
Electronic Communications of the EASST
Volume 40 (2011)

Proceedings of the
4th International Workshop on Petri Nets and Graph

Transformation
(PNGT 2010)

Towards Guided Trajectory Exploration
of Graph Transformation Systems

Ábel Hegedüs, Ákos Horváth and Dániel Varró

20 pages

Guest Editors: Claudia Ermel, Kathrin Hoffmann
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Towards Guided Trajectory Exploration
of Graph Transformation Systems∗

Ábel Hegedüs1, Ákos Horváth2 and Dániel Varró3

1 hegedusa@mit.bme.hu,
2 ahorvath@mit.bme.hu

3 varro@mit.bme.hu
http://inf.mit.bme.hu/en

Department of Measurement and Information Systems (MIT)
Budapest University of Technology and Economics (BME), Budapest, Hungary

Abstract: Graph transformation systems (GTS) are often used for modeling the
behavior of complex systems. A common GTS analysis scenario is the exploration of
its state space from an initial state to a state adhering to given goals through a proper
trajectory. Guided trajectory exploration uses information from some more abstract
analysis of the system as hints to reduce the traversed state space. These hints are
used to order possible further transitions from a given state (selection) and detect
violations early (cut-off), thus pruning unpromising trajectories from the state space.
In the current paper, we define cut-off and selection criteria for guiding the trajectory
exploration, and use Petri Net analysis results and the dependency relations between
rules as hints in our criteria calculation algorithm. The criteria definitions include
navigation along dependency relations, various types of ordering for selection and
quantifiers for cut-off criteria. Our approach is exemplified on a cloud infrastructure
configuration problem.

Keywords: graph transformation; trajectory exploration; Petri nets

1 Introduction

Model transformation is a common technique in Model Driven Engineering to design, analyze
and simulate various kinds of models. In case of model analysis, forward transformations usually
carry out an abstraction (and create an abstraction gap) to enable efficient formal verification and
validation. Increasing the level of abstraction usually increases the efficiency of formal analysis
but decreases its preciseness. As a result, mapping the information gathered from validation back
to the original models (i.e. back-annotation) is also a challenge due to the abstraction gap between
the source and target languages. Therefore analysis results in the target model may only serve as
a hint for the source model, and further processing steps are needed to complete the analysis. For
example a hint can provide only the number of operations instead of their original sequence and
further steps can obtain the sequence itself.

When analyzing graph transformation systems (GTS), a highly relevant technique in many
application areas for modeling the behavior of systems, Petri nets (PN) are often used as an

∗ This work was partially supported by the SecureChange (ICT-FET-231101) project and the Janos Bolyai Scholarship.

1 / 20 Volume 40 (2011)

mailto:hegedusa@mit.bme.hu
mailto:ahorvath@mit.bme.hu
mailto:varro@mit.bme.hu
http://inf.mit.bme.hu/en

Towards Guided Trajectory Exploration of GTS

abstraction to perform verification [KK06, BS06, Ren04], optimization [VV06] or find errors in
the implementation (debugging) [WKS+09]. However, the results in certain kinds of analysis
methods are not always execution paths (ordered sequences of rule applications or transition
firings) for the GTS, but more abstract information such as an occurrence vector containing only
the number of transition executions (instead of their exact order). This occurrence vector may
serve as a hint for calculating an execution path in the GTS.

In order to successfully retrieve the rule application sequences (execution paths or trajectories)
on the GTS-level, we have to explore the states reachable from an initial state by applying available
rules. This approach is called state space exploration and is often used in verification of graph
transformation systems [KK06].

Guided trajectory exploration differs from state space exploration in making use of a hint
(obtained, for instance, from some more abstract analysis result) that can reduce the number of
states, which are explored to find an adequate trajectory by guiding exploration in the state space.

The challenges of a guided trajectory exploration are two-fold: (1) at every state during the
exploration, the hint can be used to decide if the current state is part of an infeasible path, thus we
can terminate the exploration along this path (i.e. it is a dead-end in the search of a final state).
This decision is made by evaluating a cut-off criteria. (2) The hint can be used to select which
alternative exploration direction should be explored first (e.g. prioritize the alternate transitions to
a next state by their likelihood of leading to the final state). This ordering is made by evaluating a
selection criteria.

In our paper, we define cut-off and selection criteria for guiding the trajectory exploration, and
use the PN analysis results and the dependency relations between rules as hints in our criteria
calculation algorithm. The cut-off criteria are defined to exploit the dependencies between graph
transformation rules in order to make the decision based on information about the effects of future
rule applications thus allowing early termination of infeasible paths. Similarly, selection criteria
use the dependencies to be able to calculate how alternative rules can affect the applicability of
future rules and prioritize them accordingly. The criteria definitions include navigation along
dependency relations, numerical operations on an occurrence vector, various types of ordering for
selection and quantifiers for cut-off criteria.

The rest of the paper is structured as follows. First, we give a high-level overview of the com-
plete trajectory calculation approach in Section 2. Section 3 introduces the cloud configuration
example, graph transformation systems and their abstraction as Petri nets. We introduce the depen-
dency graph, and explain how it correlates to the state of the GTS during trajectory calculation in
Section 4. Section 5 defines selection and cut-off criteria and specifies their calculation algorithm,
which is illustrated by the case study. Finally, related work is discussed in Section 6 and Section 7
concludes our paper.

2 Overview of the approach

The guided trajectory exploration problem appears in many scenarios, such as configuring in-
frastructures or other autonomic software systems. In our paper we deal with scenarios where
the states are represented with graphs and operations are defined as GT rules. The rules and the
initial graph are represented together as a GTS in Figure 1, which illustrates the overview of our

Proc. PNGT 2010 2 / 20

ECEASST

trajectory exploration approach. Apart from the GTS, the state space exploration contains a goal,
which describes properties of the final state (such as the number of elements of a given type),
and constraints that each state must satisfy along the trajectory we seek (e.g. minimum number
of elements of a given type). In our approach, both goals and constraints are defined as graph
patterns. Finally, the exploration strategy (including cut-off and selection criteria) is used to decide
between multiple possible operations at a given state. The overall objective of the approach is
to find a trajectory from the initial state to the final state. In our approach the strategy uses hints
retrieved from analysis of the abstracted GTS as described in the following:

Figure 1: Overview of the solution

Occurrence vector-based search strategy approach In [VV06], the computation of an op-
timal rule application sequence is performed by encoding the Petri net abstraction (detailed
in [VVE+06]) of the GTS into an integer linear programming (ILP) problem. The solution of this
problem (solved using CPLEX1 in our implementation) is a candidate transition occurrence
vector. Since the abstraction does not guarantee that this vector corresponds to an executable
execution, its feasibility should be checked on the GTS-level. However, in the original approach,
the occurrence vector was used in the GTS state space exploration by only allowing occurrence
vector compliant execution paths to be explored. Therefore, it did not help in selecting the most
promising execution path or cutting the search on infeasible paths.

Selection and cut-off criteria for search strategy In this paper, we propose additional tech-
niques, which also use the occurrence vector as a hint, to guide the state space exploration
(implemented as an extension to the VIATRA2 model transformation framework [V2]) to further
increase the performance of the algorithm. The main features of these new techniques are (a) using
the rule (or transition) dependency graph (Gd) computed from the GTS (using the Condor [Con]

1 http://www.ibm.com/software/integration/optimization/cplex-optimizer/

3 / 20 Volume 40 (2011)

http://www.ibm.com/software/integration/optimization/cplex-optimizer/

Towards Guided Trajectory Exploration of GTS

dependency analyzer tool) to have a global view on the effects of rule applications [MKR06]; (b)
defining selection criteria Crsel on the applicable rules (transitions) at a given state (for deciding
between alternative upcoming operations); and (c) defining cut-off criteria Crcut on the paths (for
deciding about the feasibility of further exploration). Criteria defined in both (b) and (c) depend
on Gd and the application numbers for the rules (transitions) in the occurrence vector.

3 Definitions

In this section the basics of graph transformation, GTSs and their PN-based abstraction are shortly
discussed. Before the definition, we introduce our demonstrating case study.

3.1 Example

We consider services built on top of a cloud middleware (CM) using components as building blocks.
Servers (S) and high-availability clusters (Cl) can be deployed on the CM, while databases (DB)
are installed on servers and applications (App) are executed over databases. Finally, servers can
also be deployed on clusters and storage (St) subsystems can only operate over clustered servers.
Note that the configuration is not a tree structure (e.g. a database is deployed on multiple services,
which in turn are deployed on a cloud or cluster), but a directed graph.

In order to provide an appropriate infrastructure for clients, the configuration of the cloud
infrastructure must meet certain requirements, e.g. an application and a storage subsystem is
required for a cloud-based web service. Such an infrastructure is shown in Figure 2.

Figure 2: An example system providing reliable service

To satisfy this constraint the cloud configuration has to be designed in an appropriate way.
We assume that regular change management commands are issued by some middleware service
broker. If the current infrastructure of the cloud implies that the required parameters cannot be
satisfied by the actual cloud configuration, reconfiguration operations are to be initiated, which
lead the system into a state where all constraints are met.

The reconfiguration actions of cloud components will be captured by a graph transformation
system that is defined subsequently. An overview on using graph transformations for software
architecture reconfigurations can be found in [BHTV06].

3.2 Graph Transformation

A graph G = (N,E,src, trg) is a 4-tuple with a set N of nodes, a set E of edges, a source and a
target function src, trg : E→ N. A type graph T G is an ordinary graph. An instance graph G is

Proc. PNGT 2010 4 / 20

ECEASST

typed over T G by a typing morphism type : G→ T G. Let card(G,x) denote the cardinality (i.e.
the number of graph objects) of type x ∈ T G in graph G.

Figure 3: Type graph

An example type graph is shown in Figure 3. The type graph
contains only one cloud component Node designated graphically as
a rectangle. The edges CM, Cl, S, DB, App and St are used to denote
the type of the component such that the source and the target node
of this edge is the same node (So means Socket and represents a CM
or Cl). Edge onR connect two different components denoting that the
source node is deployed on the target node of this edge.

Graph transformation (GT) [CMR+97] provides a rule-based manipulation of graph models.
A graph transformation (GT) rule typed over a type graph T G is given by r = (L l←− K r−→ R)
where L (left-hand side), K (context) and R (right-hand side) graphs are typed over T G and graph
morphisms l,r are injective. The negative application conditions (NAC) of a GT rule are given by
a (potentially empty) set of pairs (N,n) with N being a graph also typed over T G and n : L→ N
an injective graph morphism.

Application of a rule r to a host graph G alters the model graph by replacing the pattern defined
by L with the pattern of R. This is performed by (i) finding a match of pattern L in model G (ii)
checking the negative application conditions N, which may prohibit rule application, i.e. if there
is a match of N in G (as an extension of the match of L in G), then the rule is not applicable (iii)
removing a part of the model M that can be mapped to pattern L but not pattern R yielding an
intermediate graph D and (iiii) adding new elements to the intermediate graph D, which exist in R
but not in L yielding the derived graph H.

A graph transformation sequence (GT sequence) is a sequence of GT steps (application of a
rule on a given match), i.e., a sequence of rule applications. A GT sequence starting from graph
G yields G′ and more than one GT step may belong to it. In the paper, we follow the Double
Pushout Approach [CMR+97].

Example 1 The ongoing example is captured by a set of graph transformation rules in Figure 4.
In order to simplify the graphical presentation, we simply write the type CM, S, Cl, DB, App, St of
the component on the node (which is denoted by a rectangle) instead of self-loop edges. This way,
only onR edges remain, which we also omit by representing the hierarchy of deployment using
vertical stacking of components.

The addCM rule adds a new CM to the configuration, addS creates a new S deploying it on top
of a CM or Cl, however, a Cl cannot have more than two S deployed on it. Rule addCl produces a
new Cl deploying it on top of a CM, addDb adds a new DB deploying it on top of two S that have
no other Node deployed on them, addApp creates a new App deploying it on top of two DB that
have no other Node deployed on them. Finally, addSt adds a new St deploying it on top of two S
that are deployed on the same Cl and have no other Node deployed on them.

Graph transition system A graph transformation system GT S = (R,T G) consists of a type
graph T G and a finite set of graph transformation rules typed over T G. A graph transition system

5 / 20 Volume 40 (2011)

Towards Guided Trajectory Exploration of GTS

Figure 4: Graph transformation rules

GS is defined as a graph where nodes are instance graphs, and edges are graph transformation
steps such that the source and target nodes of the edge are graphs.Starting from G0 (initial state)
the state space (i.e. the reachable instance graphs) of GS is represented taking into account all
applicable rules from a given host graph. The different matches of applicable rules may lead
to different edges in GS. A path in the graph transition system is a GT sequence also called a
trajectory between two graphs. Then we say that a graph is reachable from G0 iff there is a path
in the GS.

Example 2 In Figure 5 an extract of the graph transition system of our running example is
shown. On the left the root of the graph transition system is the start graph G0 where the system
configuration contains a CM, three S, and one DB components. Rules addS, addCl, and addCM are
applicable to G0, here we follow only the application of the first two rules.

Figure 5: A part of the graph transition system

Proc. PNGT 2010 6 / 20

ECEASST

3.3 Petri Net Abstraction for GTS

Our guided trajectory exploration approach is based on a Petri net abstraction technique introduced
for GTS in [VVE+06]. The motivation behind such an abstraction was that solving the reachability
problem on the PN level is of much lower complexity than solving the problem directly on the
GTS-level using algorithmic exploration techniques.

The essence of this abstraction technique is to derive a cardinality PN, which simulates the
original GTS by abstracting from the structure of instance graphs and only counting the number
of elements (nodes or edges) of a certain type by placing tokens to a corresponding place. These
tokens are circulated by transitions derived from each GT rule, which simulate the effect of the
rule on the number of typed elements by adding and removing tokens from corresponding places.

Example 3 In Figure 6 rule addCl of our example in Section 3 is shown with the corresponding
type graph on the left. The PN abstraction is shown on the right. According to the type graph
of the example, the corresponding cardinality PN has a place for all node types, namely for type
Node, and edge types, namely CM, S, Cl, DB, App, St, and onR.

Figure 6: Rule addCl and the corresponding cardinality Petri net

For instance, the left–hand side L of rule addCl contains a node and the edge CM. Thus the cor-
responding transition with the same name has two incoming arcs starting from the corresponding
places. Similarly, the right–hand side of the rule consists of two nodes and edges CM, Cl, and onR
thus there are four outgoing arcs to Node, CM, Cl, and onR with weights 2,1,1,1, respectively.

In this way whenever rule addCl is applied the number of the tokens at the involved places
changes according to the cardinality of the graph types.

The incidence matrix of the PN abstraction of the example GTS is in Figure 7. The places
(columns) refer to the type places corresponding to the type graph of Figure 6, while transitions
(rows) refer to corresponding rules of Figure 4.

Figure 7: Incidence matrix of the Petri net abstraction

7 / 20 Volume 40 (2011)

Towards Guided Trajectory Exploration of GTS

The coverability problem over PN can be encoded into an ILP problem, and the solution of
the resulting ILP problem is a transition occurrence vector (σ). The transition occurrence vector
prescribes how many times a GT rule needs to be applied in order to reach the derived submarking
of a solution state. For example, to get from an initial graph containing only one CM to a state
with four S and two DB, the shortest solution vector would be σ = {0,4,0,2,0,0}. Further details
about the encoding and solving can be found in [VV06].

Note that [VVE+06] proves that the mapping is a proper abstraction in the sense that the
derived PN simulates the original GTS, and it also discusses a possible abstraction of NACs into
cardinality Petri nets. However, that abstraction would deliver an integer non-linear programming
problem for the trajectory finding problem for which solution techniques have greater complexity
than solution techniques for an (I)LP problem. Thus we ignore the abstraction of NACs in the
current paper, but it is important to note that this is not a conceptual restriction since NACs only
result in the generation of additional infeasible paths.

4 Definition and Usage of the Dependency Graph

In this section we first describe the notion of graph transformation rule dependency and define the
dependency graph that is constructed for GTS (Subsection 4.1). Next, we demonstrate how the
dependency graph relates to the state of the GTS during trajectory exploration (Subsection 4.2).

4.1 Graph Transformation Rule Dependency

The application of a GT rule r can alter the graph in a way that other rules, which were disabled
before, become enabled (or were enabled and become disabled), thus the application of these rules
depend on the application of r. The dependencies between rules are independent of the graph they
are applied on, and can be derived from their definition. The analysis can be carried out using
various techniques, such as graph matching and graph equivalence (critical pair analysis [HKT02])
or unification and backtracking (conditional transformation-based dependency analysis [Con]),
and results in a matrix of dependencies between rules.

Figure 8: Dependency graph example

The result of the analysis is used to create a depen-
dency graph (Gd , illustrated in Figure 8) of the rules,
where each ri is a node (ni) and there is a directed arc
from ni to n j if r j has sequential dependency on ri (i.e.
the application of ri may affect the match set of r j).
Note that dependencies introduced by NACs are taken
into account as well. Finally, there may be arcs in both
directions between two nodes.

In this paper, ni I denotes the set of nodes, which
have sequential dependency on ni, while J ni denotes
nodes on which ni has sequential dependency (both sets
illustrated for naddS in Figure 8).

Finally, we have a candidate transition occurrence vector (σ) as a solution of the analysis of
the PN, where σ (i) is the number of times that ri is applied during the execution. During the

Proc. PNGT 2010 8 / 20

ECEASST

trajectory calculation, the number of times ri has been applied in a given path is stored in the
application vector (va) as va(i). An execution path of the state space exploration is compliant with
σ if va ≤ σ (the number of applications is less or equal for each rule). Throughout the paper we
use the difference between σ (i) and va(i) (σ(i)− va(i)) as the remaining application number of ri

(#i). This number is stored as an attribute for ni in Gd together with the state of ri that is either
enabled or disabled in a given GTS state.

Figure 9: GT rule application and its effects on the dependency graph

4.2 Using the Dependency Graph for Trajectory Exploration

The state of the GTS and the dependency graph are tightly connected for a given initial graph and
occurrence vector. Figure 9 illustrates how the application of a GT rule affects the current graph
and the dependency graph. First, the current state is depicted as the graph M (representing the
current cloud configuration) and dependency graph Gd . The color of the nodes (e.g. naddS) of Gd
represent the state of the corresponding GT rules (raddS), green background for enabled, grey for
disabled. The number near each node is the remaining application number (#addS = 3).

In the course of trajectory exploration, the next GT rule, which is applied (raddS in the example)
is selected from the set of enabled rules. The application has the following effects on the graphs:
(a) graph M changes according to the rule definition (here, a new S is added to CM), the new
graph is illustrated as M′ (b) the #addS is modified to represent that the rule is applied (it decreases
from 3 to 2) (c) Gd is also changed to G′d , as #addS decreased and the applicability of GT rules
may change (here raddDB becomes enabled). The trajectory exploration then continues from M′

by selecting a rule based on G′d .

5 Definition and Calculation of Cut-off and Selection Criteria

The main novelty in our approach is taking advantage of the dependency relations between graph
transformation rules using selection and cut-off criteria, which enhance the trajectory exploration

9 / 20 Volume 40 (2011)

Towards Guided Trajectory Exploration of GTS

strategy. In this section we first give an overview of the criteria types (Subsection 5.1), followed by
the definition of the criteria constructing building blocks (Subsection 5.2). Finally, we specify an
algorithm for calculating arbitrary criteria over dependency graphs (Subsection 5.3) and illustrate
its use on the cloud configuration case study (Subsection 5.4).

5.1 Overview of Cut-off and Selection Criteria

Our guided exploration approach uses the dependency graph as additional information to decide
in which order the states of the GTS are explored. In a certain state, two decisions are made
regarding the next step, (a) whether the current branch is promising and should be further explored,
if yes (b) which enabled GT rule should be executed to reach the next state. We define formal
criteria over the current dependency graph, which are evaluated in order to support decisions:

• Cut-off criteria (Crcut) inspect the current state of the dependency graph and return a
boolean result, which is true if further exploration of the current branch cannot lead to a
goal state with a compliant trajectory. In this case, the exploration continues from another
state instead of executing a GT rule in the current state.

• Selection criteria (Crsel) take the dependency graph and define an ordering of the enabled
GT rules. A given GT rule ri is placed before another rule r j, if the execution of ri is more
promising, based on the criteria and the current state, than the execution of r j. The ordering
is used instead of selecting the most promising rule since the exploration may lead to a
cut-off on the most promising branch. In this case the next rule in the ordering is executed.

• Soft cut-off criteria (Crso f t) differ from regular cut-off criteria by marking a given branch
only unpromising, instead of incompatible. In this case the exploration continues from an
other branch, but may return to the unpromising branch if a trajectory to a goal state is not
found on other branches.

5.2 Criteria Building Blocks

In our approach, the criteria are constructed using starting point identifiers and a well-defined set
of operators (i.e. building blocks), which can represent navigation over the graph edges, numerical
and logical functions between subcriteria, ordering of results and quantifiers. Starting points
behave as operands and create a criteria together with an operator. The resulting criteria (called a
subcriteria) can be also an operand to create more complex criteria. Throughout the paper we
refer to an operator as enclosing for the operands which it is combined with. For the definition of
the criteria grammar, see Appendix A. The criteria building blocks are defined in the following:

Starting points identify rules on which a given criteria is interpreted. Trivially, selection
criteria are evaluated for rules, which are enabled in the given state and their #i is greater than
zero. However, cutoff criteria may be defined on rules with different properties (e.g. disabled
rules or all enabled rules, regardless of #i).

Apart from simple starting points such as enabled rules (E), disabled rules (D), we define
numerical constants (C) as starting points as well to separate them from operators. Constants are

Proc. PNGT 2010 10 / 20

ECEASST

used in logical and numerical functions when one of the operands is a predefined number. Finally,
custom starting points ([Cr]) are defined when only rules with specific properties are evaluated.

Navigation operators describe which other nodes of graph Gd should be evaluated when
starting from a given node. Navigation is defined over the edges between the graph nodes, and
can be limited to paths of one or multiple connected edges. During evaluation, the # j for each r j

reached by the navigation is summed up, except if navigation occurs in the criterion of a custom
starting point, where # j is not incorporated in the total.

For a given rule ri, forward navigation (ri I) returns the set of nodes to which ri has outgoing
edges, while backward navigation (J ri) returns the set of nodes from which ri has incoming
edges. Furthermore, a given navigation operator can be used iteratively on a set of rules either for
a given amount of time (limited iteration), e.g. navigating forward twice (ri II) can be defined
as ri I2. Finally, a given operator can be used iteratively for as long as it is applicable (transitive
iteration, ri I+).

Numerical functions are used when the partial evaluation results of subcriteria are combined.
Among the numerical operators, the addition operator (Cr1 +Cr2, where Cri are subcriteria) is
used most often for summing partial results, but subtraction (Cr1−Cr2), multiplication (Cr1∗Cr2)
and division (Cr1/Cr2) are also usable.

Logical functions are also defined between two subcriteria and result in boolean values, where
the result depends on the actual operator type and the subcriteria operands. For subcriteria, which
have numerical results, the available operators are equals (Cr1 =Cr2), differs (Cr1 6=Cr2), more
(Cr1 >Cr2) and less (Cr1 <Cr2).

Similarly, for subcriteria, which have boolean results (e.g. ones that use one of the operators
above), the available operators are conjunction (Cr1 ∧Cr2), inclusive disjunction (Cr1 ∨Cr2),
exclusive disjunction (Cr1⊕Cr2) and negation (¬Cr).

Ordering and quantifiers are top-level binary operators for selection and cut-off criteria,
respectively. Ordering operators define how the numerical results from the subcriteria are returned,
with either the highest result being the first (maximal operator, maxCr) or the lowest (minimal
operator, minCr). For cut-off criteria, we define quantifiers to describe when the subcriteria must
be true for at least one rule (existential quantifier, ∃r Cr) or for every rule (universal quantifier,
∀r Cr) among the rules defined by the starting point.

Example 4 Here, we show the usage of the building blocks using several examples, both for cut-
off and selection criteria, which are meaningful when dealing with guided state space exploration.
In the rest of the paper, we will illustrate the evaluation of criteria using these examples and the
dependency graph from our case study.

Non-compliant path (Look-ahead) cut-off criterion When the application of any GT rule would
make the current execution path non-compliant with the occurrence vector of its corre-
sponding PN, it can be cut. This criterion does not depend on the dependency graph, and

11 / 20 Volume 40 (2011)

Towards Guided Trajectory Exploration of GTS

can be seen as the only one applied when the guidance is based on the occurrence vector.
Equation 1 defines the criterion using the notation introduced in this section.

Crcut
Ncp : ∀r E(r) = C(0) (1)

Permanently disabled rule cut-off criterion The current path can be cut if there is a disabled
rule, which still has to be applied based on the transition occurrence vector, but the
application of any rule, which it depends on would lead to a non-compliant path. Equation 2
gives the criterion with custom starting points and equally with regular navigation operators.

Crcut
Pdr : ∃r J [D(r)> C(0)] =C(0) or equally ∃r (D(r)>C(0))∧(JD(r) =C(0)) (2)

Maximal forward-dependant application path selection criterion Among the applicable GT
rules at any given state of the exploration, the one with the most (transitively) dependant
rule applications should be executed first (Equation 3). The selection is based on calculating
the effect of each applicable rule using the dependency graph and on the idea that a rule,
which affects more applications should be applied earlier in the trajectory.

Crsel
M f d : max E(r)I+ (3)

Minimal backward-dependant application path selection criterion In order to guide the ex-
ploration towards a state where one of the cut-off criteria may be applicable, the rule
selection is based on calculating the remaining rule applications for backward-dependant
rules (Equation 4). In this case, the calculation starts from rules, which depend on the
evaluated rule, therefore the result can informally described as the sum of the remaining
application number for rules, which affect the same rules as the current rule.

Crsel
mbd : min J +[E(r)I] (4)

5.3 Calculation Algorithm for Criteria

In Subsection 5.1, we defined selection and cut-off criteria as means to help the decision whether
to explore reachable states on a given branch and which GT rules to execute if we do. These
criteria are constructed from the building blocks introduced in Subsection 5.2. In this section we
specify the algorithm for calculating arbitrary criteria.

Algorithm overview First, we describe the steps of the calculation for arbitrary criteria (Cr)
defined using the building blocks. Let us assume that at the beginning of the algorithm we have a
dependency graph (Gd) where the status of the nodes (ni) is updated based on the applicability of
the corresponding rule (ri) and the remaining execution number (#i) is set based on σ (i) and va(i).

The overview of the algorithm (described as a function over a criterion and a dependency graph)
is given in pseudocode here, while a more detailed version of the criteria evaluation algorithm can
be found in Appendix B:

Proc. PNGT 2010 12 / 20

ECEASST

function EVALUATE(Cr,Gd)
initialize variables Ln,Sst ,S
check inconsistency of starting points in Sst

if starting points consistent then
initialize Sn with nodes satisfying S
let O← enclosing(S) . list of nodes or cut-off
for all n ∈ Sn do . Iterate through eligible nodes

initialize Nc,Nv,Rp,Rb . Current and visited nodes, partial results
while O 6=Cr do . Evaluation terminates when the applied operator is the criteria

APPLYOPERATOR(O,Gd ,Nc,Nv,Rp,Rb,Ln) . Apply operator
let O← enclosing(O) . Get enclosing operator

end while
update list or cut-off result

end for
return result

end if
end function

1. Check the set of starting points (Sst) in Cr to ensure that there is no apparent inconsistency
(e.g. both E(r) and D(r) is used).

2. Select starting point S from Sst , this selection may use the first simple or custom starting
point from the criteria or choose randomly. The selection method does not affect the
calculation algorithm, however the selected starting point can greatly affect the required
calculation steps for specific criteria (e.g. if a custom starting point would rule out the large
majority of rules, the rest of the criteria is not evaluated).

3. Acquire the set of nodes (Sn) from Gd which satisfy S (e.g. nodes for enabled rules for
E(r)). If S is a custom starting point, it can be calculated with the same algorithm (starting
from Step 1, where S :=Cr) to find satisfying nodes.

4. Select the next node (n) from Sn and the enclosing operator (O) of S. Initialize the set of
current nodes (Nc) including only n.

5. Apply O on Nc, where application is based on the type of the operator as follows:

Navigation operators take the current nodes and return nodes, which are reachable in the
graph (in the direction defined by the operator) and are not included in the already
visited nodes (Nv). These nodes (Nr) are added to the Nv and will serve as Nc in the
next step (Nc := Nr). The #i of each ni is summed and added to the partial result (Rp).

Numerical and logical operators are applied as implied by their definition and result in
Rp and boolean values (Rb), respectively.

Ordering operators place ns in the appropriate position in the list of calculated nodes
(Ln). In case of maximal operator, ns is placed before the first node, which has a lower
Rp, and before first node, which has higher in case of minimal.

13 / 20 Volume 40 (2011)

Towards Guided Trajectory Exploration of GTS

Quantifier operators decide whether Crcut is satisfied based on Rb. If Rb is true and the
quantifier is existential, the current branch is cut and other nodes are not calculated.
Similarly, if Rb is false and the quantifier is universal, the branch is not cut. In both
cases, skip to Step 8.

6. If there is an enclosing operator Oe for O (if O is transitive and Nc 6= /0, Oe := O), apply Oe

(continue from Step 5) on Nc, Rp and Rb (whichever exists).

7. If there is a next node (nn) in Sn, continue from Step 4 (i.e. calculate criteria on next node).

8. Return Ln for selection criteria and Rb for cut-off criteria (the branch is cut if true).

Calculation of multiple criteria For more efficient trajectory calculation, several cut-off and
selection criteria are defined as the search strategy. The combination of cut-off criteria can be
seen as inclusive disjunction (if any of them are true, the branch is cut), while the combination of
selection criteria is non-trivial and requires a method for merging different lists.

5.4 Step-by-step Criteria Calculation Example

We illustrate the execution of the algorithm using the Permanently Disabled Rule cut-off and
Maximal forward-dependant application path selection criteria using the cloud configuration case
study. Throughout the description of the example we refer back to the steps of the algorithm in
parentheses (e.g. S4 means Step 4).

Permanently Disabled Rule The calculation of Crcut
Pdr is illustrated in Figure 10 using the

dependency graph of the example with selected #i for the rules and the current cloud configuration.
Disabled rules are depicted with light gray background (here addSt and addApp), while enabled
rules are drawn with green background. The formal definition of the criteria is also included
below the graph with partial result Rp in the bottom right corner. The definition has two starting
points, which are consistent (both D, S1), thus the algorithm chooses the first one as S (depicted
with bold circle, S2) then acquires Sn := {addSt;addApp} (S3) and selects addSt as n and > as O
(S4, 1. in Figure 10).

Figure 10: Example evaluation of cut-off

Proc. PNGT 2010 14 / 20

ECEASST

The application of O returns true (S5) therefore the enclosing operator ∧ is applied next (S6),
which means that the second operand has to be evaluated as well. The evaluation of the backward
navigation operator (J) is illustrated in 2. of Figure 10, where the current nodes reached by
navigation are depicted with dashed circles (addCl and addSt, S5). Since both #addCl and #addS
is zero, the = operator evaluates to true (S6 and S5), the original ∧ operator returns true as well
(S5). Finally, the evaluation of the existential quantifier operator (S5) means that the rest of the
nodes are skipped and the branch is cut (S8).

Maximal forward-dependant application path The calculation of Crsel
M f d is illustrated in Fig-

ure 11 similarly to the first example. The configuration of the cloud and the dependency graph
are depicted in a different state, and the formal definition of the criteria is below the graph. As
before, the first steps of the calculation algorithm select a starting point (E) from the criteria, the
first evaluated node (addCl) and the enclosing operator I (S1-4, 1. in Figure 11).

Figure 11: Example evaluation of selection

The nodes reached by the application of the I operator are Nc := {addSt;addS} (2. in Fig-
ure 11), and the partial result Rp is updated to 4 (S5). Since the enclosing operator is the transitive
navigation (S6), the I operator is used in consecutive steps on nodes in Nc. First, addDB is
reached and Rp is updated to 5 (S5, 3. in Figure 11), since addSt is already in Nv and no new
nodes are reachable from it. Next, addApp is reached from addDB and Rp is updated to 6 (S5, 4.
in Figure 11). In the following iteration, Nc is empty (no new reachable nodes), therefore the
enclosing operation max is selected (S6). The application of this ordering operator puts addCl in
Ln (S5), then addS is selected as the next node (S7). Once all the nodes are evaluated the ordered
list (Ln = {addCl,addS}) is returned as the final result of the algorithm (S8).

It is important to note that this result circumvents a problem when the exploration would apply
addS as long as possible without applying addCl first, which trajectory would not lead to a goal

15 / 20 Volume 40 (2011)

Towards Guided Trajectory Exploration of GTS

state if at least a St is required in the configuration (or in any configuration where servers have to
be deployed on clusters).

Additional Notes on Criteria Calculation The applicability of these criteria highly depends
on the structural properties of the dependency graph. First, if most dependencies between rules are
bidirectional or if the graph is almost strongly connected, the selection criteria will be less effective.
Furthermore, we suggest using transitive closure for path computation as a first approximation,
but we believe that more sophisticated algorithms may be defined by handling cycles in the graph
differently from simple paths.

6 Related work

The guiding of trajectory exploration based on rule dependency in graph transformation systems
is quite novel idea in the field, but similar approaches are not unprecedented in a broader research
scope, as described below.

Our trajectory exploration approach can be regarded as an extension of the constraint satisfaction
problems over models (abbreviated as CSP(M)) [HV10], which takes GT rules, constraints and
goals and searches for solutions that are reachable from an initial model. The criteria calculation
defined in our paper serves as a special solver for CSP(M) by substituting regular solvers using
simple breadth first search.

Note that our approach is explicitly designed for trajectory exploration and criteria using trans-
formation rule dependency are introduced to increase the efficiency of the state space exploration.
The approach in [EGLT11] is similar to our approach as it also exploits the dependencies between
GT rules with critical pairs analysis. Here, graph transformation systems are enhanced with
control flow as well and the dependency information helps in discovering problems, which could
occur in runtime.

Model checking approaches to analyze graph transformation systems are similar to our
approach as they also perform state space exploration. One can categorize them as inter-
preted approaches like [BK02, Ren04, KK06], which store system states as graphs and di-
rectly apply transformation rules to explore the state space, and compiled approaches such as
[SDR04, SV03, EJL06, BRRS08, BS06], which translate graphs and graph transformation rules
into off-the-shelf model checkers to carry out verification.

GROOVE [Ren04] is a model checker over graph transformation systems. Its main benefit is
the ability to verify model transformation and dynamic semantics through applying CTL model
checking on the generated state space of the GTS. It is mainly used for modeling and verifying
the design-time, compile-time, and run-time structure of object-oriented systems.

Augur2 [KK06] is a GTS model checker that tackles the complexity associated with independent
rules by condensing the entire state space into a single graph with unfolding semantics. It
also provides some approximative techniques to deal with infinitely large state spaces, and
counterexample-guided refinement of this abstraction.

In [KE10] Petri net abstraction is used for verifying graph transformation systems and inves-
tigating the reachability problem of forbidden graphs using context-free graph grammars. An
important application of the method is deadlock analysis.

Proc. PNGT 2010 16 / 20

ECEASST

The complete approach presented in our paper can also be regarded as a directed model
checking approach as categorized by [EJL06]. They use (an ad hoc) SPIN encoding and heuristic
search for the analysis of graph transition systems.

Baresi et al. [BRRS08] present a model checking solution for graph transformation systems
by translating GTS into Bogor models, which can be used for checking Linear Temporal Logic
expressions or special-purpose GT rules similar to GROOVE and CheckVML. In [BS06] graph
transformation systems are analyzed using Alloy and its tools, which support property checking
and finding trajectories to given final states.

It is common in these solutions that they store system states as graphs and directly apply
transformation rules to explore the state space similar to our approach. Their main difference
is that they use an exhaustive state space exploration to verify certain conditions in the graph
transformation system, while our approach relies on guided traversals.

7 Conclusion and Future Work

Guided trajectory exploration, which is a relevant problem when analyzing graph transformation
systems, uses hints to reduce the amount of states traversed when looking for trajectories. The hint
is used (i) to decide whether a state is a dead-end (cut-off) and (ii) to order alternative directions
to increase the efficiency of the traversal (selection).

In the current paper, we defined selection and cut-off criteria for guided trajectory exploration
of GTS, and introduced the dependency graph, which combines GT rule dependencies and
occurrence vectors. We also described an algorithm for calculating criteria consisting of navigation
and computation over the dependency graph. Our approach was exemplified using the cloud
configuration problem.

Future work. We plan to specify and develop the complete guided trajectory exploration
technique for arbitrary GTS and evaluate its quality against exhaustive exploration techniques. We
aim to support guided trajectory exploration in the VIATRA2 model transformation framework.
We are also working on defining more sophisticated (problem-specific) criteria and specialized
algorithms to increase the efficiency of the approach.

Bibliography
[BHTV06] L. Baresi, R. Heckel, S. Thöne, D. Varró. Style-Based Modeling and Refinement of Service-

Oriented Architectures. Journal of Software and Systems Modelling 5, 2006.

[BK02] P. Baldan, B. König. Approximating the Behaviour of Graph Transformation Systems. In Cor-
radini et al. (eds.), Proc. ICGT 2002: First International Conference on Graph Transformation.
LNCS 2505, pp. 14–29. Springer, Barcelona, Spain, 2002.

[BRRS08] L. Baresi, V. Rafe, A. T. Rahmani, P. Spoletini. An Efficient Solution for Model Checking
Graph Transformation Systems. ENTCS 213, 2008.

[BS06] L. Baresi, P. Spoletini. On the Use of Alloy to Analyze Graph Transformation Systems. In
Corradini et al. (eds.), Graph Transformations. Lecture Notes in Computer Science 4178,
pp. 306–320. Springer Berlin / Heidelberg, 2006.

17 / 20 Volume 40 (2011)

Towards Guided Trajectory Exploration of GTS

[CMR+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Löwe. In [Roz97]. Chapter Al-
gebraic Approaches to Graph Transformation — Part I: Basic Concepts and Double Pushout
Approach, pp. 163–245. World Scientific, 1997.

[Con] Condor, CT-based dependency analyzer. http://roots.iai.uni-bonn.de/research/condor/.

[EGLT11] C. Ermel, J. Gall, L. Lambers, G. Taentzer. Modeling with Plausibility Checking: Inspecting
Favorable and Critical Signs for Consistency between Control Flow and Functional Behavior.
In Fundamental Approaches to Software Engineering. Lecture Notes in Computer Science.
Springer-Verlag, 2011. Accepted.

[EJL06] S. Edelkamp, S. Jabbar, A. Lluch-Lafuente. Heuristic Search for the Analysis of Graph Transi-
tion Systems. In Proc. Third International Conference on Graph Transformation. LNCS 4178,
pp. 414–429. Springer, Natal, Brazil, 2006.

[HKT02] R. Heckel, J. M. Küster, G. Taentzer. Confluence of Typed Attributed Graph Transformation
Systems. In In: Proc. ICGT 2002. LNCS. Springer, 2002.

[HV10] Á. Horváth, D. Varró. Dynamic constraint satisfaction problems over models. Software and
Systems Modeling, 2010.

[KE10] B. König, J. Esparza. Verification of Graph Transformation Systems with Context-Free
Specifications. In Ehrig et al. (eds.), Graph Transformations. Lecture Notes in Computer
Science 6372, pp. 107–122. Springer Berlin / Heidelberg, 2010.

[KK06] B. König, V. Kozioura. Counterexample-Guided Abstraction Refinement for the Analysis of
Graph Transformation Systems. In TACAS. Pp. 197–211. 2006.

[MKR06] T. Mens, G. Kniesel, O. Runge. Transformation dependency analysis - a comparison of two
approaches. In Rousseau et al. (eds.), LMO. Hermès Lavoisier, 2006.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Nagl et al. (eds.),
Applications of Graph Transformations with Industrial Relevance (AGTIVE). LNCS 3063.
Springer-Verlag, 2004.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Transformations:
Foundations. World Scientific, 1997.

[SDR04] O. M. dos Santos, F. L. Dotti, L. Ribeiro. Verifying Object-Based Graph Grammars. Electr.
Notes Theor. Comput. Sci. 109:125–136, 2004.

[SV03] Á. Schmidt, D. Varró. CheckVML: A Tool for Model Checking Visual Modeling Languages. In
Stevens et al. (eds.), Proc. UML 2003: 6th International Conference on the Unified Modeling
Language. LNCS 2863, pp. 92–95. Springer, San Francisco, CA, USA, October 20-24 2003.

[V2] VIATRA2 Model Transformation Framework, An Eclipse GMT Subproject. http://www.eclipse.
org/gmt/VIATRA2/.

[VV06] S. Varró-Gyapay, D. Varró. Optimization in Graph Transformation Systems Using Petri Net
Based Techniques. Electronic Communications of the EASST (ECEASST) 2, 2006. Selected
papers of Workshop on Petri Nets and Graph Transformations.

[VVE+06] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, G. Taentzer. Termination Analysis of Model
Transformations by Petri Nets. In Proc. Third International Conference on Graph Transforma-
tion (ICGT 2006). LNCS 4178. Springer, Brazil, 2006.

[WKS+09] M. Wimmer, G. Kappel, J. Schoenboeck, A. Kusel, W. Retschitzegger, W. Schwinger. A Petri
Net Based Debugging Environment for QVT Relations. In Automated Software Engineering,
2009. ASE ’09. 2009.

Proc. PNGT 2010 18 / 20

http://roots.iai.uni-bonn.de/research/condor/
http://www.eclipse.org/gmt/VIATRA2/
http://www.eclipse.org/gmt/VIATRA2/

ECEASST

A Criteria grammar definition
The following is the BNF grammar used for defining arbitrary criteria:
〈criterion〉→ 〈cut-off〉

〈selection〉

〈cut-off〉→ 〈quantifier〉 〈logical〉

〈selection〉→ 〈ordering〉 〈navigation〉

〈quantifier〉→ ‘∃’ 〈rule〉
‘∀’ 〈rule〉

〈ordering〉→ ‘min’ | ‘max’

〈rule〉→ ‘r’[a-z]*

〈startingPoint〉→ 〈enabled〉
〈disabled〉
〈constant〉
〈custom〉

〈logical〉→ [〈numerical〉 | 〈startingPoint〉] 〈logNumOp〉 [〈numerical〉 | 〈startingPoint〉]
〈logical〉 〈logBinOp〉 〈logical〉 | 〈logUnOp〉 〈logical〉

〈navigation〉→ 〈navOp〉 [〈startingPoint〉 | 〈navigation〉]

〈numerical〉→ [〈navigation〉 | 〈numercal〉] 〈numOp〉 [〈navigation〉 | 〈numercal〉]

〈enabled〉→ ‘E(’〈rule〉‘)’

〈disabled〉→ ‘D(’〈rule〉‘)’

〈custom〉→ ‘[’ [〈navigation〉 | 〈logical〉] ‘]’

〈constant〉→ ‘C(’〈number〉‘)’

〈number〉→ [0-9]+

〈logNumOp〉→ ‘=’ | ‘6=’ | ‘<’ | ‘>’ | ‘≤’ | ‘≥’

〈logBinOp〉→ ‘∧’ | ‘∨’ | ‘⊕’

〈logUnOp〉→ ‘¬’

〈navOp〉→ [‘J ’ | ‘ I’] [‘+’ | 〈constant〉]?

〈numOp〉→ ‘+’ | ‘-’ | ‘*’ | ‘/’

B Evaluation algorithm
The following is the pseudocode for the criteria evaluation algorithm:

function EVALUATE(Cr ,Gd) . Evaluation of criteria
let Ln← φ . Ordered list of nodes
let Sst ← s : startingPoints ∈Cr . Gather starting points
let S← Sst [1] . Select first starting point
for i← 2,size(Sst) do . Check all other starting points

if S 6= Sst [i] then . Two starting point is equal, if they are of the same type
let inconsistent← true . Inconsistent criteria cannot be evaluated

end if
end for
if ¬inconsistent then

let Sn← n ∈ Gd |S(n)← true . Gather nodes satisfying starting point
let O← enclosing(S) . Get enclosing operator
for all n ∈ Sn do . Iterate through gathered nodes

let Nc← n,Nv← φ . Initialize set of current and visited nodes
let Rp← 0,Rb← f alse, limit←−1,break← f alse . Initialize partial results, navigation limit and loop break signal
while O 6=Cr do . Exit loop as the criteria on the given node is evaluated

if O = limited∧ limit =−1 then

19 / 20 Volume 40 (2011)

Towards Guided Trajectory Exploration of GTS

limit← limit(O) . Set limit for limited operators
end if
APPLYOPERATOR(O,Gd ,Nc,Nv,Rp,Rb,Ln) . Apply operator
if Rp = true∧Cr = cut-off ∧quanti f ier(Cr) = existential then . Check cut-off condition for existential

return Rb . Terminate evaluation with cut-off
else

if Cr = cut-off ∧quanti f ier(Cr) = universal then . Check cut-off condition for universal
return Rb . Terminate evaluation without cut-off

else
break← true
O←Cr . Force exit from loop at next check

end if
end if
if O = limited∧Nc 6= φ ∧ limit > 1 then . If further iterations are required

limit← limit−1 . Decrease limit
else if O 6= transitive∨Nc 6= φ then . Not transitive navigation or no new reached nodes

O← enclosing(O) . Get enclosing operator
limit←−1 . Reset limit

end if . Otherwise continue transitive navigation, if new nodes were reached
end while
if Cr = selection∧break = f alse then . If the criterion is completely evaluated

Ln← Ln ∩ (Rp,n) . Add result and node to list
Rb← f alse

end if
end for
if Rb = f alse then

if Cr = selection then
if ordering(Cr) = min then

Ln← reverse(Ln) . Reverse order for min
end if
return Ln . Return result list for selection

else
return Rp . Return without cut-off

end if
else

return Rb . Return with cut-off
end if

else
ERROR . Starting points inconsistent

end if
end function
function APPLYOPERATOR(O,Gd ,Nc,Nv,Rp,Rb,Ln) . Application of an operator

if O ∈ navOp then . Navigation functions
let Nr ← reach(O,Nc,Gd)\Nv . Gather reachable states from dependency graph, excluding already visited nodes
for all n ∈ Nr do

Rp← Rp +#n . Update partial result with remaining executions
end for
Nv← Nv ∩Nr . Update set of visited nodes
Nc← Nr . Update set of current nodes

else if O ∈ logUnOp then . Unary logical functions
Rb← op(O) Rb

else
let right← EVALUATE(right(O),Gd) . Evaluate right side of criteria
if O ∈ logNumOp then . Logical functions on numbers

Rb← Rp op(O) right . Update boolean result with evaluated value
else if O ∈ logBinOp then . Binary logical functions

Rb← Rb op(O) right
else if O ∈ numOp then . Numerical functions

Rp← Rp op(O) right . Update partial result with evaluated value
end if

end if
end function

Proc. PNGT 2010 20 / 20

	Introduction
	Overview of the approach
	Definitions
	Example
	Graph Transformation
	Petri Net Abstraction for GTS

	Definition and Usage of the Dependency Graph
	Graph Transformation Rule Dependency
	Using the Dependency Graph for Trajectory Exploration

	Definition and Calculation of Cut-off and Selection Criteria
	Overview of Cut-off and Selection Criteria
	Criteria Building Blocks
	Calculation Algorithm for Criteria
	Step-by-step Criteria Calculation Example

	Related work
	Conclusion and Future Work
	Criteria grammar definition
	Evaluation algorithm

