
Electronic Communications of the EASST
Volume 43 (2011)

Proceedings of the
4th International DisCoTec Workshop on

Context-aware Adaption Mechanisms for Pervasive
And Ubiquitous Services

(CAMPUS 2011)

Towards a Flexible and Evolvable Framework for Self-Adaptation

Lucas Provensi and Frank Eliassen

6 pages

Guest Editors: Gabriel Hermosillo, Russell Nzekwa, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Towards a Flexible and Evolvable Framework for Self-Adaptation

Lucas Provensi1 and Frank Eliassen2

1 provensi@ifi.uio.no
2 frank@ifi.uio.no

Department of Informatics, University of Oslo, Norway

Abstract: The growing complexity, scale and heterogeneity of software systems
boosted a great deal of research in the field of self-management and self-adaptation.
In general, current solutions are built as fixed frameworks, with rigid methodology,
models and tools that are best suited for their target application domain but can not
be easily applied in different domains. Furthermore, they lack the flexibility to let
the developer make decisions on how the adaptation engine should work and do not
consider the engine itself as a system subject to adaptation that can dynamically
evolve. In this work-in-progress paper we discuss the requirements of a more flex-
ible and evolvable framework for self-adaptation. We propose a conceptual model
for realizing this framework, showing its benefits with an application scenario.

Keywords: self-adaptive systems, engineering, software evolution, control loop

1 Introduction

Self-adaptive or autonomous systems are software systems that present one or more self-* prop-
erties (self-healing, self-optimization, self-protection). Those systems are structured as closed-
loops (often called adaptation loop or adaptation engine), which consist of a set of control tasks
sharing a knowledge base and interacting to achieve the goal of the self-* properties. The system
manages itself by continuously monitoring its internal state and external environment, analyzing
the data to detect undesired operational states, planning how to adapt the system and executing
the adaptation plan [KC03]. Despite the amount of work being done in the last years, there are
still many challenges involving the engineering of self-adaptive software systems [ST09], mostly
due to the difficulty of reusing the methods, techniques and tools offered by current frameworks
in different and ever-evolving application domains.

When designing a self-adaptive system, developers usually start with partial knowledge of the
application domain and are only able to elicitate an incomplete set of adaptation requirements.
Consequently, as the developer learns more about the application domain, he needs to mod-
ify (refine, enhance or correct) the self-adaptive behavior. Modifying the behavior is not only
constrained to the specification of a new set of adaptation goals, in some cases it may involve
changing the adaptation engine itself. Monolithic and rigid frameworks can become an obstacle
if, in a later development iteration, the set of adaptation methods, techniques and tools can not
satisfy new adaptation requirements. We refer to flexibility as how easily the framework can be
iteratively and incrementally modified to satisfy the needs of different stakeholders and reused
in different application domains.

1 / 6 Volume 43 (2011)

mailto:provensi@ifi.uio.no
mailto:frank@ifi.uio.no


Towards a Flexible and Evolvable Framework for Self-Adaptation

The flexibility has to do with static modifications, but sometimes these modifications need
to be dynamic. Consider, for instance, the monitoring task of the adaptation loop. It shares
resources (e.g. CPU cycles, network bandwidth) with the monitored system. Increasing the
amount of monitoring can reduce the availability of resources to the monitored system but, on the
other hand, decreasing it may imply in a less accurate and responsive adaptation. The problem
of finding the optimal amount of monitoring can not be solved statically, because it depends on
the dynamic conditions of the combined adaptation and adapted systems [BCNR10]. We use
the term evolvability1 as the ability of the framework’s adaptation engine to dynamically reason
about its operation and adapt itself according to new situations and requirements.

In this paper we present the requirements and a high-level description of what we believe
would be a more flexible and evolvable framework for self-adaptation. The rest of the paper
is structured as follows. In Section 2 we discuss the flexibility and evolvability requirements
of such a framework. Section 3 presents a conceptual model and discusses its implementation
as an adaptation middleware. Section 4 discusses the framework benefits using an application
scenario. Section 5 discusses related works. Finally, Section 6 concludes the paper and present
future works.

2 Requirements

One of the most advocated design principles for self-adaptive systems is the separation of con-
cerns between the application logic and the self-adaptive behavior. Although this principle is
related to reusability, in most frameworks it is realized as a monolithic external controller im-
plementing the adaptation logic, that can be reused in similar application domains. We argue
that a more fine grained separation of concerns is needed, changing the unit of reusability from
the adaptation loop as a whole to its individual control tasks. This idea is in conformance with
related works on the importance of making the control aspects of self-adaptive systems (control
tasks and their relationships) explicit during design and clearly traceable in the implementation
[MPS08]. We can synthesize this discussion in the following flexibility requirements:

FR - The adaptation engine should be designed as a closed-loop formed by a set of loosely
coupled control tasks, giving the developer the flexibility to 1) Specify the self-adaptive behavior
using his current knowledge and expertise and 2) Easily change the self-adaptive behavior and
methodology2 during the development life cycle, to reflect new knowledge and requirements.

As discussed in Section 1, some characteristics of the self-adaptive behavior have important
effects on the adapted system that can not be controlled statically. When the system is subjected
to new operating states, the qualitative properties of the self-adaptive behavior, such as cost,
safety and performance, can deviate significantly from the ideal and expected behavior [GEA06].
This uncertainty leads to the following evolvability requirements:

ER - The framework should provide the means to 1) Reason about the qualitative properties of
the adaptation loop as a whole and of its control tasks individually and 2) Modify the adaptation
loop dynamically according to new requirements or changes in its operating environment.

1 The term evolvability was taken from the evolutionary biology and is defined as the ability of a population to
generate and use genetic variations to respond to natural selection.
2 Methodology is used in this paper as the set of methods applied to describe and realize the self-adaptive behavior.

Proc. CAMPUS 2011 2 / 6



ECEASST

Control	
  
Task	
  

Inputs	
  

Outputs	
  

Knowledge	
  

has	
  

has	
  

requires	
  

Required	
  	
  
Control	
  Data	
  

Parameter	
  

Provided	
  
Control	
  Data	
  

Result	
  

(a) Control task

LocalTask:	
  
Monitoring	
  

RemoteTask:	
  
Planning	
  

LocalTask:	
  
Analyzing	
  

RemoteTask:	
  
Execu;ng	
  

Third-­‐PartyTask:	
  
Knowledge	
  Base	
  

Adapta;on	
  	
  
Loop	
  

LocalTask:	
  
Quality	
  Control	
  

BindingType:	
  
Pub/Sub	
  

BindingType:	
  
RMI	
  

BindingType:	
  
LocalBinding	
  

(b) Adaptation Loop Specification (ALS)

Figure 1: Abstract description of a control task (a) and an ALS example (b)

3 Description of the Framework

In this section we present an abstract description of our framework. Subsection 3.1 introduces
its conceptual model and shows how it fulfills the requirements presented in Section 2. In Sub-
section 3.2, we show how the framework can be implemented as an adaptation middleware.

3.1 Conceptual Model

The framework is based on exploiting a high-level specification of the self-adaptive behavior to
dynamically construct the adaptation engine and manage its evolution. Since the unit of reusabil-
ity is a control task, it is also the key concept in the design and the target of the engine self-
management. Figure 1(a) shows the control task abstraction. The required and provided control
data define the abstract type of the information consumed and produced by the task as part of an
adaptation loop (e.g. the analyzing task consumes monitored data and produces symptoms). The
result output refers to measurements (e.g. response time and memory footprint) and operation
results (e.g. exceptions) exposed by the task. The parameter input refers to parameters used to
adjust the task operation (e.g. sampling rate and time out). The required knowledge defines what
type of human-defined domain knowledge (e.g. utility functions and quality models) the task
works on (the knowledge itself can be described using independent languages).

The adaptation engine/loop in turn, is described as a set of interacting control tasks, as shown
in Figure 1(b). This adaptation loop specification (ALS) is the main input used by the frame-
work, driving the construction of the adaptation engine at load time and its evolution at runtime.
The control tasks in the ALS are decoupled and use an open binding interaction model. The
tasks can be implemented as different computational elements (objects, components or third-
party services) and independently deployed by the framework locally or remotely. The binding
type maps the abstract interaction to concrete operations of the chosen communication model
(local interface binding, RMI, publish/subscribe).

The requirements described in Section 2 are satisfied by the model as follows. The requirement
FR-1 is satisfied by making the required knowledge explicit, giving the developers the flexibility
to choose, according to their knowledge and expertise, what control tasks to use in the ALS.

3 / 6 Volume 43 (2011)



Towards a Flexible and Evolvable Framework for Self-Adaptation

To meet the requirement FR-2, at any development iteration, the self-adaptive behavior and
methodology can be changed, by respectively modifying the knowledge used by the tasks and
redesigning the ALS with new control tasks and knowledge types.

To fulfill the requirement ER-1, the result outputs of the control tasks can be used to calculate
the deviation of the current self-adaptive behavior (based on runtime measurements) from the
expected and ideal behavior (statically defined). To satisfy the requirement ER-2, the ALS
can be further extended with tasks created to control the main adaptation loop, as the Quality
Control task shown in Figure 1(b). These tasks can be implemented as simple controllers or as a
complex adaptation sub-systems, consuming the result outputs from other tasks and controlling
their behavior through their set of input parameters.

3.2 Middleware Implementation

The ALS is a high-level description of the adaptation process. We have considered a number
of description languages, including industry trends, such as BPEL 3 and BPMN 4, and also
more academic solutions, such as OWL-S [MBM+07]. Those languages can be used to both
describe and execute complex business processes. From our preliminary evaluation, OWL-S is
a more adequate solution considering its full support to ontologies and flexible grounding model
(supporting different interaction models). Using OWL-S API for Java 5, we were able to define
and execute a simple ALS using the standard service ontology offered by OWL-S. Later this
ontology can be extended to resemble the conceptual model introduced in Section 3.1.

A process execution engine, able to read and execute ALS, can be introduced as an extension
of an adaptation middleware, that can leverage its services, such as factories and registries, to
construct and execute the adaptation loop, as shown in Figure 2: First, the ALS and its required
knowledge are deployed into the middleware(1). Then, an adaptation manager parses the ALS
and starts the construction of the adaptation engine. The manager searches in a task registry for
third-party tasks matching the ones described in the ALS (2). In this example, it finds a match-
ing task (Knowledge Base) that supports the specified binding type (Pub/Sub). The required
knowledge is stored in the knowledge base (3). The specification of remote tasks is dispatched
to remote instances of the middleware (4). Finally, the managers in each middleware instance
creates the appropriate tasks and connects them using the specified binding type (5).

4 Application Scenario

To demonstrate the flexibility and evolvability of our framework we use a hypothetical scenario
of a multimedia application, where remote users can interact through real-time media streams.
For simplicity, we focus only on control aspects of the application and abstract implementation
details. We also assume that the developer has access to limited monitored information (e.g.
network latency, bandwidth availability, CPU usage and battery level) and has control over a
limited set of properties (e.g. the media temporal, spatial and qualitative dimensions).

3 Web Services Business Process Execution Language - http://www.oasis-open.org/committees/wsbpel
4 Business Process Modeling Notation - http://www.bpmn.org/
5 OWL-S API - http://on.cs.unibas.ch/owls-api/

Proc. CAMPUS 2011 4 / 6



ECEASST

Adapted	
  System	
  

Middleware	
  Instance	
  A	
  

Required	
  
Knowledge	
  

Adapta:on	
  Loop	
  
Specifica:on	
  

Monitor	
   Analyze	
  

Task	
  Registry	
  

RMI	
  
Broker	
  

Adapta:on	
  
Manager	
  

Knowledge	
  Base	
  
Pub/Sub	
  Broker	
  

Execute	
  Plan	
  RMI	
  
Broker	
  

Adapta:on	
  
Manager	
  Pub/Sub	
  

Broker	
  
Pub/Sub	
  
Broker	
  

Middleware	
  Instance	
  B	
  

1

2 3

4

55

Figure 2: Construction of the adaptation engine

The developer decides to start with a predefined ALS which requires only simple action poli-
cies. Using this ALS, he can write, for instance, an action policy to adjust the media frame rate
(action) delivered to the consumers according to the monitored network bandwidth availability
(condition). After experimenting with action policies, the developer observe that the policies can
not properly express trade-offs between the controlled properties. Trying to reach optimal oper-
ational states, he decides to exchange the policies with utility functions. With a rigid framework,
this decision would require major modifications to the adaptation engine and in some cases the
exchange of the middleware solution. With the proposed framework, the developer only needs
to exchange the analyzing and planning tasks of the ALS, and redeploy it together with the new
required knowledge (utility functions, quality model and quality predictors).

Considering that every user of the application is equally important and that they may be sharing
resources (e.g. network bandwidth), the goal of the system now is to find a feasible set of adap-
tation actions that maximize the utility of the application for all users. A centralized planning
solution may became non-scalable as the number of users grows, due to the time and resources
taken to evaluate all possible adaptation actions and find the best. Aware of this limitation, the
developer specify a utility function that describes the utility of the planning task as a function
of the number of users, the time taken to find a new plan and its optimality (decentralized al-
gorithms using only partial knowledge may find sub-optimal solutions). This utility function is
deployed together with a new ALS containing a simple quality control task (as the one shown in
Figure 1(b)). The new control task is dynamically created by the adaptation manager and now
the adaptation engine itself is also subject to self-adaptation.

5 Related Works

In this section we refer to a few related projects and their limitations compared to our approach.
In [MDL10], the authors propose a framework for developing systems of systems with autonomic
capabilities. The framework supports different types of adaptation policies (action, goal and
utility functions) and hierarchical cooperation between distributed managers. However, it does
not provide a model with loosely coupled control task or consider evolvability in terms of the
quality of the adaptation process. The framework proposed in [CK10], is based on opportunistic
composition of loosely coupled service-oriented control tasks. The opportunistic nature can deal
with unanticipated states but can also potentially lead to unwanted behavior. Furthermore, it

5 / 6 Volume 43 (2011)



Towards a Flexible and Evolvable Framework for Self-Adaptation

implies little visibility to the adaptation loop and limits the interaction to an event based model.

6 Conclusions and Future Work

In this paper, we presented our vision of a flexible and evolvable framework for self-adaptation,
where the self-adaptive behavior is built reusing different approaches for its constituent control
tasks and where the adaptation engine can evolve over time. We intend to refine the OWL-
S ontology used to describe the adaptation process and integrate our solution into an adaptation
middleware to demonstrate its feasibility. We are considering existing middleware solutions with
open architectures that can be easily modified and extended with a process execution engine, such
as QuA [GEA06]. We expect to apply the final framework to explore customized, decentralized
and evolvable approaches for self-adaptation to new large-scale application domains.

Bibliography

[BCNR10] D. Breitgand, R. Cohen, A. Nahir, D. Raz. On cost-aware monitoring for self-
adaptive load sharing. Selected Areas in Communications, IEEE Journal on
28(1):70 –83, 2010.

[CK10] R. Calinescu, M. Kwiatkowska. Software engineering techniques for the develop-
ment of systems of systems. Foundations of Computer Software. Future Trends and
Techniques for Development, pp. 59–82, 2010.

[GEA06] E. Gjørven, F. Eliassen, J. Aagedal. Quality of Adaptation. In 2006 International
Conference on Autonomic and Autonomous Systems, ICAS ’06. Pp. 9 –9. 16-18
2006.

[KC03] J. Kephart, D. Chess. The vision of autonomic computing. IEEE Computer 36(1):41
– 50, Jan. 2003.

[MBM+07] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci, K. Sycara,
D. McGuinness, E. Sirin, N. Srinivasan. Bringing Semantics to Web Services with
OWL-S. World Wide Web 10:243–277, 2007.

[MDL10] Y. Maurel, A. Diaconescu, P. Lalanda. CEYLON: A service-oriented framework
for building autonomic managers. In 2010 Seventh IEEE International Conference
and Workshops on Engineering of Autonomic and Autonomous Systems. Pp. 3–11.
2010.

[MPS08] H. Müller, M. Pezzè, M. Shaw. Visibility of control in adaptive systems. In Pro-
ceedings of the 2nd international workshop on Ultra-large-scale software-intensive
systems. Pp. 23–26. 2008.

[ST09] M. Salehie, L. Tahvildari. Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4(2):1–42,
2009.

Proc. CAMPUS 2011 6 / 6


	Introduction
	Requirements
	Description of the Framework
	Conceptual Model
	Middleware Implementation

	Application Scenario
	Related Works
	Conclusions and Future Work

