Electronic Communications of the EASST

Volume 41 (2011)

Proceedings of the
Tenth International Workshop on
Graph Transformation and
Visual Modeling Techniques
(GTVMT 2011)

Towards a Maude Tool for
Model Checking Temporal Graph Properties

Alberto Lluch Lafuente, Andrea Vandin

14 pages

Guest Editors: Fabio Gadducci, Leonardo Mariani

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eﬁ ECEASST

Towards a Maude Tool for
Model Checking Temporal Graph Properties’

Alberto Lluch Lafuente, Andrea Vandin

IMT Institute for Advanced Studies Lucca, Italy

Abstract: We present our prototypical tool for the verification of graph tramator
tion systems. The major novelty of our tool is that it provides a model cheoker f
temporal graph properties based on counterpart semantics for quhptiialculi.
Our tool can be considered as an instantiation of our approach to cparitseman-
tics which allows for a neat handling of creation, deletion and merging inmsgste
with dynamic structure. Our implementation is based on the object-based magchiner
of Maude, which provides the basics to deal with attributed graphs. Grapsfor-
mation systems are specified with term rewrite rules. The model checkeat®&lu
logical formulae of second-order modatcalculus in the automatically generated
Counterpart Model (a sort of unfolded graph transition system) ofridughgtransfor-
mation system under study. The result of evaluating a formula is a setighasants
for each state, associating node variables to actual nodes.

Keywords: Maude, Quantifiegi-calculi, counterpart semantics, verification, DPO

1 Introduction

Visual specification formalisms are nowadays used in almost the whole @peofrsoftware
and hardware development activities. In the particular case of anahdigesification activities,
visual specifications are complemented with appropriate property spéoifidanguages and
tools for checking and verifying properties. A prominent example arglgteansformation
systems, temporal graph logics and the corresponding verification tduts) are used to reason
about the possible transformations in a graph topology.

Recent approacheBCKLO7] propose variants of quantifiga-calculi, resulting from a com-
bination of the fix-point and modal operators of temporal logics with monadtiorsd-order logic
for graphs.These logics fit at the right level of abstraction for gragfstormation systems: if
state systems are graphs, and state components are thus graph itemsopbaelisinterested in
the topological structure of each reachable graph alone, but on itgievohis well.

Our own contribution to this trend of research was presente®inV/[LO]. We introduced a
novel semantics for quantified-calculi. We considered a simple second-order syntax, and a
notion of semantic model callembunterpart models/here states are algebras and the evolution
relation is given by a family of partial homomorphisms. Instantiating our agbroa graph
transformation systems, states correspond to graphs and transitioespoow to the trace mor-
phism. One of the main characteristics of our approach is that open forargl@®erpreted over
sets of pair§o,w), for w a state andr an assignment ovav (that is, a substitution associating

* This work has been supported by the European project ASCENS

1/14 Volume 41 (2011)

Towards a Maude Tool for Model Checking Temporal Graph Properties Eﬁ

formula variables to components of the stade Our proposal avoids some limitations of other
approaches, in particular in what regards the treatment of merging amel reause. In addition,
the resulting semantics is a streamlined and intuitively appealing one, yet itésagjenough to
cover most of the alternatives we are aware of.

In this paper we present our first step towards a tool support faamanoach. In particular, we
present first an implementation of graph rewriting as conditional rewrite nri@bject multisets,
which allows us to compositionally specify concurrent systems in an objemtted fashion.
Our system specifications are thus essentially graph transformation sy3teemswe introduce
a prototypical model checker that can be used to check quantifieiculus formulae against
system specifications. As far as we know, our tool is one of the few mdustkers for a
quantifiedu-calculus and one of the few ones based on counterpart semanticangliow a
finer analysis of the evolution of individual components. Our work aisegeasibility of our
approach, preparing the ground to build an efficient tool frameworkvéoifying interesting
properties of system specifications, possibly expressed in graplfomaiagion style.

This paper is organised as follow§2 introduces a simple examplé.3 describes the basics
of our approach, essentially an implementation of graph rewriting in Mai&é&[07] to spec-
ify concurrent, multi-agent system§.4 summarizes our approach to counterpart semantics of
quantifiedu-calculi. § 5 sketches the implementation details of the key functionalities of our
prototype, which is put at work ifi 6 with some examples;, 7 concludes the paper.

2 Running example

For a better illustration of our concerns, we consider the well known Stdblgiage Prob-
lem [G189] as running example. We recall that the problem consists in finding a stablaintatc
(i.e. a marriage) betweemmen andn women. Each individual has a preference ranking that
orders all other individuals of opposite gender from the most prafemne to the least preferred
one. A matching istableif everyone is married, and there are not a man and a woman that
would prefer to be married to each other, rather than with their curretrigyar

We have considered a simple distributed algorithm for solving the problenividndls are
modeled as autonomous agents that communicate via asynchronous massaggip the form
of tuple space communication, i.e. the algorithm abstracts away from the conationioet-
work, assuming that messages can be just delivered to the network inglittegimeceiver’s id
and can be picked up from the network with a sort of pattern matching. iBhébdted system
contains three classes of entities: men, women and messages.

Initially, no marriage or message exist and all agents are single. In Figueagive an intuitive
graphical representation of an initial state with two men and two women. In sek;tige will
better explain the format of the figure; intuitively, individuals and messagesepresented as
rounded boxes where the top frame contains the id and the sort (Maleld~emMessage), and
the bottom frame is reserved for attributes. Relations like “being married wittd™#ne nth
individual in my ranking”, are graphically denoted with an edge going ftbenreferring entity
to the referred one labeled with the name of the relation. An edge with heb@in a male with
id “m(i)” to a female with id “f(j)” express the fact that “f(j)” is in tha_th position of the ranking
of “m(i)”.

Proc. GTVMT 2011 2/14

Eﬁ ECEASST

m(1) : Male «| f(2): Female
status : single 2 status : single
<
2
AL AL
A Y
f(1) : Female «| m(2): Male
Ll
status : single 2 status : single
<
2

Figure 1: A graphical representation of an initial state with two agents ¢f lead.

A man that is single always sends a message containing the marriage propibsa(next)
preferred woman and waits for an answer. Women answer dependitigiorstatus and their
ranking. A single woman always accepts a proposal. A married womaseefuoposals from
men that are not preferred to their current partner. A married womaptthe proposal from
a man if she prefers him to her current partner, and sends a message#aotner notifying him
that their marriage is broken.

When a man receives a divorce or a refuse notification, he becomds aimd) starts again
sending a marriage proposal to the next most-preferred woman (elgmasaarting from the
most-preferred one). When a man receives an acceptance notificatigetsrmarried and re-
mains idle, waiting for eventual divorce notifications or the end of the algaritfhe algorithm
hence terminates when everyone is married, and terminates correctlyifreaaiage is stable.

An example of execution of such system is shown in FigireThe figure shows a four-
step execution sequence, where states are displayed clock-wise dramintpe top-left state:
%0,S1,%2,S3. The evolution relation of the system, represented in the figure as graydats, goes
from s to s1, from s; to s, and froms;, to s3. Intuitively, in statesy there are two single males
“m(1)” and “m(2)”, and two single females “f(1)” and “f(2)". I%; “m(1)” sends a marriage
proposal to “f(1)” setting its own status to waiting. $n“f(1)” accepts the proposal, sets its status
to married, and sends the natification to m(1). Finallyssfim(1)” receives the notification, and
the marriage is established.

In the rest of the paper we shall see how this algorithm can be modeled ie\taa language
based on graph-rewriting and how we can use Maude and our protaitypadel checker to
verify some properties of the algorithm. Indeed, some of the properties bkeottnectness for a
given initial configuration can be verified with Maude’s default tools, waileers like individual
mutual exclusion and response properties are directly verifiable in ousrbo

3 Graph rewriting with Maude

We have decided to rely our machinery on rewriting logic due to its well-deeeltipeory based
on the idea of computation as logical deduction, its expressiveness aarhliyy witnessed by
notable encodings of graph rewriting and programming languages, aratfitsrpant, easily ex-

3/14 Volume 41 (2011)

Towards a Maude Tool for Model Checking Temporal Graph Properties Eﬁ

m(1) : Male | f(2) : Female m(1) : Male | f(2) : Female
2 > from 2 >
status : single status : single status : waiting status : single
< <
2 msg(1) : Message 2
T'—' i'—‘ T'—‘ ¢'—' body : proposal T'—‘ ib—' T'—‘ i'—'
f(1) : Female +| m(2): Male f(1) : Female «| m(): Male
> >
status : single 2 status : single t status : single 2 |status : single
< for <
2 2
> 3>
m(1) : Male > 7| f(2) : Female ; m(1) : Male > 7| f(2) : Female
or
status : marrie < 2 status : single status : waiting < 2 status : single
3 .
§ g msg(1) : Message g
% T'—‘ i‘i % T'—‘ ¢'—' body : accept T»—' i'_l é T'—' ¢'—'
s f(1) : Female = m(2) : Male f(1) : Female 4 m(2) : Male
status : married| . |status : single status : married| |status : single
> from >
< <

Figure 2: A graphical representation of a four step execution sequenc

tensible tool support. In particular, we will see that the configurationsio$gstems are terms of
a particular signature of object configurations which correspondtigby to attributed graphs.
The signature can be refined with concrete object classes, attributeanygesell-formedness
constraints that play the role of meta-modeling mechanisms such as type.gtashsthe dy-
namics of a system is specified by rewrite theories, made in our case dterewes in graph
transformation style.

A rewrite theoryZ is a tuple(Z,E,R) whereX is a signature, specifying the basic syntax
(function symbols) and type machinery (sorts, kinds and subsortinglefars, e.g. system
configurationsg is a set of (possibly conditional) equations, which induce equivalensseda
of terms, and (possibly conditional) membership predicates, which refinding information;
Ris a set of (possibly conditional) rules, e.g. graph rewrite rules.

The Maude framework(dDE"07] provides a language for describing such rewrite theories
and a tool built upon a rewrite engine for executing and analysing theme Iret of the paper
we shall use Maude’s syntax, introducing the syntactic ingredients asevhem.

The signatur& and the equationg of a rewrite theory form anembership equational theory
(Z,E), whose initial algebra i95/e. Indeed,Ts g is the state space of a rewrite theory, i.e.
states (e.g. graphs) are equivalence classestefms modulo the least congruence induced
by the axioms irE (denoted byft]g ort for short). Operators are declared in Maude notation
asop f : TL -> T [a] wheref is the operator symbol (possibly with mixfix notation where
argument placeholders are denoted with underscoress,a (possibly empty, blank separated)
list of domain sortsT is the sort of the co-domain, ardis a set of equational attributes (e.qg.
associativity, commutativity). We shall present a signafureontaining sorts and operators
for describing models as collections of attributed, interrelated objects (i.ebuatl graphs).

Proc. GTVMT 2011 41714

Eﬁ ECEASST

Equations that cannot be declared as equational attributes must be &g&tadtions defined by
a set of confluent and terminating (possibly conditional) equations of thedeq t =t if

c, Wheret , t’ areZ-terms, and is an application condition. When the application condition is
vacuous, the simpler syntax t = t’ can be used. Roughly, an equational rule can be applied
toatermt’ ' if we find a match for at some place in’ * such that holds (after the application
of the substitution induced by the match). The effect is that of substituting thehethpart
with t (after the application of the substitution induced by the match). One major tadpan
of Maude is that it includes tools for checking confluence, termination angpteteness of
equational logic specifications. The main equations of the theories we usewsldo treat
object collections as multisets of objects, i.e. modulo associativity, commutatindyidantity
(all treated as equational attributes), therefore axiomatising their grainetic nature.

A membership predicate is of the foreab t : T if c, wheret is aZ-term of some su-
persortT of T andc is a predicate over conditioning the membership statement. Roughly,
a membership predicate states that if we are able to match a temith t such thatc holds
thent’ has sortr. Membership predicates provide a subtyping mechanism that we carouse, f
instance, to check conformance wrt. to certain meta-model (e.g. typggraph

Rewrite rules are of the formr1 t =>t’ if c,wheret,t’ areZ-terms, and is an applica-
tion condition (a predicate on the terms involved in the rewrite, further revitese result can
be reused, membership predicates, etc.). When the application conditi@uesgathe simpler
syntaxrl t => t' can be used. Matching and rule application are similar to the case of equa-
tions with the main difference being that rules are not required to be cohflunel terminating
(as they represent possibly non-deterministic concurrent actiongatiégal simplification has
precedence over rule application in order to simulate rule application modudtiecal equiva-
lence. Rewrite rules can be used to program the behaviour of a systedeateaative way (e.qg.
in graph transformation style).

Graphs as object collections We summarize the previously mentioned algebra of object col-
lections that is used to represent models as attributed graphs. In our setysem config-
uration is a collection of attributed objects. Maude already provides a signfiuthis pur-
pose, called object-based signatuBDE"07], which we tend to follow with slight modifica-
tions aimed to ease the presentation. Each object represents an entityi{aluaddomponent)
and its properties. Technically, an object is defined by its identifier (dfaal), it's class (of
sortci d) and its attributes (of sortt t Set). Objects are built with an operation_ : _ | _

> with functional typed d G d AttSet -> Obj. Object and Class identifiers will be defined
by ad-hoc constructors. For instance in our running example we usepératmnm : Nat

-> O d to use natural numbers to construct object identifiers for male individuasnlik) or
m(2), and the constantsal e, Femal e and Message Of sort G d to denote the classes of men,
women and messages, respectively. The attributes of an object defimeptsties and rela-
tions to other objects. They are basically of two kinds: datatype attributeselatibn attributes.
Datatype attributes take the form v, wheren is the attribute name and is the attribute
value. For instance, in our running example we shall consider an attabates with domain

in {singl e, waiting, marri ed} (constants of sordt at us), representing respectively whether a
person is single, is waiting for a response or is married. Similarly, we willidensn attribute

5/14 Volume 41 (2011)

Towards a Maude Tool for Model Checking Temporal Graph Properties Eﬁ

m(1) : Male «| f(2): Female [«
from >
status : waiting 2 status : married
< 3
msg(1) : Message 2 %
body : proposal T—\ i—x T_‘ i_‘ 2
£
(1) : Female | m(2): Male =
>
status : single 2 status : married <€
for <
2

Figure 3: A graphical representation of a state.

body with domain in{proposal , di vor ce, accept, ref use} (sort MessageBody) for denoting
respectively whether a message notifies a marriage proposal, a dirafee acceptance or the
refusal of a marriage proposal.

As an example of an attributed object, consider figuresd3, whose format is reminiscent
of the UML notation, with rounded boxes representing objects where thieaioe contains the
object identifier and its class, and the bottom frame is reserved for dattyipeites. Focusing
only on the datatype kind of attributes, the mer) on the top-left of Figure8 is denoted in
Maude syntax witkx n(1) : Mile | status: waiting >.

In a configuration, objects are interrelated. Relations between objectsecapresented in
different ways. A very intuitive approach is to use a reference (a tdrsorta d) as value of
an attribute. So if an objeetl has a relatiomR with objecto2, theno1 will be equipped with an
attributer containingo2 in its value. Consider objects of clagsssage, they have a sender and a
receiver. The messageg(1) of Figure3is a marriage proposal sent from the man) for the
womanf (1) . The message is hence denoteckassg(1) : Message | body: proposal

from m(1) , for: f(1) >. Note that each relation is graphically denoted in Figaire
with an arrow labelled with the name of the relation, which goes from the nefeabject to
referred one. Even more complex relations can be graphically denoteel $athe intuitive way.
For example we represent the rankings of males and of females with anlatreled with the
position of the referred man (woman) in the ranking of the referring womemnj. An arrow
with labeln from a womart (i) to a mam(j) hence indicates that j) is in the n-th position
of the ranking off (i). A configuration can thus be thought of as a multi-sorted graph with
attributes, where nodes correspond to objects, node attributes aordetspdatatype attributes
and labeled edges correspond to reference attributes. An objea eguipped with any number
of attributes. Actually, the attributes of an object form a set built out ofletng attributes, the

empty setifone) and union set (denoted with.).

Object configurations are essentially sets of objects. The sort foigewafions is calledont
and its constructors are the empty configuratiamé), singleton objects (aj is declared as
subsort ofconf) and set union (denoted with juxtaposition). As an example the whole coafigu
tion of Figure3 is denoted with

< nsg(l) : Message | body: proposal , from m(1l) , for: f(1) >

< f(l) : Female | status: single , ranking: (m(1) |->1, m2) |->2) >

< f(2) : Female | status: married , ranking: (m1) |->2, m2) |->1) ,
marriedWth: m(2) >

Proc. GTVMT 2011 6/14

Eﬁ ECEASST

1, f(2) |->2) >
2, f(2) |-> 1)

<m1l) : Male | status: waiting , ranking: (f(1) |->
<m?2) : Male | status: nmarried , ranking: (f(1) |->
marriedWth: f(2) >

In order to distinguish a system configuration from the collection of objeetsféhms it, we
wrap object collections together into a system with operation >> : Conf -> System

Graph rewrite rules To compositionally specify concurrent systems, we offer an object ori-
ented language, based on an implementation of the double pushout dpfdHB) to graph
rewriting: our systems can be hence seen as graph transformation sgpesified by an initial
state and a set of term rewrite rules given in DPO style. The main idea is tttatda has a
left-hand side and a right-hand side pattern, each one composed bgfabgicts (nodes) pos-
sibly interrelated by means of relation attributes (edges). In our tool we impleantsvo-level

rule scheme: at the lowest level we have a sdocdl rulesspecific for every system, while at
the top level we have a uniquely defingkbbal rule that takes care of local rule application at
the global level.

A local rule can be applied to a model whenever the left-hand side can baedaidth part
of the model, i.e. each object in the left-hand side is (injectively) identified witbigect of the
model respecting its relations. The global rule can be applied to a modekbwdrea local rule
can be applied to part of the model and some additional application conditdasimcluding
the no dangling edgesondition typical of graph transformation flavours like DPO. The choice
of DPO is arbitrary and not a restriction, as we could also mimick other stylebdnyging the
rule format, e.g. following SPO as iBHMO9].

Following our counterpart approach to the semantics of second-pradaiculus proposed
in [GLV10Q], we do not implicitly identify elements of different systems, meaning that weato n
have an implicit unique domain of objects, instead we enrich the rules with alpadiphism
relating the objects matching the left-hand side pattern with the objects matchingtttiband
side pattern. This morphism amounts to the trace morphism in graph rewritinig aised to
intuitively express the preservation/renaming, deletion or fusion of objestpectively if an
object is mapped, it is not mapped, or more objects are mapped in the samémmdject
appearing in the right-hand side pattern but not involved in the morphismnsidered as a

newly created one.
Considering our running example, the sending of marriage proposatsialized by the local
rule:

crl [makeProposal]
<idM: Male | status: single , ranking: (idF |-> nt , rankM |,
nextTry: nt , problenSize: size >
<idF : Fenale | attSetl >
=> {nor phi sn}(
<idM: Mle | status: waiting , ranking: (idF |-> nt , rankM ,
nextTry: (s(nt) remsize) , problenfize: size >
<idF : Female | attSetl >
< {new(0)} : Message | body: proposal , from idM, for: idF >)
if morphism:= (idM|->idM, idF |->idF) .

In this simple rule, a single man sends a marriage proposal to the “next nefstrpd woman”.
The status and thext Try counter of the involved man are hence updated, and a new object of

7114 Volume 41 (2011)

Towards a Maude Tool for Model Checking Temporal Graph Properties Eﬁ

idM : Male idM : Male
from

status: single status: waiting

nextTry: nt++

idMsg : Message

body : proposal

nextTry: nt (idM |-> idM)
(idF |-> idF)

nt nt

Y

idF : Female

Y

idF : Female

for

Figure 4: A graphical representation for the rule “makeProposal”.

classvessage is created. The morphism also tells us that the man and the woman are pieserve
The rule is intuitively graphically represented in Figdre
The global rule is instead defined as:
crl [global]
<< conf renConf >> => {extMorphisn}t << conf3 conf4 >>
i f conf => {nmorphisnt conf3 /\
noDangl i ngedges(nor phism, conf , renConf) /\
ext Mor phi sm : = ext end(nor phi smrenConf) /\
conf4 : = appl yToConfi gurati on(ext Morphi sm, renConf) .

The global rule rewrites a system composed by the configuratioms andr enConf into a
system composed by the configuratia®sf 3 andconf 4, correlating the two systems by the
morphismext Mor phi smif 1) conf can be rewritten by a local rule ifwor phi smjconf 3; 2)
nor phi smdoes not delete objects oénf referred by objects inenconf (generating dangling
edges); and 3jonf 4 is obtained applyingxt Mor phi smto r enConf , whereext Mor phi smis the
extension ofror phi smwith the identities i enConf . In other words, the global rule implements
the pushout computation. Object creation is allowed and the consequerggtésion problem
is partly mitigated by using hame reuse, one of the more characterizing feappmach, which
allow us to deal with size bounded systems in case of systems with boundeacdcesallocation.

4 Counterpart Semantics for a Second-Orderu-calculus

Many logics have been proposed to reason about the evolution of systeiisLV10] we in-
troduced our own contribution with a novel semantics for a second-qramiculus based on
the Counterpart Theory proposed by Lewis and further developedanid. Our proposal al-
lows for a simple definition of the semantical universe by mear@oafnterpart Modelsnamely
Kripke Models enriched with partial homomorphisms between connected syaddledcoun-
terpart relations Figure5 denotes with dotted lines the counterpart relation between the states
s (top-right) ands, (bottom-right) of Figure2. Intuitively, everything is preserved except for
the message m(1) which is thus deleted and recreated evolving frons;statgtates,. The two
messages are not related: they share the same name, but represestitabodmponents. It is
important to notice that in the counterpart approach, the identifiers aretéodae worlds they
belong to. In different worlds, the same identifier may represent distientents.

Proc. GTVMT 2011 8/14

Eﬁ ECEASST

- - e :"\L
m(1) : Male f(2) : Female m(1) : Male f(2) : Female

from

2
status : waiting

body : proposal | T»—‘ ¢>—‘ T'—- ¢>—‘ body : accept | T»—‘ ¢>—‘]

(1) : Female m(2) : Male (1) : Female

status : waiting| 2 status : single status : single

Ty

m(2) : Male

yumpatew N[N

status : single status : single’

istatus : married| status : single
for from

N
N

<

v 2 oy

Figure 5: A graphical representation of the counterpart relation bettvezstates.

Standard Kripke models identify elements through different worlds (twaorsd identity),
with implicitly defined identity morphisms, having as result a uniqgue domain for threesits
of the worlds. The presence of the unique domain, which is indeed justaitat solution,
enforces restrictions of the evolution of states, making it difficult, or evelidding to express
merging, renaming, creation and deletion of elements. Enriching our modeltheitbunterpart
relations we avoid these limitations. For example, two elements are merged if thmaaped
in the same element, while an element is a newly created one if it appears in #iestatg, but
it is not involved in the counterpart function. In this manner counterpadeisoare well suited
for modeling systems with dynamic structure. Moreover, since our semawditga&es formulae
with variables as sets of variable assignments for each world, instead wfgtlds as in propo-
sitional logics and some non-propositional ones, it allows for a straigtsial interpretation of
fixed points and for their smooth integration with the evaluation of quantifienghware often
dealt with by restricting the class of admissible models to those with no name neonsgzging.
The resulting semantics is a streamlined and intuitively appealing one, yet neésajenough
to cover most of the alternative proposals we are aware of . Now weybrgetill the syntax and
semantics of our logic.

Definition 1 (Formulae) Le& be a signature (e.g. a signature for graplis)a set of fix-point
variables, anX, 2" (denumerable) sets of first- and second-order variables typed ofesg.
node and node set variables). The.ggtof formulae of our logic is inductively generated by:

Y=t et X | W | YVY | e | e @ | QW | Z | pZ.y

whereg : T is a term ovezy of type 1, €; is a family of membership predicates typed oSer
indicating that (the evaluation of) a term with sotbelongs to (the evaluation of) a second-order
variable with the same sort andu denotes the least fixed point operator.

We shall also derive the symbols,— , <, V, as well as well-known temporal operators like

(all next steps)AGor AF (for all departing paths, always or eventually), and the greatesbiixt:p
operatow derived ay/Z.@ = ~uZ.~y[% /7], where[% /7] stands foy where all occurrences

of Z have been negated. Moreover, as it is standard, we restrimbb@tonicormulae, i.e. such
that each fix-point variabl& occurs under the scope of an even number of negations. This is
a sufficient condition for the fixed points to be well-defined. Note that thie lisgsimple, yet

9/14 Volume 41 (2011)

Towards a Maude Tool for Model Checking Temporal Graph Properties Eﬁ

reasonably expressive. For instance, binary equivalence cabeattafined as a derived operator,
namely,e; : T =; & : Tisdefined a¥x;. (e1: T Er X1 & &: T €1 X1)-

Our semantics does not evaluate naked formulaefdratulae in contextthat is formulae
enriched with informations about the free variables appearing in them. drftext of a formula
has two component$: andA containing respectively first- and second-order variables. Reminis-
cent of the semantics of temporal formulae over sets of constraints ingddudGHKOC], the
evaluation of a formula with conteXt; A] consists in a set of paifei, w) where the domain of
Ow, a variable assignment for the woml is defined exactly for the variables[in; A]. We indi-
cate withQ[" 2! the set of all the pairs of a model with assignments defined exactly faf. The
evaluation of a formula with empty context is hence just a{ﬁm; w)} C Q%0 for A the empty
variable assignment over the world Such an evaluation characterises a set of worlds, ensuring
that our proposal properly extends the standard semantics of propakitiodal logics.

The formulae of our logic are evaluated agaic@tinterpart mode|swvhich can be intuitively
thought of as the graph transition system obtained by unfolding a grapgfdraenation system.
Intuitively, a counterpart model contains the informations graphically @eddoth in Figure,
and in Figures. Thus a counterpart model contains informations about the states ofdteernsy
and their internal structure, and informations about the accessibility relagioveen the states,
annotating explicitly the mappings between components of the distinct butctedrstates.

Definition 2 (Semantics) Lety[I; A] be a formula-in-context (e.g stating some properties about
the evolution of a graph), arld be a counterpart model (e.g. the state transition graph obtained
by unfolding a graph transformation system). The evaluatiog[6f A] in M under the assign-
mentp : 2 — 22" s given by the functiorf-], : Z"4 — QI defined as

[ral, = o4
[(e: 1€ x0)[M:A]p {(o.w) e QM4 | a(e) € a(xr)}
[-y[r;Allp QA [w[r;all,
[un Vv yn[l;A]]p [y Al U Wl Allp
Bxe @A, = 2% ([N %Al 2ixop))

Bxe- ¢lMale = 25 ([WIF:D, X 2ixop))

[owralle = {(o,w) e Q™ |3(a"w) < [WIFallp . 0 o)
[2h:8]l, = p(2)

[MZ.y[T:Al, = WpAY.[YrA)elY /2)

Note that in the evaluation of the membership predicate, denotes the lifting of the substi-
tution o to the set of terms oveXk. In the evaluation of the quantifiers, we make use of the
functions 2x,2"x, 2 2¥x to respectively extend or restrict sets of pairs with the varialaey.
Restricting a subset dd" %4/ respect to a variable we obtain a subset @2, Specularly,
extending a subset 614 with a variablex we obtain a subset @™/, It is pivotal to require
that the assignmet for fix-point variables is extended to ensure a proper sorting 8j, since

it must now belong to the subsets@f <2 (Q["2x] in the second-order case). In the evaluation
of the modal operator, the “renaming” of values across worlds is etddayreequiring that the
assignments andg’ are in counterpart relation, meaning intuitively tlwtrespectss for the
variables inl"; A]. Hence all elements of assigned by to the variables iril"; A| are mapped in
w by the counterpart relation, respecting the operations on them. Thusemantics discards
those worlds that are reachable but are not in counterpart with tetgpihe current context to

Proc. GTVMT 2011 10/14

Eﬁ ECEASST

avoid claims about non-existing elements (s&.Y10] for a detailed explanation).

5 Counterpart Model Generation and Model Checking

Our tool represents the first step towards a framework supportingopuoach for the semantics
of second-ordepi-calculi introduced in GLV10]. We developed it aiming at assessing the fea-
sibility of our approach providing a direct instantiation of it, leaving for fetworks concerns
about efficiency and usability. Given that the formulae of our logic haueetohecked against
counterpart models, we first focused on their generation, and theewedogped a model checker
working on counterpart models.

Counterpart Model generation Counterpart models, as the well-known Kripke models, are
defined by a triple w d, RC) where,wis a set of worldsg is a function assigning a set of inter-
related objects (a configuration) to each worldyrandRc is the accessibility relation between
worlds. Respect to Kripke models, accessibility relations in counterparelm@de equipped
with partial homomorphisms, explicitly correlating elements of connected woAdsentry of

RC has the form ofW i) =nor phi s> w(j) .

The procedure starts from a counterpart model containing only a westttated to an initial
state and the empty accessibility relation. Then it keeps adding states and ehttie accessi-
bility relation to the model up to completion of the state space. In particular, onlgases can
arise after the generation of a state: the state is not already in the model, im ¢elsie a new
world, the state and an accessibility relation entry are added to the modelitar,9acond case,
the state is already in the model, thus only the accessibility relation entry is afidedalready
present. These two cases are captured by the following conditional rules

crl ((W(d, (wSource |-> sSource)) RO)) =>

(((neworld, W) xxx W
(d, (wSource |-> sSource), (newérld |-> sDest)) *xx
(RC, wsSource =nor phi snF> newwrld))) **%x RC

if sSource => {norphisn}sDest /\
systenNot I nD(sDest , (d,(wSource |-> sSource))) .

crl ((W((wSource |-> sSource), (wbest |-> sDest) , d) RC) =>

((W *xx W
((wsource | -> sSource) , (wbest |-> sDest) , d) *xx d
(wSource = norphism=> wbest , RO)) *x*x RC

if sSource => {norphisn}sDest /\
not Connect ed(wSour ce, nor phism wbest, RC) .

It is worth to note that, the identification of syntactically identical states (eqaahg) is based
on the reuse of object identifiers which allows us to obtain finite countempadels in systems
with bounded resource allocation. This happens, for instance in ooneavhere the number of
objects around is always bounded by a constant due to the messagmptina and generation
strategies. More powerful strategies based, e.g. on identifying symmtttés isomorphic
graphs) are under study.

Considering our running example, the counterpart model is built with the cowchmaw
initializeCTMdel (<< initSMP(n) >>), wherei ni t SMP(n) generates an initial state with

11/14 Volume 41 (2011)

Towards a Maude Tool for Model Checking Temporal Graph Properties Eﬁ

males (and females), andi ti al i zeCTModel generates the counterpart model containing only
the initial state.

Model Checking Given a counterpart modeland an assignment for fix-point variables, our
tool evaluates the semantics of a second opdealculus formula as the set of pait&y,w)
satisfying it, wherav is a world ofM andg,, a variable assignment ferdefined exactly for the
variables in the context of the formula. In doing so we first defined theatipaop val i d taking

as arguments a formula in context, a pair, a fix-point variable assignmeat@unterpart model.
The operation reduces to true if the pair validates the formula in contextddeevise. Finally,
we evaluate the semantics of a formula in context with the operatop| _|]_, - taking as
arguments a formula in context, an initial state of the system (from which theeqart model
will be built), and an assignment for fix-point variables. Considefifid\] as context of the
formula, the operation generates all the pairs in th&¥ef!, and adds to the semantics of the
formula only the ones for whictal i d is true.

6 Examples

The aim of this section is to illustrate the use of the tool to verify properties oftbkition of
software systems, focusing on properties of individuals. For the fakisosection we fix an
instance of our running example with= 2, where all the people of the same gender have the
same ranking.

Individual response property. In the algorithm sketched in secti@npeople get married and
divorced with the aim of finding particular marriages. An interesting prygerthe one stating
that every time a male becomes single, he will later on become married. Morellfortha
property can be expressed as “for all male, whenever the male is singlenitually becomes
married”. We can express the property with the formyula

forall xMale(0). AG (status(xMale(0)) = status: single)
-> (AF(status(xMal e(0)) = status: narried)))

Using the reduce command of Maude, we evaluate the semantigsaith reduce [| |]
<<ini tSMP(2)>> , enpty. As result we obtain a set of paits,w(i)) for all w(i) ¢ w, wherea is
the empty assignment. This tells us that the property holds in every state of tieé mod

Individual mutual exclusion. Other interesting properties regard the consistency of marriages.
A meaningful example is “is it possible for two males to claim to be married with the same
female?”, expressed by the formula

not (xMal e(0) = xMale(1)) and (marriedWth(xMal e(0)) = nmarriedWth(xMale(1)))

Evaluating the property we find out that it holds in a world of the model, with tieviing
assignment:

xMale(0) |-> < {m2)} : Male | marriedWth: {f(1)}, ... >
xMale(l) |-> < {m1)} : Male | marriedWth: {f(1)}, ... >

Proc. GTVMT 2011 12/14

Eﬁ ECEASST

This can seem an erroneous scenario, but actually it happens baxfahs asynchronous and
distributed fashion of the modelled algorithm: when a married woman accepts magiage
proposal, she sends a divorce notification to the former partner anctaptanotification to the
new partner. In the case in which the accept notification is handled bisfemivorce one we
have two males claiming to be married with the same woman. The consistency igdestor
the next step, after the handling of the divorce notification. Differentéscdise in which we
check the same property, but from the females perspective, just stibgtitval e with xFenal e.
Evaluating the formula we obtain the empty set, meaning that it never happeesiottel that
two females claim to be married with the same male.

7 Conclusions and further works

Quantified modal logics have been studied in the realm of description logicgK€03)), graph
transformation (e.g.HCKLO7]), process algebras (e.d-$i04) and model checking §en0§)
to cite a few. For a more comprehensive and detailed list we reféplt&y/10], where we also
describe the differences with respect to our approach. Here we jusiomehat, as far as
we know, graph transformation tools are not yet equipped with modekoigecapabilities for
temporal logic other than propositional ones. Amongst them GROQ\E AUGUR seem
the most promising one, since their authors have already produced fimgresntributions to
the theoretical foundations of model checking systems with dynamic strucsurg quantified
temporal logics[Ren06 Ren03 DKR04, BCKLO7].

The present paper introduces our prototypical tool to verify tempawgtgproperties, ex-
pressed in a quantified temporal logic. Our tool is based in the semantioscionds-ordeiu-
calculus we introduced ifdLV10], which with respect to other approaches, allows for a simple
definition of the semantical universe by means of counterpart modelsdéh®f associating to
(open) formulae sets of assignments, instead of just worlds, allows faightforward interpre-
tation of fixed points and for their smooth integration with the evaluation of quenstifi

Our tool provides an instantiation of our approach, where formulae ofogic are checked
against system specifications described in a graph-based dialectuafeMan particular, we
use a very popular Maude (sub)language for describing systems iclaxrateve, object-based
style which essentially corresponds to graph rewriting. Such specifisatambe analysed with
Maude tools as usual, using for instance the critical pair analysis basfidertce checker, the
reachability analyzer or the propositional LTL model checker. Our impléatiem provides a
finer model checker for formulae in a second-orderalculus that allows to express more subtle
properties like individual mutual exclusion or individual request-respo

In its current form, the model checker generates the entire countenpdsl for a given spec-
ification and checks formulae on it. That is, our model checker doesetoteyify properties
on-the-fly, neither it does apply optimisation techniques based on symmetipgtraction reduc-
tion. These issues are subject of current work as they could pustpptwach beyond its current
bounded model checking form.

1 http://groove.cs.utwente.nl/
2 http://www.ti.inf.uni-due.de/research/augur/

13/14 Volume 41 (2011)

Towards a Maude Tool for Model Checking Temporal Graph Properties Eﬁ

Bibliography

[BCKLO7]

[BHMO9]

[Cai04]

[CDE+07]

[DKRO4]

[FTO3]

[GHKOO]

[G189]

[GLV10]

[Haz79]

[Ren03]

[Ren06]

P. Baldan, A. Corradini, B. Knig, A. Lluch Lafuente. A Temporal Graph Logic
for Verification of Graph Transformation Systems. In Fiadeiro and Sobob (eds.),
18th International Workshop on Recent Trends in Algebraic Developheehniques
(WADT’06) LNCS 4409, pp. 1-20. Springer, 2007.

A. Boronat, R. Heckel, J. Meseguer. Rewriting Logic Semarditd Verification of
Model Transformations. IIProceedings of the International Conference on Funda-
mental Aspects of Software Engineering (FASE'Q®)CS 5503. Springer, 2009.

L. Caires. Behavioral and Spatial Observations in a Logic ferrtfCalculus. In
Walukiewicz (ed.)/th International Conference on Foundations of Software Science
and Computation Structures (FOSSACS.QNCS 2987. Springer, 2004.

M. Clavel, F. Duan, S. Eker, P. Lincoln, N. MdrDliet, J. Meseguer, C. L. Talcott.
All About Maude LNCS 4350. Springer, 2007.

D. Distefano, J.-P. Katoen, A. Rensink. Who is Pointing When tooW? In al.
(ed.), 32nd International Conference on Foundations of Software Technaody
Theoretical Computer Science (FSTTCS!QNCS 3328. Springer, 2004.

E. Franconi, D. Toman. Fixpoint Extensions of Temporal Dipton Logics. In
Calvanese et al. (eds)6th International Workshop on Description Logics (DL'03)
CEUR Workshop Proceedings 81. CEUR-WS.org, 2003.

F. Gadducci, R. Heckel, M. Koch. A Fully Abstract Model fGraph-Interpreted
Temporal Logic. In Ehrig et al. (eds.§th International Workshop on Theory and
Application of Graph Transformations (TAGT'9&NCS 1764. Springer, 2000.

D. Gusfield, R. W. Irving.The stable marriage problem: structure and algorithms
MIT Press, Cambridge, MA, USA, 1989.

F. Gadducci, A. Lluch Lafuente, A. Vandin. Counterparin@mtics for a Second-
Order u-Calculus. In Ehrig et al. (eds.hth International Conference on Graph
Transformation (ICGT'1Q)LNCS 6372, pp. 282—-297. Springer, 2010.

A. Hazen. Counterpart-Theoretic Semantics for Modal Lddie. Journal of Philos-
ophy76(6):pp. 319-338, 1979.

A. Rensink. Towards Model Checking Graph Grammars. Instleel et al.
(eds.),3rd Workshop on Automated Verification of Critical Systebhsiversity of
Southampton Technical Reports DSSE-TR-2003-2, pp. 150-160. 2003

A. Rensink. Model Checking Quantified Computation Tree LdgiBaier and Her-
manns (eds.) 7th International Conference on Concurrency Theory (CONCUR’'06
LNCS 4137, pp. 110-125. Springer, 2006.

Proc. GTVMT 2011 14/14

	Introduction
	Running example
	Graph rewriting with Maude
	Counterpart Semantics for a Second-Order -calculus
	Counterpart Model Generation and Model Checking
	Examples
	Conclusions and further works

