Electronic Communications of the EASST

Volume 41 (2011)

Proceedings of the
Tenth International Workshop on
Graph Transformation and
Visual Modeling Techniques
(GTVMT 2011)

Towards Test Coverage Criteria for Visual Contracts
Reiko Heckel, Tamim Ahmed Khan and Rodrigo Machado

15 pages

Guest Editors: Fabio Gadducci, Leonardo Mariani

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Towards Test Coverage Criteria for Visual Contracts

Reiko Heckel', Tamim Ahmed Khan’ and Rodrigo Machado’

! reiko@mcs.le.ac.uk
Department of Computer Sciences, Leicester University, UK

2 tak12@mcs.le.ac.uk
Department of Computer Sciences, Leicester University, UK

3 rma@inf.ufrgs.br
Univ. Federal do Rio Grande do Sul, Porto Alegre, Brazil

Abstract: When testing component-based or service-oriented applications we can-
not always rely on coverage criteria based on source code. Instead, we have to ex-
press our requirements for testing at the interface level. Specifying interfaces by
graph transformation rules, so-called visual contracts, we define model-based cov-
erage criteria exploiting the well-known relations of causal dependency and conflict
on transformation rules.

To this end we establish an observational semantics for graph transformation sys-
tems with rule signatures formalising a notion of test execution, and define depen-
dency graphs to provide a structure on which coverage can be analysed.

Keywords: graph transformation, services, visual contracts, observable behaviour,
test coverage, causal dependencies and conflicts

1 Introduction

A user’s view of a web service is through provided interfaces, which abstract from implementa-
tion details and prevent us from using traditional testing methods based on source code [CP06].
Testing of web services carries an additional overhead if it involves invoking external services,
possibly remotely, causing delays, network traffic and cost [PBE"07]. In order to ensure that
tests carried out have sufficiently exercised the system we normally rely on coverage criteria or
deploy fault-seeding to assess test sets. Coverage provides a metric for completeness with re-
spect to a given test requirement [PJO8]. Fault-based approaches seed random faults and attempt
to find them by means of the test suite to be assessed [Pfl01]. Testing web services, we cannot
rely on either approach because both require access to the source code.

We propose to replace code-based by model-based coverage criteria using semantic service de-
scriptions at the interface level. Specifying the provided operations by visual contracts, formally
typed attributed graph transformation rules, we analyse their potential conflicts and dependen-
cies [EEPTO06]. We generate a dependency graph whose nodes represent rules while its edges
indicate potential conflicts or dependencies between them. They also carry labels showing the
nature of the relation, allowing us to record where data was defined, used, updated, or deleted.
Our coverage criteria will make use of this information. Apart from formalising the basic notions

1/15 Volume 41 (2011)

mailto:reiko@mcs.le.ac.uk
mailto:tak12@mcs.le.ac.uk
mailto:rma@inf.ufrgs.br

Towards Test Coverage Criteria for Visual Contracts E}

and defining the criteria and their satisfaction, in this paper we illustrate their relevance by an
example and discuss the limitations of the present approach.

The paper is organised as follows. Section 2 covers the relevant concepts of graph transfor-
mation while Section 3 introduces the observational semantics that form the theoretical basis for
dependency graphs and model-based coverage criteria. These are then defined in Section 4 and
Section 5, respectively. Section 6 is devoted to related work before we conclude the paper in
Section 7.

2 Typed Attributed Graph Transformation

This section provides the basic notions on typed attributed graph transformation, following the
algebraic approach [EEPTO06]. A graph is a tuple (V,E,src,tgt) where V is a set of nodes (or
vertices), E is a set of edges and src,tgt : E — V associate, respectively, a source and target
node for each edge in E. Given graphs G and G;, a graph morphism is a pair (fy, fg) of total
functions fy : Vi — V, and fg : E] — E; such that source and targets of edges are preserved.

An E-graph is a graph equipped with an additional set Vp of data nodes (or values) and special
sets of edges Eg4 (edge attributes) and En4 (node attributes) connecting, respectively, edges in E
and nodes in V to values in Vp. An attributed graph is a tuple (EG, D) where EG is an E-graph and
D is an algebra with signature £ = (S, OP) such that ¢, Ds = Vp, the set of data values available
for attribution. A morphisms f : (EG,D) — (EG',D’) of attributed graphs is a pair of an E-graph
morphism fgg : EG — EG’ and a compatible algebra homomorphism fp : D — D’. Fixing as
type graph an attributed graph AT G (usually over a final X-algebra), we define the category
AGraphyrg of AT G-typed attributed graphs [EEPT06]. Objects are pairs (G,t) of attributed
graphs G with typing homomorphisms ¢ : G — AT G. Morphisms f : G — H are attributed graph
morphisms compatible with the typing.

Let us denote by X = (X;)ses a family of countable sets of variables, indexed by sorts s € S,
and write x : s € X for x € X;. An AT G-typed graph transformation rule (or production) over

X is a span L < K -5 R where [,r are monomorphisms, the algebra component of L,K,R
is Tx(X), the term algebra of X with variables in X, which the rule morphisms preserve, i.e.,
Ip = rp = idr;(x). That means, variables are preserved across the rule. The class of all rules over
AT G with variables in X is denoted Rules(AT G,X).

A typed attributed graph transformation system (TAGTS) is a tuple (AT G, P,) where AT G is
an attributed type graph, P is a set of rule names and 7 : P — Rules(AT G,X) maps rule names
to AT G-typed graph transformation rules.

Example 1 (hotel service) We consider a service for managing hotel guests. A registered guest
can book a room subject to availability. There are no booking charges and the bill starts to ac-
cumulate once the room is occupied. Since credit card details are already with the hotel man-
agement, the bill is automatically deducted when the guest announces their intention to check
out. The guest can check out successfully only when the bill is paid. The type graph and rules
modelling this service are shown in Fig. 1 using AGG [AGGO07] notation.

In Fig. 1, underlined attribute declarations represent key attributes used to identify nodes. For
example, int roomNo in node type RoomData is used to identify RoomData nodes. Key attribute

Proc. GTVMT 2011 2/15

ECEASST

values are required to be unique, not just within each graph but across the entire transformation
sequence.

- T
: : BillData guestinfo manages |3:RoomData
billDetails int_billNo status="vacant"
* !nt paid ol Thas roomMo=r
int unPaid
= 1:GuestData
0.1 maintains name=n
Hotel 1
String name="A Hotel" bookRoom(n:string, out r:int)
manages |String location="1K" has : = ’
0..1|String postCode="AB1 2CD"|0.1 manages |3 RoomData
int guestDataCounter status="booked"
int billCounter 0.1 -
0.1y . - Ny roommMo=r
RoomData B _ GuestData 0-* - hookinglnfo
boolean occupied=false bookinginfa . |String_name 1:GuestData
String status="vacant' |» Type Graph . _Stnng cCardNo name=n
int_roomio int numviz
2:BillData 2:BillData -
5 pillletails 1:guestinfo ‘ S hillletails Lguestinfo 1:BillData - 1:BillData
Py D“'; okinglnfo P D“'t‘" okinalnfo hillNo=h billNo=b
‘RoomData ‘RoomData — id= i
o T— : _ : unPaid=hal unPaid=bal+in
ToomNoor 1:GuestData Py — 1.GuestData =
viewDatair:int) updateBill{b :int)
sccupyRoom (riint, u:sn'iug..-:rur 'b:i!.lt] BillData clearBill_1
billDetails BillNe=p | Guzstinfo
FHotel 8:has | 2OuestDaty paid=0 :
bilCounter=he name=n unPaid=0 1BillData 1BilData
num\ﬂLz:nv " biliNe=h biII.Nn:b
Smanages 4bockinginfo -S:manaues maintains paid=total paldz_tc:talﬂ:ual
‘_ . P |d=ba| unPaid=0
IHotel B:has unfa T oussino
1 RoomDats hillCounter=hi+1 J:guestinfo) . g
AL LS clearBill(b:int)
oceupiad=false r 2:GuestData
raamko=r 2:GuestData
- 1:RoomData ZGuestData
i | [
accupied=true Thotknanto ™ name_:n
roamio=r numyiz=ny+1 .
clearBill_2
checkout{r:int, n:string, b:int)
piletals [BM038 | guesinfo 1:BillData 1:BiliD3ta
hillMa=h bilNo=b pillNo=h
unFaid=0 paid=total paid=total+bal*9/10
L - 2:has - .
mainfains girnarjage unPaid=hal unPaid=0
9:manages B:has Y A 3:questinfo 3:guestinfo
4:Hotel 3:RoomData 2 GuesiData
Y occupied=false| [2:GuestData
JRoomData ot P il - names=n 2:GuestData
ORCcUPiEG=NUE | bookinginfo ,[2:GuestData| |$3 vALAT learBill(biing)
status="booked" " Iname=n -
roomMo=r

Figure 1: Type graph and rules for the hotel service

The operational semantics of rules is defined by the double-pushout construction. Given an
AT G-typed graph G and graph production L < Kk-R together with a match (an AT G-typed

3/15 Volume 41 (2011)

Towards Test Coverage Criteria for Visual Contracts Eﬁ

graph morphism) m : L — G, a direct derivation G L2 H exists if and only if the diagram below
can be constructed, where both squares are pushouts in AGrapharg such that G, C, H share the
same algebra D and the algebra components [}, rj, of morphisms [*,r* are identities on D. This
ensures that data elements are preserved across derivation sequences, which allows their use as
actual parameters with global namespace. We also write G % H ford = (m =d,dx,m* = dg)
if we want to refer to the entire DPO diagram. A derivation is a sequence Gy LA G, e
... 22" G, of direct derivations. The class of all derivations for a given TAGTS ¢ is denoted
Der(9).

L <"k -"~R
m:dLl) idK @ im*:d,e

G%C?H
! r

3 Observational Semantics

In order to define a notion of observation on rule applications we provide rule names with for-
mal parameters to be instantiated by the mach and comatch. Intuitively, these rule signatures
provide the interface declaration of the system which is implemented by the rules. In order to
distinguish different outcomes of the same operation, we allow several rules to implement the
same signature.

Definition 1 (TAGTS with rule signatures) A typed attributed graph transformation system
with rule signatures is a tuple 4 = (ATG,P, X, r,c) where

AT G is an attributed type graph with set of node attributes Eya;
P is a countable set of rule names,
X is an S-indexed family (X;);es of sets of variables,

n: P — Pfin(Rules(AT G,X)) assigns each rule name a finite set of rules L L Kk-R
over ATG, X,

0 : P — ({€,0out} x X)* assigns to each rule name p € P a list of formal input and output
parameters 6 (p) =X = (q1X1 : S1,-..,qnXn : Sn) Were g; € {€,out} and x; € X;, for 1 <i<n.
We write p’s rule signature p(X) and refer to the set of all rule signatures as signature of

9.

Note that we distinguish normal and output parameters, the latter being indicated by out in
front of the declaration. Normal parameters are both input and output, that is they are given in
advance of the application, restrict the matching and are still valid after the rule has been applied.
Output parameters are only assigned values during the matching.

. l . .
Since L +— K —— R is attributed over Tz (X), rule parameters x; € X, are from the set of
variables used in attribute expressions. Hence, actual parameters will not refer to nodes or edges,
but to attribute values in the graph. Since the algebra part of attributed graphs is preserved, actual

Proc. GTVMT 2011 4/15

Eg ECEASST

parameters have a global name space across transformations. Using global satisfaction of key
constraints we can ensure that these attribute values are globally unique.

Example 2 (TAGTS with rule signatures) For the system in Fig. 1, the rule signatures shown
below are based on data sorts S = {int,boolean,string} with the usual operations. Output pa-
rameters are indicated by the prefix out in the declaration.

e bookRoom(n:string, out r:int)

e occupyRoom(r:int, n:string, out b:int)
e clearBill(b:int)

e checkout(r:int, n:string, b:int)

e updateBill(b:int)

e viewData(r:int)

We can associate several rules to the same signature to represent alternative actions inside the
same operation, chosen by different input values and the system’s internal state. In our example,
the hotel provides a 10% discount to its guests on every tenth visit. In order to describe this, two
rules are required: One is applicable if the current visit of a particular guest is the tenth one while
the second is applicable otherwise. We associate the same rule signature with both of these rules,
as shown in Fig. 1.

The purpose of signatures is to allow observations on transformations including information
about rules and their matches. Below we define the label alphabet, then the observations associ-
ated with direct derivations.

Definition 2 (labels) Given arule p: L < K — R with signature p(qx; : s1,...,quXn : 5,) and
a L-algebra D, we denote by p(D) the set of all rule labels p(ay,...,a,) with a; € D;,. The label
alphabet Ly p for a system ¢ is defined as the union over all rule labels {J,cp p(D). If D and/or
¢ are understood from the context, we write Ly or just L.

The (usually infinite) alphabet of labels L consists of all possible instances of rule signatures,
replacing their formal parameters by values from the algebra D. Labels in L may be interpreted
as observations of direct derivations, where the instantiation is given by the algebra component
of the matches. Let L* denote the Kleene closure over the label alphabet, providing the set of
all finite sequences of labels. The following definition describes the observational semantics of
TAGTS via sequences of labels produced by its derivations.

Definition 3 (observations from derivations) Let G 2™ H be a direct derivation of a TAGTS
¢ with algebra component D. The observation function obs : Der(¥) — L, is defined on direct
derivations by obs(G LY H) = p(ay,...,ay) if p’s signature is p(qix1 : $1,...,qnXy : Sp) With
a; = m(x;). The observation function freely extends to finite sequences of derivations, yielding
sequences of labels.

5/15 Volume 41 (2011)

Towards Test Coverage Criteria for Visual Contracts

= g RoomData RoomData RoomData RoomData ﬁ
=E = |Otcupied=true | _ |Cccupieds=true Occupied=trug | |Occupiedstrue =
= —E Status="booked" | & |Status="hooked" _|status="booksd" |3 Status="booked'|£"
L £ [RoomNo=1 = |RoomMNo=1 = |Roomio=1 S |RoomNo=1 B
RoomData £ |RoomData c, = = = : T
Occupied=faiss | & |Occupied=falss | ZhillDetal < iIIDetaiE & hillDetai & b|IIDeta|E = ES:LT;?E;Q,;Q
Status="vacant' | = |Status="hooked" gEiIIData s g?::zatiwa HE £ Ei::ﬁatﬁmza S |status="vacart"
o= = |Roomio=1 2z|BillNo=1023| | Z(BillNo= = |Eilllo= g
L e Lookingiio L8P lt=0 5 |Paid=0 = |Faic=150 _E Roomile]
PEpv— — 1 UUnFaid=0 . LnPaid=250 . LnFaid=0 & T
Name="TinT" Name="Tim" Squestinty "0 guestinf hoggihaini ;uestlnf&' kooghaint guesﬂm& boi ointi Name="Tim"
Status="registzrad’ | |statyg=" o4 | |GuestData GuestData GuestData GuestData Slalus="Iegislered”
CrediC_No="1XY8"| |CreditC_Mo="1xy8"| |Mame="Tim" Mame="Tim" Mame="Tim" Mame="Tim" Credits_Mo="1:v8"
Status="registered" | |Status="registered" | |Status="registered" | |Status="registered"
(a) CreditC_Mo="1:y8" | |CreditC_MNo="1x¥8"| [CreditC_Mo="1Xy8"| |CreditC_MNo="1xy§"
-)
= # |RoomData RoomData RoomData RoomData =
—g g Occupied=true | |Occupied=true Oecupied=tiue Occupied=tue ',—
e +" |Status="booked" g Status="booked" |~ |Status="hoaked" Status="hooked' | €
RoomDala ‘E’ RoomData E RoomNo=1 — |RoomNo=1 % RoomNo=1 = |Roomho=1 & [RoomData
Octupied=false | S |Occupled=raise | * E = - é = E - g = |Octupizd=ialse
Status="vacant' | = |Status="hooked" T;—”l_loeml - 1”.”3'13' = |I.|Deta| = |I.IDeta| = |Status="vacant
RoomMeo=1 = |Roomio=1 E|BiliData BilData___ g |BilData | £ |BilData | = |Roomho=1
=, = 2| BillNo=1023 BillNo=1023 S [BillNo=1023 7 [BiNo=1023)\ %
) vookingino) | 2 O Paid=0 —> |paid=200 D paid=200 —g
GuestData _ GuesiData Sl UnPaid=0 UnPaid=200 UnPaic=0 | | UnPaigs0 | | |GuestData
Mame="Tim' Mame="Tim" g oo Inf & bookihalnfi E boaﬁ' ainf E boﬁ ginf |Name="Tim"
Status="repistered" | |gpapus=" r |Tauestin g uestinf uestinf uestinft Status="registered"
CreditC_No="1XY8"| |riagic Mo="t3ve'| [GuestData GuestData GuestData GuestData Cradite_No="1xrg"
= Name="Tim" MName="Tim" Mame="Tir" Mame="Tir"
Status="registered" Status="registered™ | |Status="registarad’ Status="registarad"
(®) creditc No="1xyge| [CreditC_No="1Xv8"| |CreditC_No="1Xy8"| |CreditC_No="1xye"

Figure 2: Two example derivations

Referring to the system in Fig. 1, consider the sequences in Fig. 2(a) and Fig. 2(b). Rules
names are instantiated with parameter values to represent the corresponding observation se-
quence. The applications of viewData and clearBill are independent and can be swapped. The
graphs shown represent sample states of a hotel with only one room and one registered guest.

The following definition lifts weak dependencies and conflicts to the level of labels. The rela-
tions are essentially those of asymmetric event structures [BCMO1]. The asymmetry arises from
the interplay of deletion and preservation, which is specific to rewriting approaches with explicit
read access to resources, such as graph transformation or contextual Petri nets.

Definition 4 (asymmetric dependencies and conflicts) Two labels /; and I, are in direct
(asymmetric) conflict, written [; " I, iff there exist transformations t; = (G o H;) and
1 = (G 22 H,) such that [; = obs(t;) and t, disables t;, i.e., in the upper diagram in Fig. 3
there exist no k : Ly — D5 such that m; =[5 ok.

Two labels /1 and [, are in (asymmetric) dependency, I < [, iff there exist transformations
t1 = (Gop na Gy) and 1, = (G AL G») such that [; = obs(t;) and t, requires ty, i.e., in the
lower diagram in Fig. 3 there exist no j : L, — D such that my = rj o j. Labels /; and [, are
independent, [, | [, iff they are unrelated by ,* and <.

Example 3 (asymmetric conflicts and dependencies of &) Using the rule signatures in Exam-

Proc. GTVMT 2011 6/15

Eg ECEASST

R <" Ky -1 L <>~ K, > R
o
m’f\L kl\L \\’n mi - 'k, ikz l/m’z“
N/ =
Hy <— D - G - Dy — Hp
A n I &)
i I
Ll QK1>L> Rl L2 &Kz# Rz
SN
of e
Go D, G D, G
Iy r 5 r

Figure 3: Asymmetric conflicts and dependencies

ple 2 we obtain labels by instantiating formal parameters by possible data values. As the set of all
labels is usually infinite due to infinite data types, in this example we limit ourselves to a small
subset sufficient to label the transformations in Fig. 2. For example, clearBill(bill no : int) is
instantiated by clearBill(1023), replacing the variable bill no : int by the value 1023.

Let us analyse more closely the weak conflicts and dependencies in the derivations of Fig. 2.
We have represented conflicts and dependencies between these labels in Table 1. For example
we find a dependency

bookRoom(1, Tim) < occupyRoom(1, Tim, 1023).

Notice the relation between the parameters for room number and client name, which determines
the overlap of the transformations denoted by these labels. Similarly, there exists a conflict

updateBill(1023) checkout(1,Tim,1023),

i.e., updateBill reads the BillData object, changing the unpaid amount, while checkout deletes
the object.

First/Second bookRoom occupyRoom clearBill checkout updateBill | viewData
)7 (=) (1,°Tim”) | (1,°Tim”,1023) | (1023) | (1,”Tim”,1023) | (1023) (1)
bookRoom(1,”Tim”) a =< =< =<
occupyRoom(1,”Tim”,;1023) =< =< =< =< =<
clearBill(1023) =< =< = [
checkout (1,”Tim”,1023) =< =< Va N
updateBill(1023) Pt Pt =
viewData(1) | N |

Table 1: Conflicts * and dependencies < between labels

7/15 Volume 41 (2011)

Towards Test Coverage Criteria for Visual Contracts

n @@ Minimal Dependencies

irst \second 1: bookRoom 2: occupyRoom3: clearBill_1 4:clearBill_2 5:checkout 6: updateBill 7
1: hookRoom

: occupyRoom
: clearBill_1
: clearBill_2
: checkout
: updateBill
viewData
Minimal Conflict:

irst \second 1:bookRoom 2: occupyRoom3: clearBill_1 4:clearBill_2 5: checkout
1: bookRoom

: occupyRoom
: clearBill_1
: clearBill_2

: checkout

: updateBill

:viewData

Figure 4: Critical pairs and dependencies

4 Dependency Graphs

In this section, we show how to extract a dependency graph for a system under test (SUT) from
the available interface specification based on visual contracts. A dependency graph (DG) pro-
vides us with a visual representation of conflicts and dependencies allowing us to study coverage
criteria at the interface level.

Definition 5 (dependency graph) A dependency graph DG = (G,OP,op,lab) is a structure
where

G = (V,E,src,tar) is a graph.

OP is a set of (names of) operations.

op : V — OP maps vertices to operation names.

lab : E — {c,u,r,d} x {<, 7} x {c,u,r,d} is a labelling function distinguishing source
and target types create, update, read, delete and dependency types <, .

We use the visual contracts specifying the interface to extract a dependency graph, where
rules are represented by nodes labeled by operation names while edges represent dependencies
and conflicts between them. Edge labels tell us whether an edge represents a dependency (<) or
a conflict () and what roles are played by the source and target nodes.

Definition 6 (dependency graph of TAGTS with rule signatures) Given a TAGTS with rule
signatures ¢ = (ATG,P,X,x,0), its dependency graph DG(¥) = (G,OP,op,lab) with G =

Proc. GTVMT 2011 8/15

Eg ECEASST

(V,E,src,tar) is defined by

o V= U ({p} xm(p)) as the set of all rule spans tagged by their names. If 51 € 7(p) we
peEP
write p; : 51 € V.

e E CV xV such that:
S1,my

— e=(py:s1,p2:52) € E if there are steps G2 g PR g such that the second
step requires the first. The role labels are defined as follows.

1. If an element created by the first step is deleted or read by the second, lab(e) =
(¢,=<,d) or lab(e) = (c,<,r), respectively. If both apply, label d takes prece-
dence over r.

2. If an attribute updated by the first step is updated or read by the second,
lab(e) = (u,<,u) or lab(e) = (u, <, r), respectively. If both apply, label u takes
precedence over r.

3. If an object created by the first step has an attribute updated by the second,
lab(e) = (c,<,u)

p1.r,m p2irp,mp

— e=(p1:s1,p2:52) € E if there are steps H; " <= G == H, such that the second
disables the first. The role labels are defined as follows.

1. If an element deleted or read by the first step is also deleted by the second,
lab(e) = (d, /,d) orlab(e) = (r, /*,d), respectively. If both apply, label d takes
precedence over r.

2. If an attribute updated or read by the first step is updated by the second,
lab(e) = (u,=<,u) or lab(e) = (r,<,u), respectively. If both apply, label u takes
precedence over .

3. If an object’s attribute is updated by the first step and deleted by the second,
lab(e) = (u,<,d)

e OP = P is the set of rule names.
e 0op:V — OPisdefined by op(p:s)=p

Example 4 (dependency graph) Using the example in Fig. 1 we can draw a dependency graph
as shown in Fig. 5. Consider an edge between nodes bookRoom(. ..) and occupyRoom(. ..) where
the labeling is (c,<,r). That means, an object created during the first operation bookRoom(...)
is read by the second operation occupyRoom(...) with < representing the dependency rela-
tion. Similarly, consider an edge between clearBill(...) and checkout(...) where the labelling is
(r, /,d). It means, clearBill(...) reads an object which is deleted by checkout(...). An exami-
nation of the rules reveals that clearBill(...) operates on a BillData object which is deleted by
checkout(...).

5 Coverage Criteria

Dataflow graphs, in code-based approaches, are generated considering the control-flow of the
system with additional annotations on the nodes. These annotations are used to mark the places

9/15 Volume 41 (2011)

Towards Test Coverage Criteria for Visual Contracts Eﬁ

r

r I
viewData
q

[1 I . .| r .
1< N -] clearBil_2 e

Fig. 5: dependency graph of TAGT S representing hotel web service

where data is defined and used in a program [PJO8], [CPRZ89], [TSPO1]. The locations where a
variable is defined are annotated by def, use is indicated by use, and deallocated by kil!. Paths are
identified through the system such that they exercise particular coverage criteria. For example,
de f—use coverage requires to find test cases such that all edges in the dataflow graph from nodes
annotated with def to nodes annotated with use are exercised at least once.

Our dependency graph carries information about dependencies between operations at the in-
terface level. We have annotated sources and targets of edges with ¢ (create), r (read), u (update)
an d (delete), analogousy to def, use and kill annotations for traditional versions of dataflow
graphs. Using these labels on edges rather than nodes, we can focus on the type of access that
gives rise to the particular dependency or conflict represented by the edge. The possibilities are
summarised in Table. 2.

Label Combination | Conflict | Dependency
cr
cd
cu
uu
rd
dd
ud

LU X X X
XXX < (U<

Table 2: Label combinations indicating conflicts and dependencies

Proc. GTVMT 2011 10/15

Eg ECEASST

Using the DG, we can devise different coverage criteria such as cr, cd, ud, etc. The ques-
tion is, which of these pairs to include into our criteria. If we demand all cr (create-read), cu
(create-update), cd (create-delete), and uu (update-update) edges in DG(¥), we exercise all de-
pendencies based on data being defined and used subsequently. If we add ud (update-delete) and
rd (read-delete), we also cover situations of asymmetric conflict. The case of dd (delete-delete)
represents an anomaly because we should not be able to observe a sequence where two steps
are in symmetric conflict. It might still be interesting to create a test case to check that it is
non-executable, but to guarantee the conflict we have to enforce a certain overlap of parameters,
requiring a more detailed version of the dependency graph.

In order to see if a set of test cases T provides the required coverage, we record all the nodes
and edges that T is exercising.

Definition 7 (sub-graph covered by test set) Given a TAGTS ¢ = (ATG,P,X,n,0) with de-
pendency graph DG(¥) = (G,OP,op,lab) and let T be a set of derivations in ¢. The graph
cov(DG,T) = (Gr,OPr,opr,labr) is the subgraph of DG(¥) with Gy = (Vr,Er,src,tgt) such
that:

e v € Vriff for p=op(v) and a derivation s € T there is a step in s labelled by p(a).

e € Ey iff for op(src(e)) = p and op(tgt(e)) = ¢ and a derivation s € T there are steps in
s labelled p(a),q(b) in asymmetric conflict or dependency as specified by lab(e).

OP; =OP |y,

e opr =op |y,

labT =lab ’ET

A coverage criterion C is defined by any subgraph of DG(¥). Test set T provides the coverage
required by C if C C cov(DG,T).

Example 5 (coverage of test cases) Consider criterion cr+cd and let T be the set of test cases
shown in Table. 3.

test cases set-1
bookRoom(1,“J”);occupyRoom(1,“J”,3)
occupyRoom(1,%J”,3);viewData(1)
occupyRoom(1,“J”,3); checkout (1,“J”,3)
updateBill(3);clearBill(3)
clearBill(3);updateBill(3)

Table 3: Test cases providing node coverage

In the graph in Fig. 6, dotted red and the blue lines of the show the edges not covered by the
test cases in Table. 3, while the solid black rest of the graph is covered by T. This includes all
the nodes, but we need to add test cases in order to get the required coverage cr 4+ cd. In order to
achieve this we add the test cases in Table 4 and analyse the resulting coverage.

11/15 Volume 41 (2011)

Towards Test Coverage Criteria for Visual Contracts Eﬁ

|
-

<

Figure 6: Cov(DG, T)

test cases set-II
bookRoom(1,“J”);occupyRoom(1,“J”,3);viewData(1)
bookRoom(1,“J”);occupyRoom(1,“J”,3); checkout(1,“J”,3)
checkout(1,J”,3);bookRoom(1,“J”)
occupyRoom(1,“J”,3);clearBill(3);
updateBill(3);clearBill(3); checkout (1,“J”,3)

Table 4: Additional test cases to cover cr + cd

The first two test cases in Table 4 are required to cover the cr edges between bookRoom(. ..)
and viewData(...) and between bookRoom(...) and checkout(...) and the inclusion of
occupyRoom(1,“J”,3) is required. The third and forth test cases are required to cover
the edges between checkout(...) and bookRoom(...) and between occupyRoom(...) and
clearBill(...) where the fifth test case exercises edges between updateBill(...), clearBill(...)
and checkout(...). Notice that the dotted red edge between viewData(...) and checkout(...) is
still not covered by any of the test cases, just as the edges shown in dotted green. We need
stronger criteria to include test cases covering these edges, too.

6 Related Work

For similar motivations as our own, several approaches have developed coverage criteria based
on control flow graphs and state machines. In [LCGOS] they have been derived from semantic
service descriptions in RDF, [SP06] uses WSDL-S while [ROL"07] constructs a global flow

Proc. GTVMT 2011 12/15

Eg ECEASST

graph from information for each party in a collaboration and defines conditions for regression
testing.

Approaches to test services based on dataflow include [BBMP0S, SP06, HXX " 08]. For testing
Web services compositions [BBMPOS] uses BPEL specifications where dependencies between
calls are established by means of input and output relationship. Paths through such a graph are
extracted and criteria are defined to cover the combination of events in these test paths. In a later
approach, the BPEL process is visualised as a directed graph where nodes represent activities
and edges represent (control and data) flows. Annotations for def and use are used at inputs and
outputs of service calls and coverage based is defined. BPEL is also considered in [HXX08]
and a dependency analysis for variables acquired from WSDL is used to arrive at possible paths
through the process. Testing approaches for object-oriented systems are introduced in [CLNOS,
BLL10].

We have made use of web service specifications by means of visual contracts for deriving
a dependency graph to define coverage. Dependencies and conflicts extracted by critical pair
analysis provide a simple representation of the system at the interface level, abstracting from
detailed control flow specifications.

7 Conclusion

In this paper we have explored the use of graph transformation systems specifying service inter-
faces for the derivation of model-based coverage criteria. While we were able to demonstrate the
potential usefulness of the approach, two areas are left to be explored.

e We would like to extend our dependency graphs with data flow information to describe
in more detail the conflicts and dependencies encountered. This will allow to define se-
quences of labels as forbidden traces, such that tests can not only check the existence of
required behaviours, but also the absence of forbidden ones.

e An approach to test coverage based on executable models may be naturally combined with
the use of these models as oracles, to define when a test case conforms to the specification.
This is conceptually simple, but requires the integration of a testing tool with a graph
transformation engine executing the specification.

Bibliography

[AGG07] AGG. AGG - Attributed Graph Grammar System Environment. http:/tfs.cs.
tu-berlin.de/agg, 2007.

[BBMPOS8] C. Bartolini, A. Bertolino, E. Marchetti, 1. Parissis. Architecting Dependable Sys-
tems V. In Lemos et al. (eds.). Chapter Data Flow-Based Validation of Web Services
Compositions: Perspectives and Examples, pp. 298-325. Springer-Verlag, Berlin,
Heidelberg, 2008.

[BCMO1] P. Baldan, A. Corradini, U. Montanari. Contextual Petri Nets, Asymmetric Event
Structures, and Processes. Information and Computation 171(1):1 — 49, 2001.

13/15 Volume 41 (2011)

http://tfs.cs.tu-berlin.de/agg
http://tfs.cs.tu-berlin.de/agg

Towards Test Coverage Criteria for Visual Contracts Eﬁ

[BLL10]

[CLNO5]

[CPO6]

[CPRZ89]

[EEPTO6]

[HXX108]

[LCGO8]

[PBE*07]

[P101]

[PJOS8]

[ROL*07]

[SPO6]

L. Briand, Y. Labiche, Q. Lin. Improving the Coverage Criteria of UML State Ma-
chines Using Data Flow Analysis. Software Testing, Validation, and Reliability (Wi-
ley) 20(3), 2010.

Y. Chen, S. Liu, F. Nagoya. An Approach to Integration Testing Based on Data Flow
Specifications. In Liu and Araki (eds.), Theoretical Aspects of Computing - ICTAC
2004. Lecture Notes in Computer Science 3407, pp. 235-249. Springer Berlin / Hei-
delberg, 2005.

G. Canfora, M. D. Penta. Testing Services and Service-Centric Systems: Challenges
and Opportunities. IT Professional 8:10-17, 2006.

L. A. Clarke, A. Podgurski, D. J. Richardson, S. J. Zeil. A Formal Evaluation of Data
Flow Path Selection Criteria. IEEE Trans. Softw. Eng. 15(11):1318-1332, 1989.

H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Series).
Springer, 2006.

J. Hou, B. Xu, L. Xu, D. Wang, J. Xu. A testing method for Web services composi-
tion based on data-flow. Wuhan University Journal of Natural Sciences 13:455-460,
2008.

L. Li, W. Chou, W. Guo. Control Flow Analysis and Coverage Driven Testing for
Web Services. In Web Services, 2008. ICWS "08. IEEE International Conference on.
Pp. 473 —480. 2008.

M. Penta, M. Bruno, G. Esposito, V. Mazza, G. Canfora. Web Services Regression
Testing. Pp. 205-234. 2007.

doi:10.1007/978-3-540-72912-9_8

http://dx.doi.org/10.1007/978-3-540-72912-9_8

S. L. Pfleeger. Software Engineering: Theory and Practice. Prentice Hall PTR, Up-
per Saddle River, NJ, USA, 2001.

A. Paul, O. Jeff. Introduction to Software Testing. Cambridge University Press, New
York, NY, USA, 2008.

M. Ruth, S. Oh, A. Loup, B. Horton, O. Gallet, M. Mata, S. Tu. Towards Auto-
matic Regression Test Selection for Web Services. In COMPSAC °07: Proceedings

of the 31st Annual International Computer Software and Applications Conference.
Pp. 729-736. IEEE Computer Society, Washington, DC, USA, 2007.

A. Sinha, A. Paradkar. Model-based functional conformance testing of web services
operating on persistent data. In Proceedings of the 2006 workshop on Testing, anal-
ysis, and verification of web services and applications. TAV-WEB 06, pp. 17-22.
ACM, New York, NY, USA, 2006.

Proc. GTVMT 2011 14 /15

http://dx.doi.org/10.1007/978-3-540-72912-9_8
http://dx.doi.org/10.1007/978-3-540-72912-9_8

@ ECEASST

[TSPO1] B.-Y. Tsai, S. Stobart, N. Parrington. Employing data flow testing on object-oriented
classes. Software, IEE Proceedings - 148(2):56 —64, Apr. 2001.

15/15 Volume 41 (2011)

	Introduction
	Typed Attributed Graph Transformation
	Observational Semantics
	Dependency Graphs
	Coverage Criteria
	Related Work
	Conclusion

