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Towards a Maude Tool for
Model Checking Temporal Graph Properties∗

Alberto Lluch Lafuente, Andrea Vandin

IMT Institute for Advanced Studies Lucca, Italy

Abstract: We present our prototypical tool for the verification of graph transforma-
tion systems. The major novelty of our tool is that it provides a model checker for
temporal graph properties based on counterpart semantics for quantified µ-calculi.
Our tool can be considered as an instantiation of our approach to counterpart seman-
tics which allows for a neat handling of creation, deletion and merging in systems
with dynamic structure. Our implementation is based on the object-based machinery
of Maude, which provides the basics to deal with attributed graphs. Graphtransfor-
mation systems are specified with term rewrite rules. The model checker evaluates
logical formulae of second-order modalµ-calculus in the automatically generated
Counterpart Model (a sort of unfolded graph transition system) of the graph transfor-
mation system under study. The result of evaluating a formula is a set of assignments
for each state, associating node variables to actual nodes.

Keywords: Maude, Quantifiedµ-calculi, counterpart semantics, verification, DPO

1 Introduction

Visual specification formalisms are nowadays used in almost the whole spectrum of software
and hardware development activities. In the particular case of analysis and verification activities,
visual specifications are complemented with appropriate property specification languages and
tools for checking and verifying properties. A prominent example are graph transformation
systems, temporal graph logics and the corresponding verification tools, which are used to reason
about the possible transformations in a graph topology.

Recent approaches [BCKL07] propose variants of quantifiedµ-calculi, resulting from a com-
bination of the fix-point and modal operators of temporal logics with monadic second-order logic
for graphs.These logics fit at the right level of abstraction for graph transformation systems: if
state systems are graphs, and state components are thus graph items, one is not only interested in
the topological structure of each reachable graph alone, but on its evolution as well.

Our own contribution to this trend of research was presented in [GLV10]. We introduced a
novel semantics for quantifiedµ-calculi. We considered a simple second-order syntax, and a
notion of semantic model calledcounterpart modelswhere states are algebras and the evolution
relation is given by a family of partial homomorphisms. Instantiating our approach on graph
transformation systems, states correspond to graphs and transitions correspond to the trace mor-
phism. One of the main characteristics of our approach is that open formulaeare interpreted over
sets of pairs(σ ,w), for w a state andσ an assignment overw (that is, a substitution associating
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formula variables to components of the statew). Our proposal avoids some limitations of other
approaches, in particular in what regards the treatment of merging and name reuse. In addition,
the resulting semantics is a streamlined and intuitively appealing one, yet it is general enough to
cover most of the alternatives we are aware of.

In this paper we present our first step towards a tool support for ourapproach. In particular, we
present first an implementation of graph rewriting as conditional rewrite rules on object multisets,
which allows us to compositionally specify concurrent systems in an object-oriented fashion.
Our system specifications are thus essentially graph transformation systems. Then we introduce
a prototypical model checker that can be used to check quantifiedµ-calculus formulae against
system specifications. As far as we know, our tool is one of the few modelcheckers for a
quantifiedµ-calculus and one of the few ones based on counterpart semantics, allowing for a
finer analysis of the evolution of individual components. Our work assesthe feasibility of our
approach, preparing the ground to build an efficient tool framework for verifying interesting
properties of system specifications, possibly expressed in graph transformation style.

This paper is organised as follows.§ 2 introduces a simple example.§ 3 describes the basics
of our approach, essentially an implementation of graph rewriting in Maude [CDE+07] to spec-
ify concurrent, multi-agent systems.§ 4 summarizes our approach to counterpart semantics of
quantifiedµ-calculi. § 5 sketches the implementation details of the key functionalities of our
prototype, which is put at work in§ 6 with some examples.§ 7 concludes the paper.

2 Running example

For a better illustration of our concerns, we consider the well known StableMarriage Prob-
lem [GI89] as running example. We recall that the problem consists in finding a stable matching
(i.e. a marriage) betweenn men andn women. Each individual has a preference ranking that
orders all other individuals of opposite gender from the most preferred one to the least preferred
one. A matching isstableif everyone is married, and there are not a man and a woman that
would prefer to be married to each other, rather than with their current partners.

We have considered a simple distributed algorithm for solving the problem. Individuals are
modeled as autonomous agents that communicate via asynchronous message passing in the form
of tuple space communication, i.e. the algorithm abstracts away from the communication net-
work, assuming that messages can be just delivered to the network indicating the receiver’s id
and can be picked up from the network with a sort of pattern matching. The distributed system
contains three classes of entities: men, women and messages.

Initially, no marriage or message exist and all agents are single. In Figure1 we give an intuitive
graphical representation of an initial state with two men and two women. In section 3, we will
better explain the format of the figure; intuitively, individuals and messagesare represented as
rounded boxes where the top frame contains the id and the sort (Male, Female or Message), and
the bottom frame is reserved for attributes. Relations like “being married with” and “the n th
individual in my ranking”, are graphically denoted with an edge going fromthe referring entity
to the referred one labeled with the name of the relation. An edge with labeln from a male with
id “m(i)” to a female with id “f(j)” express the fact that “f(j)” is in then th position of the ranking
of “m(i)”.
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Figure 1: A graphical representation of an initial state with two agents of each kind.

A man that is single always sends a message containing the marriage proposal to the (next)
preferred woman and waits for an answer. Women answer depending ontheir status and their
ranking. A single woman always accepts a proposal. A married woman refuses proposals from
men that are not preferred to their current partner. A married woman accepts the proposal from
a man if she prefers him to her current partner, and sends a message to her partner notifying him
that their marriage is broken.

When a man receives a divorce or a refuse notification, he becomes single and starts again
sending a marriage proposal to the next most-preferred woman (eventually restarting from the
most-preferred one). When a man receives an acceptance notification he gets married and re-
mains idle, waiting for eventual divorce notifications or the end of the algorithm. The algorithm
hence terminates when everyone is married, and terminates correctly if every marriage is stable.

An example of execution of such system is shown in Figure2. The figure shows a four-
step execution sequence, where states are displayed clock-wise startingfrom the top-left state:
s0,s1,s2,s3. The evolution relation of the system, represented in the figure as gray fatarrows, goes
from s0 to s1, from s1 to s2 and froms2 to s3. Intuitively, in states0 there are two single males
“m(1)” and “m(2)”, and two single females “f(1)” and “f(2)”. Ins1 “m(1)” sends a marriage
proposal to “f(1)” setting its own status to waiting. Ins2 “f(1)” accepts the proposal, sets its status
to married, and sends the notification to m(1). Finally, ins3 “m(1)” receives the notification, and
the marriage is established.

In the rest of the paper we shall see how this algorithm can be modeled in Maude in a language
based on graph-rewriting and how we can use Maude and our prototypical model checker to
verify some properties of the algorithm. Indeed, some of the properties like the correctness for a
given initial configuration can be verified with Maude’s default tools, whileothers like individual
mutual exclusion and response properties are directly verifiable in our tool only.

3 Graph rewriting with Maude

We have decided to rely our machinery on rewriting logic due to its well-developed theory based
on the idea of computation as logical deduction, its expressiveness and generality witnessed by
notable encodings of graph rewriting and programming languages, and its performant, easily ex-
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Figure 2: A graphical representation of a four step execution sequence.

tensible tool support. In particular, we will see that the configurations of our systems are terms of
a particular signature of object configurations which correspond essentially to attributed graphs.
The signature can be refined with concrete object classes, attribute typesand well-formedness
constraints that play the role of meta-modeling mechanisms such as type graphs. Last, the dy-
namics of a system is specified by rewrite theories, made in our case of rewrite rules in graph
transformation style.

A rewrite theoryR is a tuple〈Σ,E,R〉 whereΣ is a signature, specifying the basic syntax
(function symbols) and type machinery (sorts, kinds and subsorting) forterms, e.g. system
configurations;E is a set of (possibly conditional) equations, which induce equivalence classes
of terms, and (possibly conditional) membership predicates, which refine thetyping information;
R is a set of (possibly conditional) rules, e.g. graph rewrite rules.

The Maude framework [CDE+07] provides a language for describing such rewrite theories
and a tool built upon a rewrite engine for executing and analysing them. In the rest of the paper
we shall use Maude’s syntax, introducing the syntactic ingredients as we use them.

The signatureΣ and the equationsE of a rewrite theory form amembership equational theory
〈Σ,E〉, whose initial algebra isTΣ/E. Indeed,TΣ/E is the state space of a rewrite theory, i.e.
states (e.g. graphs) are equivalence classes ofΣ-terms modulo the least congruence induced
by the axioms inE (denoted by[t]E or t for short). Operators are declared in Maude notation
asop f : TL -> T [a] wheref is the operator symbol (possibly with mixfix notation where
argument placeholders are denoted with underscores),TL is a (possibly empty, blank separated)
list of domain sorts,T is the sort of the co-domain, anda is a set of equational attributes (e.g.
associativity, commutativity). We shall present a signatureΣ containing sorts and operators
for describing models as collections of attributed, interrelated objects (i.e. attributed graphs).
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Equations that cannot be declared as equational attributes must be treatedas functions defined by
a set of confluent and terminating (possibly conditional) equations of the form ceq t = t’ if

c, wheret, t’ areΣ-terms, andc is an application condition. When the application condition is
vacuous, the simpler syntaxeq t = t’ can be used. Roughly, an equational rule can be applied
to a termt’’ if we find a match fort at some place int’’ such thatc holds (after the application
of the substitution induced by the match). The effect is that of substituting the matched part
with t’ (after the application of the substitution induced by the match). One major advantage
of Maude is that it includes tools for checking confluence, termination and completeness of
equational logic specifications. The main equations of the theories we use allow us to treat
object collections as multisets of objects, i.e. modulo associativity, commutativity, and identity
(all treated as equational attributes), therefore axiomatising their graph-theoretic nature.

A membership predicate is of the formcmb t : T if c, wheret is a Σ-term of some su-
persortT’ of T andc is a predicate overt conditioning the membership statement. Roughly,
a membership predicate states that if we are able to match a termt’ with t such thatc holds
thent’ has sortT. Membership predicates provide a subtyping mechanism that we can use, for
instance, to check conformance wrt. to certain meta-model (e.g. typegraph).

Rewrite rules are of the formcrl t => t’ if c, wheret, t’ areΣ-terms, andc is an applica-
tion condition (a predicate on the terms involved in the rewrite, further rewriteswhose result can
be reused, membership predicates, etc.). When the application condition is vacuous, the simpler
syntaxrl t => t’ can be used. Matching and rule application are similar to the case of equa-
tions with the main difference being that rules are not required to be confluent and terminating
(as they represent possibly non-deterministic concurrent actions). Equational simplification has
precedence over rule application in order to simulate rule application modulo equational equiva-
lence. Rewrite rules can be used to program the behaviour of a system in adeclarative way (e.g.
in graph transformation style).

Graphs as object collections We summarize the previously mentioned algebra of object col-
lections that is used to represent models as attributed graphs. In our settinga system config-
uration is a collection of attributed objects. Maude already provides a signature for this pur-
pose, called object-based signature [CDE+07], which we tend to follow with slight modifica-
tions aimed to ease the presentation. Each object represents an entity (an individual component)
and its properties. Technically, an object is defined by its identifier (of sort Oid), it’s class (of
sort Cid) and its attributes (of sortAttSet). Objects are built with an operation< : |

> with functional typeOid Cid AttSet -> Obj. Object and Class identifiers will be defined
by ad-hoc constructors. For instance in our running example we use the operationm : Nat

-> Oid to use natural numbers to construct object identifiers for male individuals like m(1) or
m(2), and the constantsMale, Female andMessage of sort Cid to denote the classes of men,
women and messages, respectively. The attributes of an object define its properties and rela-
tions to other objects. They are basically of two kinds: datatype attributes andrelation attributes.
Datatype attributes take the formn: v, wheren is the attribute name andv is the attribute
value. For instance, in our running example we shall consider an attributestatus with domain
in {single,waiting,married} (constants of sortStatus), representing respectively whether a
person is single, is waiting for a response or is married. Similarly, we will consider an attribute
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Figure 3: A graphical representation of a state.

body with domain in{proposal,divorce,accept,refuse} (sort MessageBody) for denoting
respectively whether a message notifies a marriage proposal, a divorceor the acceptance or the
refusal of a marriage proposal.

As an example of an attributed object, consider figures1 and3, whose format is reminiscent
of the UML notation, with rounded boxes representing objects where the topframe contains the
object identifier and its class, and the bottom frame is reserved for datatypeattributes. Focusing
only on the datatype kind of attributes, the manm(1) on the top-left of Figure3 is denoted in
Maude syntax with< m(1) : Male | status: waiting >.

In a configuration, objects are interrelated. Relations between objects canbe represented in
different ways. A very intuitive approach is to use a reference (a termof sortOid) as value of
an attribute. So if an objecto1 has a relationR with objecto2, theno1 will be equipped with an
attributeR containingo2 in its value. Consider objects of classMessage, they have a sender and a
receiver. The messagemsg(1) of Figure3 is a marriage proposal sent from the manm(1) for the
womanf(1). The message is hence denoted as< msg(1) : Message | body: proposal

, from: m(1) , for: f(1) >. Note that each relation is graphically denoted in Figure3
with an arrow labelled with the name of the relation, which goes from the referring object to
referred one. Even more complex relations can be graphically denoted in the same intuitive way.
For example we represent the rankings of males and of females with an arrow labeled with the
position of the referred man (woman) in the ranking of the referring woman (man). An arrow
with labeln from a womanf(i) to a manm(j) hence indicates thatm(j) is in the n-th position
of the ranking off(i). A configuration can thus be thought of as a multi-sorted graph with
attributes, where nodes correspond to objects, node attributes correspond to datatype attributes
and labeled edges correspond to reference attributes. An object can be equipped with any number
of attributes. Actually, the attributes of an object form a set built out of singleton attributes, the
empty set (none) and union set (denoted with, ).

Object configurations are essentially sets of objects. The sort for configurations is calledConf
and its constructors are the empty configuration (none), singleton objects (asObj is declared as
subsort ofConf) and set union (denoted with juxtaposition). As an example the whole configura-
tion of Figure3 is denoted with

< msg(1) : Message | body: proposal , from: m(1) , for: f(1) >
< f(1) : Female | status: single , ranking: (m(1) |-> 1 , m(2) |-> 2) >
< f(2) : Female | status: married , ranking: (m(1) |-> 2 , m(2) |-> 1) ,

marriedWith: m(2) >
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< m(1) : Male | status: waiting , ranking: (f(1) |-> 1 , f(2) |-> 2) >
< m(2) : Male | status: married , ranking: (f(1) |-> 2 , f(2) |-> 1) ,

marriedWith: f(2) >

In order to distinguish a system configuration from the collection of objects that forms it, we
wrap object collections together into a system with operation<< >> : Conf -> System.

Graph rewrite rules To compositionally specify concurrent systems, we offer an object ori-
ented language, based on an implementation of the double pushout approach (DPO) to graph
rewriting: our systems can be hence seen as graph transformation systemsspecified by an initial
state and a set of term rewrite rules given in DPO style. The main idea is that each rule has a
left-hand side and a right-hand side pattern, each one composed by a setof objects (nodes) pos-
sibly interrelated by means of relation attributes (edges). In our tool we implement a two-level
rule scheme: at the lowest level we have a set oflocal rulesspecific for every system, while at
the top level we have a uniquely definedglobal rule that takes care of local rule application at
the global level.

A local rule can be applied to a model whenever the left-hand side can be matched with part
of the model, i.e. each object in the left-hand side is (injectively) identified with an object of the
model respecting its relations. The global rule can be applied to a model whenever a local rule
can be applied to part of the model and some additional application conditions hold, including
theno dangling edgescondition typical of graph transformation flavours like DPO. The choice
of DPO is arbitrary and not a restriction, as we could also mimick other styles bychanging the
rule format, e.g. following SPO as in [BHM09].

Following our counterpart approach to the semantics of second-orderµ-calculus proposed
in [GLV10], we do not implicitly identify elements of different systems, meaning that we do not
have an implicit unique domain of objects, instead we enrich the rules with a partial morphism
relating the objects matching the left-hand side pattern with the objects matching the right-hand
side pattern. This morphism amounts to the trace morphism in graph rewriting andis used to
intuitively express the preservation/renaming, deletion or fusion of objects, respectively if an
object is mapped, it is not mapped, or more objects are mapped in the same one.An object
appearing in the right-hand side pattern but not involved in the morphism is considered as a
newly created one.

Considering our running example, the sending of marriage proposals is formalized by the local
rule:

crl [makeProposal] :
< idM : Male | status: single , ranking: (idF |-> nt , rankM) ,

nextTry: nt , problemSize: size >
< idF : Female | attSet1 >

=> {morphism}(
< idM : Male | status: waiting , ranking: (idF |-> nt , rankM) ,

nextTry: (s(nt) rem size) , problemSize: size >
< idF : Female | attSet1 >
< {new(0)} : Message | body: proposal , from: idM , for: idF > )

if morphism := (idM |-> idM , idF |-> idF) .

In this simple rule, a single man sends a marriage proposal to the “next most preferred woman”.
The status and thenextTry counter of the involved man are hence updated, and a new object of
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Figure 4: A graphical representation for the rule “makeProposal”.

classMessage is created. The morphism also tells us that the man and the woman are preserved.
The rule is intuitively graphically represented in Figure4.

The global rule is instead defined as:

crl [global] :
<< conf remConf >> => {extMorphism} << conf3 conf4 >>

if conf => {morphism} conf3 /\
noDanglingEdges(morphism , conf , remConf) /\
extMorphism := extend(morphism,remConf) /\
conf4 := applyToConfiguration(extMorphism , remConf) .

The global rule rewrites a system composed by the configurationsconf and remConf into a
system composed by the configurationsconf3 andconf4, correlating the two systems by the
morphismextMorphism if 1) conf can be rewritten by a local rule in{morphism}conf3; 2)
morphism does not delete objects ofconf referred by objects inremConf (generating dangling
edges); and 3)conf4 is obtained applyingextMorphism to remConf, whereextMorphism is the
extension ofmorphism with the identities inremConf. In other words, the global rule implements
the pushout computation. Object creation is allowed and the consequent state explosion problem
is partly mitigated by using name reuse, one of the more characterizing features approach, which
allow us to deal with size bounded systems in case of systems with bounded resource allocation.

4 Counterpart Semantics for a Second-Orderµ-calculus

Many logics have been proposed to reason about the evolution of systems. In [GLV10] we in-
troduced our own contribution with a novel semantics for a second-orderµ-calculus based on
the Counterpart Theory proposed by Lewis and further developed in [Haz79]. Our proposal al-
lows for a simple definition of the semantical universe by means ofCounterpart Models, namely
Kripke Models enriched with partial homomorphisms between connected worlds, calledcoun-
terpart relations. Figure5 denotes with dotted lines the counterpart relation between the states
s1 (top-right) ands2 (bottom-right) of Figure2. Intuitively, everything is preserved except for
the message m(1) which is thus deleted and recreated evolving from states1 to states2. The two
messages are not related: they share the same name, but represent two distinct components. It is
important to notice that in the counterpart approach, the identifiers are local to the worlds they
belong to. In different worlds, the same identifier may represent distinct elements.
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Figure 5: A graphical representation of the counterpart relation between two states.

Standard Kripke models identify elements through different worlds (trans-world identity),
with implicitly defined identity morphisms, having as result a unique domain for the elements
of the worlds. The presence of the unique domain, which is indeed just a technical solution,
enforces restrictions of the evolution of states, making it difficult, or even forbidding to express
merging, renaming, creation and deletion of elements. Enriching our models withthe counterpart
relations we avoid these limitations. For example, two elements are merged if they are mapped
in the same element, while an element is a newly created one if it appears in the target state, but
it is not involved in the counterpart function. In this manner counterpart models are well suited
for modeling systems with dynamic structure. Moreover, since our semantics evaluates formulae
with variables as sets of variable assignments for each world, instead of just worlds as in propo-
sitional logics and some non-propositional ones, it allows for a straightforward interpretation of
fixed points and for their smooth integration with the evaluation of quantifiers, which are often
dealt with by restricting the class of admissible models to those with no name reuse or merging.
The resulting semantics is a streamlined and intuitively appealing one, yet it is general enough
to cover most of the alternative proposals we are aware of . Now we briefly recall the syntax and
semantics of our logic.

Definition 1 (Formulae) LetΣ be a signature (e.g. a signature for graphs),Z a set of fix-point
variables, andX, X (denumerable) sets of first- and second-order variables typed overΣ (e.g.
node and node set variables). The setFΣ of formulae of our logic is inductively generated by:

ψ ::= tt | ε : τ ∈τ χτ | ¬ψ | ψ ∨ψ | ∃xτ .ψ | ∃χτ .ψ | ♦ψ | Z | µZ.ψ

whereε : τ is a term overΣX of typeτ, ∈τ is a family of membership predicates typed overSΣ
indicating that (the evaluation of) a term with sortτ belongs to (the evaluation of) a second-order
variable with the same sortτ, andµ denotes the least fixed point operator.

We shall also derive the symbols∧ ,→ , ↔ , ∀, as well as well-known temporal operators like�
(all next steps),AG orAF (for all departing paths, always or eventually), and the greatest fix-point
operatorν derived asνZ.ψ ≡¬µZ.¬ψ [¬Z/Z], whereψ [¬Z/Z] stands forψ where all occurrences
of Z have been negated. Moreover, as it is standard, we restrict tomonotonicformulae, i.e. such
that each fix-point variableZ occurs under the scope of an even number of negations. This is
a sufficient condition for the fixed points to be well-defined. Note that the logic is simple, yet
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reasonably expressive. For instance, binary equivalence can alsobe defined as a derived operator,
namely,ε1 : τ =τ ε2 : τ is defined as∀χτ . (ε1 : τ ∈τ χτ ↔ ε2 : τ ∈τ χτ).

Our semantics does not evaluate naked formulae, butformulae in context, that is formulae
enriched with informations about the free variables appearing in them. The context of a formula
has two components:Γ and∆ containing respectively first- and second-order variables. Reminis-
cent of the semantics of temporal formulae over sets of constraints introduced in [GHK00], the
evaluation of a formula with context[Γ;∆] consists in a set of pairs(σw,w) where the domain of
σw, a variable assignment for the worldw, is defined exactly for the variables in[Γ;∆]. We indi-
cate withΩ[Γ;∆] the set of all the pairs of a model with assignments defined exactly for[Γ;∆]. The
evaluation of a formula with empty context is hence just a set

{

(λ ,w)
}

⊆ Ω[ /0; /0], for λ the empty
variable assignment over the worldw. Such an evaluation characterises a set of worlds, ensuring
that our proposal properly extends the standard semantics of propositional modal logics.

The formulae of our logic are evaluated againstcounterpart models, which can be intuitively
thought of as the graph transition system obtained by unfolding a graph transformation system.
Intuitively, a counterpart model contains the informations graphically encoded both in Figure2,
and in Figure5. Thus a counterpart model contains informations about the states of the system
and their internal structure, and informations about the accessibility relationbetween the states,
annotating explicitly the mappings between components of the distinct but connected states.

Definition 2 (Semantics) Letψ [Γ;∆] be a formula-in-context (e.g stating some properties about
the evolution of a graph), andM be a counterpart model (e.g. the state transition graph obtained
by unfolding a graph transformation system). The evaluation ofψ [Γ;∆] in M under the assign-
mentρ : Z → 2Ω[Γ;∆]

is given by the functionJ·Kρ : F [Γ;∆] → Ω[Γ;∆] defined as

Jtt[Γ;∆]Kρ = Ω[Γ;∆]

J(ε : τ ∈τ χτ )[Γ;∆]Kρ = {(σ ,w) ∈ Ω[Γ;∆] | σ(ε) ∈ σ(χτ )}

J¬ψ[Γ;∆]Kρ = Ω[Γ;∆] \ Jψ[Γ;∆]Kρ
Jψ1∨ψ2[Γ;∆]Kρ = Jψ1[Γ;∆]Kρ ∪ Jψ2[Γ;∆]Kρ
J∃xτ . ψ[Γ;∆]Kρ = 2↓xτ (Jψ[Γ,xτ ;∆]K(2↑x◦ρ))

J∃χτ . ψ[Γ;∆]Kρ = 2↓χτ (Jψ[Γ;∆,χτ ]K(2↑χ ◦ρ))

J♦ψ[Γ;∆]Kρ = {(σ ,w) ∈ Ω[Γ;∆] | ∃(σ ′,w′) ∈ Jψ[Γ;∆]Kρ . σ [Γ;∆]
 σ ′}

JZ[Γ;∆]Kρ = ρ(Z)
JµZ.ψ[Γ;∆]Kρ = lfp(λY.Jψ[Γ;∆]Kρ [Y/Z])

Note that in the evaluation of the membership predicate,σ(ε) denotes the lifting of the substi-
tution σ to the set of terms overΣX. In the evaluation of the quantifiers, we make use of the
functions 2↑x,2↑χ , 2↓x,2↓χ to respectively extend or restrict sets of pairs with the variablex or χ.
Restricting a subset ofΩ[Γ,x;∆] respect to a variablex we obtain a subset ofΩ[Γ;∆]. Specularly,
extending a subset ofΩ[Γ;∆] with a variablex we obtain a subset ofΩ[Γ,x;∆]. It is pivotal to require
that the assignmentρ for fix-point variables is extended to ensure a proper sorting ofρ(Z), since
it must now belong to the subsets ofΩ[Γ,x;∆] (Ω[Γ;∆,χ] in the second-order case). In the evaluation
of the modal operator, the “renaming” of values across worlds is ensured by requiring that the
assignmentsσ andσ ′ are in counterpart relation, meaning intuitively thatσ ′ respectsσ for the
variables in[Γ;∆]. Hence all elements ofw assigned byσ to the variables in[Γ;∆] are mapped in
w′ by the counterpart relation, respecting the operations on them. Thus, oursemantics discards
those worlds that are reachable but are not in counterpart with respect to the current context to
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avoid claims about non-existing elements (see [GLV10] for a detailed explanation).

5 Counterpart Model Generation and Model Checking

Our tool represents the first step towards a framework supporting our approach for the semantics
of second-orderµ-calculi introduced in [GLV10]. We developed it aiming at assessing the fea-
sibility of our approach providing a direct instantiation of it, leaving for future works concerns
about efficiency and usability. Given that the formulae of our logic have tobe checked against
counterpart models, we first focused on their generation, and then we developed a model checker
working on counterpart models.

Counterpart Model generation Counterpart models, as the well-known Kripke models, are
defined by a triple(W, d, RC) where,W is a set of worlds,d is a function assigning a set of inter-
related objects (a configuration) to each world inW, andRC is the accessibility relation between
worlds. Respect to Kripke models, accessibility relations in counterpart models are equipped
with partial homomorphisms, explicitly correlating elements of connected worlds.An entry of
RC has the form ofw(i) =morphism=> w(j) .

The procedure starts from a counterpart model containing only a world associated to an initial
state and the empty accessibility relation. Then it keeps adding states and entries of the accessi-
bility relation to the model up to completion of the state space. In particular, only twocases can
arise after the generation of a state: the state is not already in the model, in which case a new
world, the state and an accessibility relation entry are added to the model, or, inthe second case,
the state is already in the model, thus only the accessibility relation entry is added,if not already
present. These two cases are captured by the following conditional rules:

crl (( W (d,(wSource |-> sSource)) RC)) =>
(( (newWorld,W ) *** W

(d,(wSource |-> sSource), (newWorld |-> sDest)) *** d
(RC, wSource =morphism=> newWorld) )) *** RC

if sSource => {morphism}sDest /\
systemNotInD(sDest , (d,(wSource |-> sSource))) .

crl ( (W ((wSource |-> sSource), (wDest |-> sDest) , d) RC) ) =>
( ( W *** W

((wSource |-> sSource) , (wDest |-> sDest) , d) *** d
( wSource = morphism => wDest , RC) )) *** RC

if sSource => {morphism}sDest /\
notConnected(wSource, morphism, wDest, RC) .

It is worth to note that, the identification of syntactically identical states (equal graphs) is based
on the reuse of object identifiers which allows us to obtain finite counterpartmodels in systems
with bounded resource allocation. This happens, for instance in our example where the number of
objects around is always bounded by a constant due to the message consumption and generation
strategies. More powerful strategies based, e.g. on identifying symmetric states (isomorphic
graphs) are under study.

Considering our running example, the counterpart model is built with the command rew

initializeCTModel(<< initSMP(n) >>), whereinitSMP(n) generates an initial state withn
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males (and females), andinitializeCTModel generates the counterpart model containing only
the initial state.

Model Checking Given a counterpart modelM and an assignment for fix-point variables, our
tool evaluates the semantics of a second orderµ-calculus formula as the set of pairs(σw,w)

satisfying it, wherew is a world ofM, andσw a variable assignment forw defined exactly for the
variables in the context of the formula. In doing so we first defined the operationop valid taking
as arguments a formula in context, a pair, a fix-point variable assignment and a counterpart model.
The operation reduces to true if the pair validates the formula in context, falseotherwise. Finally,
we evaluate the semantics of a formula in context with the operationop [| |] , taking as
arguments a formula in context, an initial state of the system (from which the counterpart model
will be built), and an assignment for fix-point variables. Considering[Γ;∆] as context of the
formula, the operation generates all the pairs in the setΩ[Γ;∆], and adds to the semantics of the
formula only the ones for whichvalid is true.

6 Examples

The aim of this section is to illustrate the use of the tool to verify properties of theevolution of
software systems, focusing on properties of individuals. For the rest of this section we fix an
instance of our running example withn = 2, where all the people of the same gender have the
same ranking.

Individual response property. In the algorithm sketched in section2, people get married and
divorced with the aim of finding particular marriages. An interesting property is the one stating
that every time a male becomes single, he will later on become married. More formally, the
property can be expressed as “for all male, whenever the male is single, iteventually becomes
married”. We can express the property with the formulaψ

forall xMale(0). AG((status(xMale(0)) = status: single)
-> (AF(status(xMale(0)) = status: married)))

Using the reduce command of Maude, we evaluate the semantics ofψ with reduce [|ψ|]
<<initSMP(2)>> , empty. As result we obtain a set of pairs(λ ,w(i)) for all w(i) ∈W, whereλ is
the empty assignment. This tells us that the property holds in every state of the model.

Individual mutual exclusion. Other interesting properties regard the consistency of marriages.
A meaningful example is “is it possible for two males to claim to be married with the same
female?”, expressed by the formula

not(xMale(0) = xMale(1)) and (marriedWith(xMale(0)) = marriedWith(xMale(1)))

Evaluating the property we find out that it holds in a world of the model, with the following
assignment:

xMale(0) |-> < {m(2)} : Male | marriedWith: {f(1)}, ... >
xMale(1) |-> < {m(1)} : Male | marriedWith: {f(1)}, ... >
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This can seem an erroneous scenario, but actually it happens because of the asynchronous and
distributed fashion of the modelled algorithm: when a married woman accepts a new marriage
proposal, she sends a divorce notification to the former partner and an accept notification to the
new partner. In the case in which the accept notification is handled beforethe divorce one we
have two males claiming to be married with the same woman. The consistency is restored at
the next step, after the handling of the divorce notification. Different is the case in which we
check the same property, but from the females perspective, just substituting xMale with xFemale.
Evaluating the formula we obtain the empty set, meaning that it never happens in the model that
two females claim to be married with the same male.

7 Conclusions and further works

Quantified modal logics have been studied in the realm of description logics (e.g. [FT03]), graph
transformation (e.g. [BCKL07]), process algebras (e.g. [Cai04]) and model checking ([Ren06])
to cite a few. For a more comprehensive and detailed list we refer to [GLV10], where we also
describe the differences with respect to our approach. Here we just mention that, as far as
we know, graph transformation tools are not yet equipped with model checking capabilities for
temporal logic other than propositional ones. Amongst them GROOVE1 and AUGUR2 seem
the most promising one, since their authors have already produced interesting contributions to
the theoretical foundations of model checking systems with dynamic structureusing quantified
temporal logics [Ren06, Ren03, DKR04, BCKL07].

The present paper introduces our prototypical tool to verify temporal graph properties, ex-
pressed in a quantified temporal logic. Our tool is based in the semantics for second-orderµ-
calculus we introduced in [GLV10], which with respect to other approaches, allows for a simple
definition of the semantical universe by means of counterpart models. Theidea of associating to
(open) formulae sets of assignments, instead of just worlds, allows for a straightforward interpre-
tation of fixed points and for their smooth integration with the evaluation of quantifiers.

Our tool provides an instantiation of our approach, where formulae of our logic are checked
against system specifications described in a graph-based dialect of Maude. In particular, we
use a very popular Maude (sub)language for describing systems in a declarative, object-based
style which essentially corresponds to graph rewriting. Such specifications can be analysed with
Maude tools as usual, using for instance the critical pair analysis based confluence checker, the
reachability analyzer or the propositional LTL model checker. Our implementation provides a
finer model checker for formulae in a second-orderµ-calculus that allows to express more subtle
properties like individual mutual exclusion or individual request-response.

In its current form, the model checker generates the entire counterpartmodel for a given spec-
ification and checks formulae on it. That is, our model checker does not yet verify properties
on-the-fly, neither it does apply optimisation techniques based on symmetry orabstraction reduc-
tion. These issues are subject of current work as they could push ourapproach beyond its current
bounded model checking form.

1 http://groove.cs.utwente.nl/
2 http://www.ti.inf.uni-due.de/research/augur/
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