are
the transitions Start Preprocessing and Finish Postprocessing and the places connected to them.
From the point of view of one team member each task starts with a preprocessing phase and ends

13/35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns Eﬁ

with a postprocessing phase which contains these structures. They can be targeted by general
transformation rules.

The types of the places on the inner task structure contain the name of the task. This means
that for any two different tasks the types of this part of the net pattern are different. Specific
transformation rules can make use of this fact.

The tasks in case study 1 depicted in Figure 5 can now be translated to tasks using the pattern.
For each incoming arc in the transition representing the task, the pattern contains one prepro-
cessing pattern typed over the type of the place connected to the incoming arc. For example, if
the arc is typed with firefighter and the task is take gas reading the types of the places in the
preprocessing pattern from start to end are firefighter, preprocessing_firefighter and doing_take
gas reading firefighter. Analogous, each outgoing arc of the transition in case study 1 is mod-
elled as a postprocessing pattern containing the according types. The core of the task can be
implemented by using the task structure from case study 1, substituting the types of the places
with the correct type inside of the task (for instance firefighter is substituted with doing_take gas
reading _firefighter inside the task take gas reading) and connecting each place to the correspond-
ing preprocessing pattern. If required, the inner structure of a task can also be modelled in a
more sophisticated way by substituting this one transition with a subnet. This allows to model
subtasks for each task. An example of a conversion of a task and transformation rule can be
found in Appendix B.

p) N\
. o Y
: postprocessing .
tprocessin
firefioht postp g_
irefighter | firefighter (a)

Finish
Postprocessing

-
-
A

VS, : postprocessing_ ~

firefights A}
! ! firefighter (a) retignter

-t

: postprocessing_
firefighter

Finish
Postprocessing

a

: firefighter

: firefighter

[

- doing_
a| repairgasleak_

: firefighter firefighter

Repair
Gas Leak

: doing_
repair gas leak_

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: firefighter
|

!

——am mm mm mm mm mm mm mm mm s o Em Em Em mm Em Em Em o o Em A

o o wm wm w ow— w— — —

\ L : firefighter

Figure 12: General insertion rule for the task Repair Gas Leak.

The net pattern enables a more comfortable formulation of transformation rules. Figure 12

Proc. PNGT 2010 14 /35

Eg ECEASST

shows how the task Repair Gas Leak can be inserted with net patterns. On its left hand side the
transformation rule contains the transition Finish Postprocessing from our task pattern for the
team member type Firefighter. On the right hand side of the transformation rule the task Repair
Gas Leak is inserted after this transition. Since the transition Finish Postprocessing is contained
in the general part of our net pattern it is contained in every task of the team member firefighter.
Thus, this transformation rule can be used to insert the task Repair Gas Leak anywhere in the
workflow of a firefighter. This is the insertion rule that proved problematic in Section 3. Insertion
rules can always be formulated similar to this example. The left hand side contains the transition
Finish Postprocessing for all participating team members and used data elements. The right hand
side inserts the task in its initial structure conforming to the pattern after these transitions.

P R - o ——— = - - - P i -

’ / \ s . A Y

P G VN \ L T A pestprocessing s postprocessing_,

v postprocessing_ " . 1| "' '''' O """ | ’7 Firefighter (a) firefighter \\
firefichter postprocessing_ : postprocessing_ -

! & firefighter (a) 1 ! firefighter ' Finish \

! | | 'y Postprocessing 1

| Finish ! L |

| Postprocessing ! L o |

1 | | [: firefighter |

! a 1 ! . |

} 1 [} [1 |

1 : firefighter 1 [|
roTTTTT !] :doing_ : doing

] H | }] repair gas leak_ repairg}s leak_ |

P ! J') (frefighter__ 2 z firefighter |
| 1 R FET N N

! i T L~ 1 r Reinforcement Arrives | !

LI : doing_ 1 - doing l I b |

ro repairgasleak_ 1 ! I I di - doing_ 1

| E @ fi rz f hgt o g ! repair gasleak_ | | romal gas leak . repair gas leak_ |

[g P firefighter 1, frefigher 4 firefighter !

1 ' Repair | 1 (I |

1 ! Gas Leak | | Iy |

L} ' } |

. a ! | . ! b |
' | . ! - doing_ doing_ 1

| | E ir gas leak_ repair gas leak_

A T T oo () e !

1 | s doing_ : | *doing_ 1 |
1 .

1 ' repair gas leak_ . | repair gas leak_ ! y

! ' firefighter ;! firefighter 1 \\ ,
I FR AU VORI 8 U

WL 71 O T I <

N~ P \ :firefighter .

Figure 13: A transformation rule for adding a firefighter to the task Repair Gas Leak.

The second problem in the first case study occurs when trying to add a new firefighter to the
task Repair Gas Leak. In addition to the problem of not being general enough, it is not possible
to formulate the rule in a way that forbids misapplications to other tasks in the first case study.
Using the net patterns this transformation rule can be formulated as depicted in Figure 13. The
transformation rule targets one transition inside of the Task Repair Gas Leak and the Finish Post-
processing transition of the second firefighter. From the point of view of this second firefighter
the rule works like any other insertion rule. For the first firefighter the transformation rule adds
the subtask of waiting for the second firefighter to arrive before executing the already existing
subtask. The transformation rule uses places of the type doing_repair gas leak firefighter. Ac-
cording to our net pattern this type can only occur inside of the task Repair Gas Leak of the team
member type Firefighter. For this reason the transformation rule cannot be applied to any other

15/35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns E}

task. This transformation rule solves the problems that occurred in the first case study.

These two transformation rules show that the introduced patterns enable the designer to formu-
late more efficient and safe transformation rules. The results from both case studies are compared
in the next section.

6 Evaluation and Related Work

This paper shows two ways of modelling emergency operations with algebraic high level net
transformation systems. The case study in Section 3 shows that an intuitive way of modelling
the AHL-Net can lead to problems in rule application.

The second case study in Section 5 uses a net pattern to model the same operations. Although
the net pattern leads to a larger AHL-Net structure it enables efficient definitions of transforma-
tion rules.

One problem that occurs in the first case study is the number of transformation rules required
to insert a task anywhere in the workflow of a team member. The different structures require a
specialized insertion rule for each possible task structure. Even the restricted set of four tasks
requires seven transformation rules in order to insert one task anywhere in the workflow of its
corresponding team member. In a realistic set of tasks this number is much higher. The appli-
cation of net patterns in the second case study solves this problem. In this case study only one
rule is able to insert a task anywhere in the workflow for a team member type. This number is
independent of the number of structures of the available tasks as long as they are modelled with
the net patterns. This specific problem can be seen as an example for a class of problems where
the designer wants to create a general reconfiguration rule that should be applicable in several
places throughout the net. In order to do this she can rely on a net pattern in order to restrict
the targeted places of application in the net to the same structure. This way this structure can be
targeted in a generic rule. In order for this to work the modelled system under study should be
decomposable in logical units or parts, like our tasks.

The second problem in the first case study stems from the fact that some tasks have identical
structures. This leads to a possible misapplication of transformation rules that should only be
applicable within the scope of one specific task. Again, the net patterns are able to eliminate this
problem. In these patterns each task contains a unique type for its inner places. If a transforma-
tion rule uses this unique type it can only be applied to the according task. Again, this problem
is an example for a larger class of similar problems where the same structure in the net occurs
multiple times and not all of these occurrences are considered correct applications of the trans-
formation rule. This problem can be eased by using application conditions and restricting the
possible places of application. A net pattern can explicitly force the designer to choose different
structures in order to distinguish between the right and wrong places of application. In our case
study we used the typing of the places in order to enforce this difference.

This shows that the introduced net pattern has successfully eased the problems of the designer.
If this net pattern is provided to the designer, either as a part of the modelling environment or in
a descriptive way as a design pattern, this can save her a lot of time since she does not have to
come up with possible solutions and validate them herself.

Emergency scenarios are a popular case study for showing the capabilities of modelling lan-

Proc. PNGT 2010 16 /35

Eg ECEASST

guages. Their large complexity and frequent changes make them a good example to show the
capabilities or problems of modelling languages. For instance, in [HEPOS8] the application of
reconfigurable systems for modelling the dynamic aspects of such scenarios is proposed and il-
lustrated on Petri nets. This work also is the foundation for [Tro09] from where our net patterns
originate.

A different approach to modelling dynamic emergency scenarios is presented in [RMOS8]. In
this approach the process is modelled as a questionnaire that contains decision points. This
questionnaire contains all possible courses of actions in the scenario. This is another view on
modelling these dynamics. Instead of modelling the workflow of the team only the decisions that
change this workflow are modelled. This model could, for example, be used to decide when a
transformation rule is applied.

Basically our case study models the workflow of a team of firefighters with the special prop-
erty that this workflow may change at runtime. [AWWO03] focuses on workflow modelling and
the required perspectives on the workflow. This publication also introduces several approaches
towards workflow modelling and compares them regarding their capability to model these five
perspectives. In [Tro09] we show that our modelling of an algebraic high level net transforma-
tion system not only covers these perspectives but also is able to cope with the changes in these
perspectives that can occur during the execution of the operation.

Net patterns on modelling languages are an obvious extension. Several authors have consid-
ered this approach in order to convey solutions to various problems. For example in [JN98]
several reusable design patterns for Petri nets are proposed. [MAOS5] proposes design patterns
on colored Petri nets. This work is part of the results from the Workflow Patterns Initiative that
researches patterns in process aware information systems. A collection of the patterns required
in this context can be found in [VTKBO03].

These references concentrate on the use of patterns for structural or behavioural properties
of certain modelling languages. The use of patterns for graph transformation has also been re-
searched. One promising approach is introduced in [AVK "05]. However, this approach focuses
on the use of design patterns for the formulation of graph transformation units to accomplish a
certain task while we propose to also use design patterns in the targeted models for controlling
the applicability of the transformation rules.

7 Conclusion and Future Work

The two case studies in this paper show the advantage of the use of net patterns. In fact, the
patterns in the second case study are the result of multiple cycles of trial and error by the author
of [Tro09] while modelling the emergency scenarios. In order to support other designers with
similar problems it makes sense to formulate the patterns as design patterns that can be reused in
a similar situation.

Algebraic high level nets are not the only modelling language that may encounter certain prob-
lems in connection with the applicability of graph transformation rules. Since this applicability
is mainly determined by pattern matching it makes sense to use structural patterns to ease these
problems. Thus, we think the approach of design patterns for rule applicability may be of use in
other modelling languages as well.

17735 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns Eﬁ

One property of morphisms that is of special use to the case study is the requirement to pre-
serve types. The types of the places have proven to be useful in restricting where a transformation
rule can be applied. On the other hand, one could argue that our patterns misuse a typing concept
that has been introduced for restricting which kinds of data a place may hold. In fact, we use
the types mainly for restricting where a graph transformation rule can be applied. For future
work it is interesting to look into whether both concepts can be decoupled. A special kind of
typing could be introduced that is only relevant for morphisms and thus can be used to restrict
the applicability of graph transformation rules without influencing the structure of the model.

Bibliography

[AIS77] C. Alexander, S. Ishikawa, M. Silverstein. A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, New York, 1977.

[AVK'05] A. Agrawal, A. Vizhanyo, Z. Kalmar, F. Shi, A. Narayanan, G. Karsai. Reusable
Idioms and Patterns in Graph Transformation Languages. Electronic Notes in Theo-
retical Computer Science 127(1):181-192, March 2005.

[AWWO03] W. M. P. van der Aalst, M. Weske, G. Wirtz. Advanced Topics In Workflow Man-
agement: Issues, Requirements, And Solutions. J. Integr. Des. Process Sci. 7:49-77,
August 2003.

[EEHPO6] H. Ehrig, K. Ehrig, A. Habel, K.-H. Pennemann. Theory of Constraints and Applica-
tion Conditions: From Graphs to High-Level Structures . Fundamenta Informaticae
74(1):135-166, 2006.
http://fi.mimuw.edu.pl/vol74.html

[EEPTO06] H.Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs in Theor. Comp. Science. 2006.

[EHS85] H. Ehrig, A. Habel. Graph grammars with application conditions. In Rozenberg and
Salomaa (eds.), The Book of L. Pp. 87-100. 1985.

[HEPO8] K. Hoffmann, H. Ehrig, J. Padberg. Flexible Modeling of Emergency Scenarios us-
ing Reconfigurable Systems. Formal Modeling of Adaptive and Mobile Processes.
Electronic Communications of the EASST 12, 2008.

[HHT95] A. Habel, R. Heckel, G. Taentzer. Graph Grammars with Negative Application Con-
ditions. Fundamenta Informaticae 26:287-313, 1995.

[HPO5] A. Habel, K.-H. Pennemann. Nested Constraints and Application Conditions for
High-Level Structures. In Formal Methods in Software and System Modeling. LNCS
3393. P. 293308. Internationales Begegnungs- und Forschungszentrum fuer Infor-
matik, 2005.

Proc. PNGT 2010 18/35

http://fi.mimuw.edu.pl/vol74.html

Eg ECEASST

[HPO9] A. Habel, K.-h. Pennemann. Correctness of high-level transformation systems rela-
tive to nested conditions†. Mathematical. Structures in Comp. Sci. 19:245—
296, April 2009.
doi:10.1017/S0960129508007202
http://portal.acm.org/citation.cfm?id=1552068.1552070

[JN98] J. W. Janneck, M. Naedele. Introducing Design Patterns for Petri Nets. 1998. TIK-
Report No. 39, February 1998.

[MAO5] N. Mulyar, W. M. van der Aalst. Towards a Pattern Language for Colored Petri Nets.
2005.

[PER95] J.Padberg, H. Ehrig, L. Ribeiro. Algebraic High-Level Net Transformation Systems.
Mathematical Structures in Computer Science 5:217-256, 1995.

[RMO8] M. L. Rosa, J. Mendling. Domain-Driven Process Adaptation in Emergency Scenar-
10s. In Business Process Management Workshops. Pp. 290-297. 2008.

[Tro09] F. Trollmann. Modeling Emergency Scenarios using Algebraic Higher Order Nets.
Master’s thesis, Technische Universitit Berlin, 2009.
http://tfs.cs.tu-berlin.de/Diplomarbeiten/TFSdipl/09-Frank Trollmann.pdf

[VTKBO3] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, A. P. Barros.
Workflow Patterns. Distrib. Parallel Databases 14:5-51, July 2003.

A Transformation of the Initial Net for Szenario 1

The transformation from the initial net in Figure 6 to the net given in Figure 7 in Section 3 is
accomplished by using a set of graph transformation rules. This section exemplifies this trans-
formation by showing these rules.

In order to transform the initial net the three tasks Set Up Command Post, Take Gas Reading
and Evacuate Surrounding Area are inserted after the task Team Arrives. The respective insertion
rules are shown in Figure 14, Figure 15 and Figure 16. Each of these rules uses the task 7Team
Arrives on its left hand side and inserts the structure of the respective task on its right hand side.
The task Set Up Command Post is added to the workflow of the team leader whereas the task
Take Gas Reading is added to the workflow of a firefighter. The task Evacuate Surrounding Area
is added to the workflow of the second firefighter and the medical personal. This rule could
actually also be applied in a second way, adding this task to the workflow of the other firefighter
before the task Evacuate Surrounding Area.

The state of the net after the application of these three transformation rules is depicted in
Figure 17. Note that this is already a valid operation. The team leader establishes a base while
one firefighter has the task of determining whether there is any dangerous substance by taking
a gas reading while the second firefighter and a medical personal are evacuating the area as a
precaution.

After taking the gas reading by firing the transition Take Gas Reading it is determined that
there is in fact a critical amount of gas in the air. According to this new information the team

19/35 Volume 40 (2011)

http://dx.doi.org/10.1017/S0960129508007202
http://portal.acm.org/citation.cfm?id=1552068.1552070
http://tfs.cs.tu-berlin.de/Diplomarbeiten/TFSdipl/09-FrankTrollmann.pdf

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns E}

-_——-—————— - -

4 \ " Vd \
1 | ! \
| ! ! 1
| 1) ! 1
| |
| : team I | : |

leader 1 I

1
| | I 1
I | | | 1
l l - \i_'_'|_____"' l
! 1 o) I
1 : firefighter | : I —— 1
1 . . -
[@) . § S T O"'"' | 1 : firefighter |, I
| : firefighter : firefighter | . |
| h 4 | ! | l . SR PP EEL "
l O("] """ L O"‘"‘"‘I_“ _:Ie‘e;r_n- leader : medical personal f
\ L medical personal } |‘ : medical personall : \\ R s
. e - - —— - -’ - - - N e - - ——— - - -

Figure 14: Insertion rule for the task Set Up Command Post.

leader has two new tasks. One task is to assess the situation by evaluating the previously taken gas
reading. This task is inserted by using the transformation rule in Figure 18. This transformation
rule has the structure of the task Set Up Command Post on its left hand side and can therefore
only be used to insert the new task after this task. In addition, the team leader has to make a call
and inform the responsible authorities so they may send reinforcements if required. This task in
inserted after the previous task using the transformation rule in Figure 19. During the evacuation
an injured person has been found. Thus, the medical personal has the additional task to treat this
injured person. This task is added to the operation using the insertion rule in Figure 20. After
adding these tasks to the operations plan the net is in a new state. Figure 21 shows this new state.
The previously inserted tasks have been executed thus the marking of the net has changed. In
accordance with the new information gained by executing these tasks the nets structure has been
changed by adding the tasks as described above.

Finally, it is determined that the pipeline is save enough to be repaired by one of the fire-
fighters. However, in case of an emergency another firefighter should stand by during the repair
process. This task is inserted in two steps. First, the task Repair Gas Leak is inserted into the
workflow of one firefighter using the insertion rule already given in Figure 8. A second rule,
depicted in Figure 22 is used in order to add the second firefighter. This rule contains the previ-
ously inserted task Repair Gas Leak and the task Evacuate Surrounding Area of the participating
firefighter on its left hand side. During the execution both tasks are deleted and reinserted. The
task Evacuate Surrounding Area is reinserted as it is while the reinserted version of the task Re-
pair Gas Leak now involves both firefighters. The result of the transformations is the net given
in Figure 7.

Proc. PNGT 2010 20/35

Eg ECEASST

-—-——-——-————_————- -~ -~
/ \ | 7 \
I | / \
1 ! ! I
| 1) ! 1
1 b ! ;! I
1 ! ;! 1
1 1) ! 1
| firefighter ! i | |
l ' g |
| 1 \\I 1 |
I : team ! |“‘\ Y A |
| leader - 1 f "i‘"'l?\ ________ , 1
! firefighter |}, ! | :firefighter I | I
| | L A A !
l O(__] _____ | O--A——---‘I"' 3 : medical personal !

L : medical personal } |‘ : medical personall | \\ —t] _ R #
A\ - P - / « firefighter : gas reading P

———————— - -—— o = - o Ee Em Ee o o s e Ee e Ee e s o e

Figure 15: Insertion rule for the task Take Gas Reading.

B Conversion between Tasks and Rules from Case Study 1 and Case
Study 2

Since the net patterns in this example provide a structure for tasks it is possible to transform
the tasks from case study 1 into tasks using these patterns. This has already been explained in
Section 5. This appendix serves to give an example of such a conversion and also show how a
transformation rule from case study 1 can be converted into a transformation rule for case study
2.

As an example for a task conversion we use the task fake gas reading in the version that
uses an additional gas reading as input. The structure of this task in both case studies can be
seen in Figure 23. During the conversion the structure of the transition Take Gas Reading is
kept. However, its two incoming arcs and connected places are substituted by a preprocessing
pattern typed over the respective team member / data and task. For instance the incoming arc,
connected to the place typed with firefighter is substituted by a preprocessing pattern as indicated
by the encircled areas in the figure. This pattern contains the transitions start preprocessing
and finish preprocessing as specified in our pattern. These transitions are connected to places
of the types firefighter (outer place), preprocessing_fire fighter (place between the transitions)
and doing_takegasreading_firefighter (the inner place connected to the transition Take Gas
Reading). Similarly each outgoing edge is substituted by a postprocessing pattern. The inner
structure of our task in case study 2 is the same as the task structure of case study one. This
inner structure could also be redefined in order to model subtasks. For instance, the task take
gas reading could be divided into the subtasks of finding the gas leak, evaluating the previous
reading and taking the new reading.

Figure 24 shows an example for a conversion from a transformation rule from case study 1 to
a transformation rule in case study 2. Both rules insert the task repair gas leak in the respective
case studies. In order to derive the transformation rule for the second case study from one for the

21/35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns E}

-—— = — - o o o o o = =y

: medical personal

|
|
I
|
I
|
O !
.- |
I
|
I
------ Q oy
: fire |ghte‘r’-\ |k‘-,|
\ 1
N | |
1
|
|
1
|

: firefighter

: medical
personal

\
- e o e e o -

: medical
personal

L

0

: firefighter

______ Q-

: firefighter v

¥

- —wm = -

_____ \ : team leader
L tteam :team leader R s
\ leader] N :firefighter : medical personal P
N - - - - — - - | . - T -

Figure 16: Insertion rule for the task Evacuate Surrounding Area.

first case study two things have to be done. On the left hand side the transformation rule from
the first case study has the structure of the task take gas reading after which this task should be
inserted. This structure is substituted in the second case study by a transition Finish Postprocessig
from the postprocessing pattern as indicated by the encircled areas in the left hand sides of the
transformation rules. The required transition is contained in the net pattern and thus is contained
in the net at the end of any task of the team member firefighter. Thus, the transformation rule
from case study 2 is more general than the example from case study 1 since it is able to insert the
task anywhere in the net. If the designer explicitly wants the transformation rule to be applied
only after the task Take Gas Reading she has to use more context in the transformation rule. For
instance, she could also use the transition Start Preprocessing from the pattern. This transition
is connected to one place typed over doing_take gas reading firefighter. Thus, it ensures that the
transformation rule can only target this specific task. In accordance with the substitution of the
left hand side the preserved places in the gluing graph and the reinserted structure in the right
hand side change.

In addition, the inserted task Repair Gas Leak on the right hand side changes. While the
transformation rule from the first case study inserts the task as one transition the rule from the
second case study uses the task pattern. The first example in this section already showed how the
structure of a task in the first case study can be converted into the patterns from the second case
study.

C Complete Signature of the Second Case Study

In the second case study the signature has been indicated as generated from the information about
the task and team member relations. This appendix serves to give a complete signature for the
tasks used in the case study. This signature is depicted in Figure 25.

Proc. PNGT 2010 22 /35

Eg ECEASST

Team Arrives

a b c d

:team leader (T) () :firefighter () :firefighter () : medical personal

a a a 0

Evacuate
Set Up Take Gas surrounding
Command Post Reading Area

a b a a b

: team leader ‘ : firefighter ‘ - firefighter . : medical personal
.gas reading
a b c d

Team Leaves

Figure 17: The net after the insertion of the tasks Set Up Command post, Take Gas Reading and
Evacuate Surrounding Area.

D Detailed Modelling of the Second Case Study

This section shows how the models from Section 3 are modelled with the patterns introduced in
Section 5.

The initial net that is used on startup of the application is depicted in Figure 26. This net
corresponds to the initial net in the first case study. The task Team Arrives and Team Leaves
have been modelled using the net pattern. Team Arrives has no preprocessing pattern and four
postprocessing patterns representing the fact that during this task the four team members arrive
and are available for the operation. Analogous, Team Leaves has four preprocessing and no
postprocessing pattern, reflecting the fact that the four team members leave the operation.

Following the same situation as in the first case study in Appendix A, the three tasks Set up
Command Post, Take Gas Reading and Evacuate Surrounding Area are inserted. The correspond-
ing insertion rules are depicted in Figure 27, Figure 28 and Figure 29. Each of these insertion
rules uses the postprocessing pattern on its left hand side. This means that they can actually be
applied after any task of the correct team member. This is different from the corresponding rules
in the first case study. These rules can only be used to insert the three tasks after the tasks they
use in their left hand side. This means in order to generate another execution order of tasks, more
rules are required in case study 1 whereas the rules in case study 2 can be reused for this purpose.
The result of the application of all three rules is depicted in Figure 30.

The transformation rules for the insertion of the tasks Assess Situation, Call Reinforcements
and Treat Injured Person are given in Figure 31, Figure 32 and Figure 33. Again, these insertion
rules can easily be reused in order to generate other operations where the tasks are in different
order while the transformation rules from case study 1 cannot. The net after the insertion of these
three tasks is depicted in Figure 34.

The transformation rules for inserting and then altering the task Repair Gas Leak are depicted
in Section 5 in Figure 12 and Figure 13. The first rule is a normal insertion rule. The second rule

23/35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns E}

O

Set Up Command Set Up Command

—_———— - ——

]
| |
| |
[} }

Post 1 Post |
[}]
: gas reading :gasreading | |
:team leader . O("I -------- it O ------------ [:__:1_:e‘a_n'_1 leader :gas reading:
1 RN 1 | [[
[Tl 1 | 1 1
1 [N [1 1
| I R T | | Assess Situation 1
1 1 I | 1 1
1 | | O ------------ L | a !
! | | :team leader [TTTTIReee—l L 1
‘\ L /, ‘\ | ,’ ‘\ :team leader R /,
N e e e e e e e = - - N e e e e e e e - - N e e e e e e e - -
Figure 18: Insertion rule for the task Assess Situation.
,’ ""_"_"‘_\. ,’ : firefighter \\ _________
: :team leader : gas reading : : ----- O ______ 1|
| N et @ e —
| | | : gas reading |
| [} | 1
}		
a }		
}	}	
[}	1	
I'. team Ieaderi'"‘-\ ! ! !		
' RN	1	
(R	1	
1 [1		
1 1 O‘-—---_ﬁ L		
1 ! : firefighter IR T		
VL ! \ | [
\ s \ ’
~ - N e e em am am em am mm Em = -

Figure 19: Insertion rule for the task Call Reinforcements.

actually targets the inner transition Repair Pipeline as well as a Finish Postprocessing Transition
of the second team member. From the point of view of the already existing team member the
task is altered. A new transition that represents the arrival of the reinforcement and a transition
that represents the new team member who is giving help are added. From the point of view of
the added team member the rule works like a normal insertion rule, targeting the postprocessing
pattern and inserting a new task.

Since the transformation rule targets an inner transition of the task Repair Gas Leak it cannot
be misapplied to change the structure of any other task. This transition is connected to places
typed over doing_repair gas leak firefighter which only occur in this task. Thus it cannot be
misapplied to another task. Such a misapplication is possible for the corresponding rule in case
study one, given in Figure 22 which is also applicable for the task Call Reinforcements of a
firefighter.

The final net after the insertion and alteration of this task is depicted in Figure 35.

Proc. PNGT 2010 24 /35

ECEASST

-————————— --\ ’__f_f_h____‘\ —_——————— >\
4 / : firefighter /, S
________ : firefighter
[. :‘fireﬁghter(""" L IREEEEEEEER [T é e . \
| : medical 1 | [P)
I g personal . £ R O -----] I : medical |
1] 5 1 | : medical 1 I personal |
I 1 | personal 1 I R i 1
! ! ! ! ! . : medical !
! ! ___I._.--———--"Q """"""""" f-onemrmmmmen I .personal !
| b ! : fireTlghter !
| I 1 I
| :firefighter) | | |
, @, S "
| : medical | --“l“‘ 1
personal Treell
| | | O |
l | l : medical l I
\ L ! \ personal | ! \ : medical personal R 7
’ 7/ 7/
o U - N e === - N e e - -

Figure 20: Insertion rule for the task Treat Injured Person

The generic nature of the transformation rules using the net patterns enables them to generate
the set of all possible scenarios that contain the inserted tasks.

25/35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns

Team Arrives

a b c
: team leader . ‘ : firefighter
a a
Set Up Take Gas
Command Post Reading
a a
: team leader O : firefighter O
- gas reading
a b
Assess
Situation
a
: team leader
a
Call
Reinforcementa
a b c
team leader .
a

Team Leaves

: medical personal

Evacuate
surrounding
Area
a b
: firefighter : medical personal
a
N
Treat Injured
Person
a
: medical personal
d

Figure 21: The net after the insertion of the tasks Assess Situation, Call Reinforcements and Treat

Injured Person.

O U U S S

X, SO K
O,

: medical

- firefighter
personal

}
}
]
1
}
}
}
]
1
L }
firefighter |
}
]
1
}
}
}
]
1
}
!

\1— : firefighter , N : firefighter /’ ‘\ : firefighter :firefighterR
Figure 22: Rule for adding a firefighter to the task Repair Pipeline
Proc. PNGT 2010 26 /35

ECEASST

: firefighter : gas reading

- firefighter : gas reading

: doing_ : doing_
Take gas reading_ take gas reading_
firefighter A gas reading
>, .
Take Gas Reading
: doing_ : doing_
Take gas reading take gas reading_

firefighter

. gas reading

: firefighter : gas reading

: firefighter : gas reading

Figure 23: Conversion of a task from case study 1 (left) to a task using the patterns from case
study 2 (right).

27 /35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns

: gas reading

: postprocessing_
firefighter \

: postprocessing_

: firefighter
" firefighter

: : :] firefight
: firefighter po.stpl.'ocessmg_ : postprocessing_ | irefighter (a) !
firefighter (a) | firefighter | !
| Y | Finish |
| Finish | ! Postprocessin, |
[} Postprocessing] ! 2 g |
[} [} !
[}
| a ! !
[}
[}
[}
[}
[}
[}
! |
)

A

doing_
repair gas leak_
firefighter

Repair
Gas Leak

:doing_
repair gas leak_
firefighter

N e e e e e _— e —————-

Figure 24: Conversion of a transformation rule from case study 1 (top) to a task using the patterns
from case study 2 (bottom).

Proc. PNGT 2010 28 /35

ECEASST

sorts:
firefighter
preprocessing_firefighter
postprocessing firefighter

team leader
preprocessing_team leader
postprocessing_team leader

medical personal
preprocessing_medical_personal
postprocessing_medical personal

gas reading
preprocessing_gas reading
postprocessing_gas reading

doing_team arrives_firefighter

doing_take gas reading_firefighter
doing_evacuate surrounding area_firefighter
doing_repair gas leak_firefighter
doing_team leaves_firefighter

doing_team arrives_team leader
doing_set up command post_team leader
doing_assess situation_team leader
doing_call reinforcements_team leader
doing_team leavers_team leader

doing_team arrives_medical personal
doing_evacuate surrounding area_medical personal
doing_treat injured person_medical personal
doing_team leaves_medical personal

doing_take gas reading_gas reading
doing_assess situation_gas reading

opns:

preprocessing_firefighter: firefighter -> preprocessing_firefighter
postprocessing firefighter: firefighter -> postprocessing firefighter

preprocessing_team leader: team_leader -> preprocessing_team leader
postprocessing_team leader: team leader -> postprocessing_team leader

preprocessing_medical personal: medical personal -> preprocessing_medical personal
postprocessing_mdeical personal: medical personal -> postprocessing_medical personal

preprocessing_gas reading: gas reading -> preprocessing_gas reading
postprocessing gas_reaidng: gas reading -> postprocessing_gas reaidng

doing_team arrives_firefighter: firefighter

-.» doing_team arrives_firefighter
doing_take gas reading_firefighter: firefighter

-> doing_take gas reading_firefighter
doing_evacuate surrounding area_firefighter: firefighter

-> doing_evacuate surrounding area_firefighter
doing_repair gas leak_firefighter: firefighter

-> doing_repair gas leak_firefighter
doing_team leaves_firefighter: fiefighter

-> doing_team leaves_firefighter

doing_team arrives_team leader: team leader

-> doing_team arrives_team leader
doing_set up command post_team leader: team leader

-> doing_set up_command post_team leader
doing_assess situation_team leader: team leader

-> doing_assess situation_team leader
doing_team leaves_team leader: team leader

-> doing _team leaves_team leader

doing_team arrives_medical personal: medical personal

-> doing_team arrives_medical personal
doing_evacuate surrounding area_medical personal: medical_personal

-> doing_evacuate surrounding area_medical personal
doing_treat injured person_medical personal: medical personal

-> doing_treat injured person_medical personal
doing_team leaves_medical personal: medical personal

-> doing_team leaves_medical personal

doing_take gas reading_gas reading: gas reading

-> doing_take gas reading_gas reading
doing_assess situation_gas reading: gas reading

-> doing_assess situation_gas reading

Figure 25: The complete signature for case study 2

29/35

Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns

Team Arrives

: team : medical
leader - fi - fi personal

Team Leaves

Figure 26: The initial net for the second case study

/ Y N " N l{ I !,,, ——————————— : postprocessing_ \‘
| postprocessing_) |] | | postprocessing | team_leader '
team_leader postprocessing_ | : postprocessing_ team_leader(a
I team_leader (a) 1 ! team_leader | | = !
1 p— |] | | Finish . |
1 i | | | Postprocessing |
Postprocessing | |
! | | | [
I a 1 I | |
I 1 | l ! !
| | | | : team_leader !
:team_leader |
| S P : I |
| - I | | | 1
| | | | | I
1 ‘-‘l | | Set Up Command 1
1 | -1 : 1 Post 1
I] | I : :
I -
l‘ ! S T R 1
\L ! ! team_leader | \ - :team_leader 1
T - s \ - - = - - 4 e, —— - -

Figure 27: Insertion rule for the task Set Up Command Post.

Proc. PNGT 2010 30/35

ECEASST

- Wm mm Em Em e e e L. - o= o= e = - -~ - -
’ ~ l’ 1 _,’_,- ___________ : postprocessing_ \\
| :Ppostprocessing ’ ______ AR O T | postprocessing team_leader |
firefighter postprocessing_ 1 : tiretighter 1 Firefighter(a}_
| firefighter (a) 1 I | | |
] Timich I] | | Finish . |
1 . I | 1 Postprocessing 1
| Postprocessing " 1))
I
| a 1 | : | a |
: ! l 1 : : firefighter :
: firefighter | ! I
| .. § 1 | | | |
1 R | 1 Take Gas Reading 1
. "
! |) "‘_ ! ! Post Post !
o ; I
! ! ! IR (LR |
v\ L / | firefighter | \ . . R I'
M e e e e -7 | I . N o ifigfighter jgasreading
Figure 28: Insertion rule for the task Take Gas Reading.
- ”(_,._—;-;--;—.-__,7-;‘_“ -===== b S P ey e - =~
” : postprocessifg_ Tpostprocassing . ’ PR “__,—'7‘-‘_‘“ pustpru:a;ug_—u._‘__:pastpmcssnrg_ -~
i firefightar medical personal o |: postprocessing « Postprocassing © / - firafizhtar megical personal
1 O(._.,__ \.l firefizhter ! medicalperonal
I B L 1
1 postprocassing_ postprocassing._ ! ‘l\ O O ! | postprocassing_ postprocassing_
l firefighter [z} medical l l\._ Lt | firefighter [a)} medical
Wy personsifsl g | TTeooos | W personalls]
! Finish Finish 1! L Finish Finish
| Postprocessing Postprocessing 1 I 1 I Postprocessing Postprocessing
I 1 | L
1 a a = _|"|-"_"'--‘_ P! a
l 1 l “‘\ l] - firefighter :medical personal
I 1! / |
|
| “firefighter, - medical personal 1 |_Q Q L
1 .- .| firsfighter madical pérsonsl
. T T : \ | | Evacuate
I ol ! Surrounding Area
| 1 | oo g !
| L i I
| [¥
\ L / !\ 11 . R
S
e mm mm mm mm mm mm o mm - ’ e T — - , - -

Figure 29: Insertion rule for the task Evacuate Surrounding Area.

31/35 Volume 40 (2011)

- mm mm mm mm mm Em Em Em E s s =

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns

Team Arrives

Set Up Command Evacuate
Post

Surrounding Area

: firefighter

. : medical personal

Team Leaves

Figure 30: The net after the insertion of the tasks Set up Command Post, Take Gas Reading and
Evacuate Surrounding Area.

’
'
1
1
'
1
]
:

' ~ N ~
4 \ / \ 1_’ __________ : postprocessing_ N\
I’ : postprocessing_ T “_ ______ [: _____ O T | | postprocessing_ team_leader ‘I
. team_leader postprocessing_ 1 D postprocessing_ | | team_leader(a) |
) team_leader (a) | team_leader | |
— 1 ! (. Finish !
! Finish | ! | Postprocessing !
| Postprocessin | |
P g 1 L} |
! ' | ;! I
I a | 1 | : |
]] |
| :gasreading ! ' : gasreading | | |
1 :team_leader - O("':'""L ______ O _____ _: L |
1 A R) 1 . | |
1 -~ | [
- [! 1
1 A | |
- ! 1
| S | |
! I
| AN | | |
1 h ! 1
| BN |
] 1 h . | |
\ ' '
L}

N ’ \ [p) ‘team_Teader

Figure 31: Insertion rule for the task Assess Situation.

Proc. PNGT 2010 32/35

ECEASST

’ hY ll [,_,_ ___________ : postprocessing_ \‘
. L@ . G TN I T
| postprocessing_ . I) 1 | postprocessing | team_leader |
team_leader postprocessing_ | : postprocessing_ team_leader(a
I team_leader (a) 1 | team_leader ! | = !
| Finish |] | | Finish |
1 . | Postprocessing 1
P 1 !
ostprocessing |
I a P o I
|] ! 1 |
| ! | | : team_leader !
cteam leader | | |
I - I I ! |
1 - P . 1
| “‘l‘ 1 I Call |
1 | N -l | | Reinforcements 1
! | (. : 1 1
| | . | I
! R S |)
\ L / ! team_leader |
~\
T am mm omm wm wm o mm e - - s \ - e mm mm = - -~
Figure 32: Insertion rule for the task Call Reinforcements.
- —— - - e———————— -~ - ——_—_E____E___———_—_—_——— -
4 A Y l, 1 J",'"f ________ : postprocessing_ \‘
. L N e L JREEETE ST memamemem T postprocessing medical personal
| :Ppostprocessing . | | | medical personal P 1
medical personal postprocessing_ | : postprocessing_ (a)
| medical personal | I medical personal | ! 3 !
I p— (a) I | | | Finish 1
| . I Postprocessing 1
P 1 !
ostprocessing |
| . I | ! I : medical |
' e o s
I -P P b I
| P : ! !
! ! ;! . !
1 |] Treat Injured 1
| | [|] Person I
| 1 | . - : I |
! I ! : medical personal | “%- :
\ -
\L I’ ! I \ : medical personal »
T om mm omm mm mm mm s e == == - \ - em mm mm = - L4 ~ - eam mm mm mm mm mm mm mm -

Figure 33: Insertion rule for the task Treat Injured Person

33/35 Volume 40 (2011)

Modelling Emergency Scnenarios using AHL-Net Transformations with Net Patterns

Team Arrives

:firefighter . : medical personal
d
c

Set Up Command . Evacuate
Post fabeitas=atin g Surrounding Area

: firefighter : firefighter

O : medical personal

Treat Injured
Person

‘ : medical personal

Team Leaves

Figure 34: The net after the insertion of the tasks Assess Situation, Call Reinforcements and Treat
Injured Person.

Proc. PNGT 2010 34 /35

ECEASST

Team Arrives

: team leader

. : firefighter
b

Evacuate

- Take Gas Reading Surrounding Area

: firefighter

: medical personal

Treat Injured

Repair Gas Leak
Person

call
Reinforcements

: firefighter : medical personal

a3

Team Leaves

Figure 35: The transformed net in the second case study

35/35 Volume 40 (2011)

	Introduction
	Algebraic High Level Net Transformation Systems
	Case Study 1 : Emergency Scenarios
	Net Patterns
	Case Study 2: Modelling Emergency Scenarios with Net Patterns
	Evaluation and Related Work
	Conclusion and Future Work
	Transformation of the Initial Net for Szenario 1
	Conversion between Tasks and Rules from Case Study 1 and Case Study 2
	Complete Signature of the Second Case Study
	Detailed Modelling of the Second Case Study

