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Abstract: In MDE not only models but also metamodels are subject to evolution.
More specifically, they need to be adapted to correct errors, support new and/or
update language features. The direct consequence of such evolutionary steps com-
prises the problem of managing the co-evolution of existing model instances, which
may no longer conform to the new metamodel version. This model migration is
intrinsically complex and results in a time-consuming and error-prone process if no
adequate support is provided. For tackling this problem, we introduce a new tech-
nique to guide the user in solving migration issues in a step-wise manner. The aims
are manifold, notably the simplification of the migration specification, the reduction
of the effort for the evolver, the control of user intervention, and the optimization
of the migration execution itself by allowing in-place adaptation of the existing in-
stances.

Keywords: Metamodel evolution, model co-evolution, in-place transformations

1 Introduction

In Model-Driven Engineering (MDE) not only models but also metamodels are subject to evo-
lution. Especially, when domain-specific modeling languages are employed, the necessity of
language adaptations arise to reflect changes in the modeling domain as well as in technolo-
gies without losing existing models. In multi-paradigm modeling, a necessary consideration is
the transformation of models from one paradigm (e.g., modeling language, or semantics) into
another, requiring further consideration of the impact of multi-paradigm use if one modeling
language must be updated for some reason.

Figure 1 illustrates the context of this paper at a glance. Full arrows are transformations,
dashed arrows indicate conformance (i.e., that a model conforms to the language constraints).
After evolution ∆ of a metamodel MML, the goal is to migrate models m, which conform to
MML, to m′, which conform to MML′ , by creating a suitable migration M. Thus, (i) dedicated
co-evolution languages, like COPE [HBJ09] and (ii) the usage of model-to-model (M2M) trans-
formation languages [CDEP08] have been proposed to migrate models. However, in the first case
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a new language must be learned, and in the second case, a heavyweight technique is used. Cur-
rently, there is no approach for step-wise migration of models in combination with systematically
modeling the evolution (ensuring that the migrated models conform to the new metamodel).

MML MML'

m m'

Δ

Figure 1: Models m
have to be migrated
when MML evolves.

In this paper, we introduce a new approach to guide the user in
solving co-evolution issues in a structured, step-wise manner. First,
we employ existing in-place transformation languages. As opposed
to M2M transformations, in-place transformations are transformations
that change the input model instead of creating an output model from
scratch [KMS+09]. Second, we distinguish between syntactic and se-
mantic migration. For syntactic migration, the goal is to make model
instance syntactically conform to the new version of the metamodel.
Semantic migration requires manual adaptation from the evolver, as
language constructs’ meaning may have changed. Third, for dividing-
and-conquering the co-evolution process, we formalize metamodel
evolution as a difference model consisting of a sequence of simple
difference operations. For each difference operation or meaningful group of difference oper-
ations (defined by the evolver), a migration is either automatically generated or adapted by the
user. Fourth, in computing a specific merged metamodel (at each step) to allow in-place transfor-
mations, we can ensure that each mi conforms to MMi, thus after all steps each migrated model
m′ always conforms to the MML′ .

The benefits of this technique are manifold, notably: the simplification of the migration speci-
fication by reusing the well-known graph transformation formalism of in-place transformations;
the ability to express every possible evolution and migration by allowing graph transformation
techniques; the reduction of the effort for the user by reusing generically applicable migration
rules; the control of user intervention by automated preventive and corrective mechanisms to
validate that models conform to the language in each migration step; and the optimization of the
migration execution itself by allowing in-place adaptation of the existing instances.

2 Example

In order to illustrate our approach, we first introduce an evolution scenario on the RailRoad
domain-specific language. A RailRoad model is shown in Figure 2. The model can be used to
analyze the behavior of trains riding on the modeled railtrack.

Figure 2: An example Rail-
Road model.

A RailRoad model consists of track elements, on which trains
can ride. These elements can be either rails, which point to one
other element on the track, or junctions, which point to two dif-
ferent elements on the track. In this example, two trains are riding
on a track with one junction, and one train is not located on the
track. The syntax of the RailRoad language is captured in its
metamodel, shown in Figure 3a. A Train can be located On a
TrainPlace, which can be a Rail or a Split. Rails have one Link to
another TrainPlace, Splits have two. These links are obligatory,
so a RailRoad circuit is always closed.

Proc. MPM 2010 2 / 13



ECEASST

SplitLink
<<Connection>>

Link
<<Connection>>

TrainPlace
<<Model>>

On
<<Connection>>

Train
<<Atom>>

Split
<<Model>>

Rail
<<Model>>

src
0..1

dst
0..1

dst 0..*

dst
0..*

src 1 src 2

(a) Existing metamodel.
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(b) Evolved metamodel.

Figure 3: (a) The existing metamodel, and (b) the evolved metamodel, both modelled in GME.
Class stereotypes indicate the type of model that will be instantiated in the language.

Suppose that over time, some changes have been applied to the
metamodel. Five requirements are implemented. For each requirement it is stated how existing
models should be migrated:
• Split has been renamed to the more intuitive “Junction.” In the instance models, each exist-

ing Split has to become a Junction;
• Trains must be on a TrainPlace now. In the instance models, Trains that are not located on

a TrainPlace have to be removed;
• a notion of direction is added: instead of two outgoing SplitLinks, a Junction now has a

LeftLink and RightLink direction. In the instance models, the two outgoing links to Train-
Places must be replaced with a LeftLink and RightLink link. The choice of left and right is
made randomly;
• a notion of track length has been added to a Rail. In the instance models, Rails have a length

of 1, the default length;
• a RailStation is introduced as a new kind of Rail. In the instance models, Rails with more

than one incoming Link or SplitLink are interesting places to build a RailStation.
The resulting metamodel is shown in Figure 3b1. In the remainder of this paper, this evolution

scenario will be used to illustrate our structured migration approach.

3 Approach

Whenever a change ∆ is operated on a metamodel, a corresponding migration M should be
operated on the existing instances. The creation of migration transformation is closely related to
the changes on the metamodel however. Therefore, this section starts off with an elaboration on

1 The field attribute for length is a type-safe integer, though this is not shown in the diagram due to the concrete syntax
choices of the GME (Generic Modeling Environment) metamodeling paradigm
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the difference model, which is a structured representation of the changes. Next, the creation of
the migration transformation is presented.

3.1 Difference model

A number of works proposed the classification of metamodel changes with respect to the effects
observable for migration [GKP07, CDEP08]; in particular, the changes could require either no
migrations of the instances (non-breaking operations), or simple migration adaptations (breaking
and resolvable operations), or complex migrations which possibly require user input (breaking
and unresolvable operations). If no user input is required, then the operation is resolvable; if
a user must specify details of the operation, then it is unresolvable. As migration is directly
linked to the metamodel changes, the migration transformation can be created from a difference
model representing the evolution of the metamodel. In turn, the difference model is a sequence
of difference operations, each of which mapping onto a corresponding migration operation, as
summarized in Table 1.

Difference operation Migration operation
Non-breaking operations
Generalize metaproperty None
Add non-obligatory metaclass None
Add non-obligatory metaproperty None
Extract superclass None
Breaking and resolvable operations
Eliminate metaclass Eliminate instances
Eliminate metaproperty Eliminate instances
Push metaproperty Eliminate properties from superclass instances
Flatten hierarchy Eliminate superclass instances
Rename metaclass Change instances
Rename metaproperty Change instances
Breaking and unresolvable operations
Add obligatory metaclass Add default instances
Add obligatory metaproperty Add default instances
Pull metaproperty Add default properties for superclass instances
Restrict metaproperty Remove instance if non-compliant

Table 1: Difference operations based on [CDEP08], with their migration operations.

The evolutions listed in Table 1 represent manipulations that typically occur on a given meta-
model, like the addition of a new metaclass (Add non-obligatory metaclass), the deletion of
an existing metaattribute (Eliminate metaproperty), the rename of an element (Rename meta-
class/metaproperty), and so forth. Beside such primitive operations, the table also lists complex
evolutions like Flatten hierarchy (eliminating a superclass and adding all its properties to the
subclasses) or Generalize metaproperty (relaxing the cardinality of a property); in those cases,
the evolution could also be seen as the composition of simple changes, but it reaches its full
meaning when considered as a single adaptation step. For instance, Flatten hierarchy flattens the
metaclasses involved in a generalization relationship by moving all the existing metaattributes
in a selected surviving metaclass and by eliminating all the remaining metaclasses and gener-
alization relationships. Analogously, Pull metaproperty moves a metaproperty from a set of
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subclasses to their corresponding superclass. It is important to note that all possible changes
to a metamodel can be represented by the difference operations of Table 1. If the metamodel
contains static semantics, in the form of e.g., OCL constraints [Obj10], similar operations can be
contrived; however, this is left for future work, and is outside the scope of this paper.

The classification proposed above highlights the criticality of the metamodel evolution de-
tection and representation in order to achieve a profitable migration of the existing instances.
Currently, (meta-)model comparison is an active field of research; it is an intrinsically complex
task since it has to deal with graph isomorphisms, i.e., with the problem of finding correspon-
dences between two given graphs. In this paper we assume that the metamodel evolution, i.e., ∆

in Figure 1, is given, as reflecting the developer intentions, in terms of the operations classified
in Table 1: it could be obtained as directly traced from a tool, or encoded by hand. For our
approach, both techniques are applicable.

When the difference operations of Table 1 are used for the change ∆ of the RailRoad example,
this results in the difference model in Table 2, which is a sequence of method calls. The dif-
ference operations are instantiated as method calls, based on the operations of [HBJ09], which
are predefined migration operations that take some parameters as input. When such a method is
executed on the metamodel, the change is applied. Note that operations δ3, δ4 and δ5 represent
the replacement of SplitLink to SplitLeft and SplitRight. Other representations, such as proper
difference languages [CDP07], can be used as well in our approach.

nr. Operation
δ1 RenameMetaElement(Split, “Junction”)
δ2 RestrictMetaProperty(Train.On, 1, 1)
δ3 EliminateMetaProperty(Junction.SplitLink)
δ4 AddNonObligatoryMetaProperty(Junction, TrainPlace, “LeftLink”, 1, 1, 0, -1, False)
δ5 AddNonObligatoryMetaProperty(Junction, TrainPlace, “RightLink”, 1, 1, 0, -1, False)
δ6 AddObligatoryMetaProperty(Rail, “length”, Integer, 1, 1, 1)
δ7 AddNonObligatoryMetaClass(”RailStation”, [Rail], False)

Table 2: The difference model ∆ of the RailRoad evolution.

3.2 Migration of Instance Models

In this section it is explained how the instance models are migrated. With our approach, we
aim at a high degree of automation, a high degree of control, and high execution performance.
Automation will reduce the effort for the modeller, thus increase productivity. Control will
increase correctness of the migration process as well as facilitate the migration process for the
evolver. Performance will affect scalability, or the time to migrate a number of instance models
(out of the scope of this paper, but still a function of the automation and control). The migration
process consists of three phases: automated synthesis, manual adaptation and execution.

3.2.1 Synthesis

In the first phase, we synthesize migration transformations from difference operations. This is
done automatically, by generating an instance of the default migration transformation for each
difference operation corresponding to Table 1. Note that the default migration transformation can
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be None, i.e., the identity transformation. Moreover, despite a metamodel manipulation could
entail multiple migration policies, in general the default one is fixed once for all due to coher-
ence purposes. The left part of Figure 4 shows the evolution ∆ of the RailRoad example, split up
into the seven δi, as shown in Table 2. In this step-wise approach, the metamodel MML evolves
to MML′ , over intermediate metamodels MMi. For each δi, a µi is synthesized by applying the
transformation G. Technically, G is a higher order transformation, because it takes transforma-
tion models instead of instance models as input or output [TJF+09]. The instance model m is
migrated accordingly to m′. In this case, MM7 = MML′ and m7 = m′. The right side shows one
generic migration step, where a metamodel MMi−1 evolves to MMi by applying one difference
operation. mi−1 is migrated accordingly.

MML MML'

δ1 δ2 δ3 δ4 δ5 δ6

m m'
μ1 μ2 μ3 μ4 μ5 μ6

Δ

Μ

G G G G G G

MM1

m1

MM2

m2

MM3

m3

MM4

m4

MM5

m5

δ7

μ7

G

MM6

m6

(a) Transformation Synthesis

MMi-1 MMi

δi

m m
μi

g
i

i-1 i

(b) Single-step

Figure 4: (a) Synthesis of migration transformation µi. (b) A generic migration step. A common
transformation G generates each µi based on the properties of MMi, MMi+1.

MM_1-2::Train
o

G

δ : RestrictMetaProperty(Train.On, 1, 1)

amount = Size(obj.<feature>)
return amount > <upperBound>
      or amount < <lowerBound>

amount = Size(obj.On)
return amount > 1
      or amount < 1

2

MM_<v  -v >::<class>i-1 i

obj obj

Template RestrictMetaProperty μ2

Figure 5: Creating a migration transformation µ2 from difference operation δ2 and a transforma-
tion template using merged metamodel MM1,2.

Figure 5 shows an example of the synthesis of the migration operation µ2. The migration
operation is created from difference operation δ2 (shown on top) and the template (shown on
the left). The template for the migration operation for the “restrict metaproperty” difference
operation is shown. The template specifies the default migration behavior: instances that do not
conform to the evolved, more restricted, metamodel are removed. Removal is denoted by the
“X” symbol on the element. The generic template of the migration transformation rule on the
left side is completed with the information provided by the parameters of the difference operation
on the top side. The resulting migration transformation rule on the right side deletes Trains that
do not have exactly one On link. Note that the resulting rule is an in-place transformation rule,
and no model-to-model transformation. The in-place transformation captures only the essence
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of the migration problem, lowering the degree of accidental complexity.
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RightLink
<<Connection>>

LeftLink
<<Connection>>

Link
<<Connection>>

On
<<Connection>>

Junction
<<Model>>

Rail
<<Model>>

TrainPlace
<<Model>>

Train
<<Atom>>

0..1

src 1

dst
0..*
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1

dst 0..*

src 1

dst 0..*
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Figure 6: The merged metamodel
MM5,6 used for µ6.

In order to allow in-place transformation, the meta-
models of the source- and target models must be the
same. In our case, the metamodels MMi−1 and MMi

are very similar but not the same. Therefore, we
merge both metamodels into one metamodel MMi−1,i,
to which models mi−1 as well as models mi conform.
MMi−1,i can be automatically generated from MMi−1
and δi, so that MMi−1,i = merge(MMi−1,δi): initially,
MMi−1,i = MMi−1. If δi is additive, the change is ap-
plied to MMi−1,i. If δi is subtractive, the to be deleted
element is kept in MMi−1,i. If δi is updative, the updated
version is added to MMi−1,i without removing the old
version. No matter what kind of change, the metamodel
is “relaxed” so that all possible mi−1 and mi conform to
MMi−1,i. This is in particular important for obligatory changes, which are made non-obligatory
in the merged metamodel by relaxing the cardinality of the involved associations. Figure 6 shows
the merged metamodel MM5,6 that is used for the migration transformation µ6 that implements
the introduction of the Length attribute. Notice that all changes δ1 to δ5 are already carried
through, as migration step 6 is reached. δ7 is disregarded for now, as this step is not reached
yet. δ6 is an additive change, so the new element, i.e., the Length feature, is added to the merged
metamodel. Additionally, the cardinality is relaxed so that the Length feature is not obligatory.

Once the default migration operation is synthesized for each δi, the instance models m can be
migrated by executing the sequence of in-place transformations M = µi ◦ µi−1 ◦ ... ◦ µ2 ◦ µ1 of
Figure 4a. By construction, the resulting m′ = M(m) will syntactically conform to MML′ .

3.2.2 Manual adaptation

Technically, the first phase fulfills the requirement for co-evolution, namely ensuring that the
new models conform to the new language. Syntactic migration is thereby accomplished. In
the RailRoad evolution, however, there are also cases of semantic migration. Examples are
the introduction of the notion of direction and the introduction of the RailStation. Semantic
migration is done during the manual adaptation phase.

In this phase, each δi and corresponding default µi are one by one presented by the evolver.
For each µi, the evolver can choose from four possible actions:
• keep the default µi. If the evolver is satisfied with the default µi, nothing has to be done

for this step. This action is typically applied for non-breaking or breaking and resolvable
changes;
• edit the default µi. The evolver might be satisfied with the structure of the default µi,

but might wish to alter µi slightly to µ
′
i . This action is typically applied for breaking and

resolvable changes or breaking and unresolvable changes;
• group the current µi with following µi+1. In some cases, a number of difference opera-

tions can be grouped as one conceptual change, requiring one µ
′
S (with S a sequence of

consecutive indices) for two or more difference operations;
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MML MML'
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Figure 7: The step-wise migration after the manual adaptation phase.

• create a tailored migration for the corresponding difference operation. If the evolver has a
migration transformation in mind that is completely different than the default one, he/she
can create his/her own. The action is typically applied for non-breaking (if the evolver
actually wants to migrate instead of doing nothing) or breaking and unresolvable changes.
Note that by first grouping and next creating, the original µi and µi+1 are replaced by one
µ
′
i,i+1 that covers both the migration of δi and δi+1. Also note that so-called model specific

migration can be introduced here, requiring user input at migration time [HBJ09].
Figure 7 shows the result of the RailRoad migration after the manual adaptation phase. µ1, µ2

and µ6 are kept, µ
′
7 is created manually and δ3, δ4 and δ5 have been grouped (introducing the

notion of direction) and µ
′
3,4,5 is created manually.

Figure 8 shows the custom migration transformation µ
′
3,4,5. Two SplitLinks are replaced by a

LeftLink and a RightLink, which covers the migration of the three changes δ3, δ4 and δ5.

sl1
RailRoad-original::SplitLink

left
RailRoad-evolved::LeftLink

split
RailRoad-original::Split

tp2
RailRoad-original::TrainPlace

sl2
RailRoad-original::SplitLink

right
RailRoad-evolved::RightLink

tp1
RailRoad-original::TrainPlace

srcLeftLink
0..*

dstSplitLink
0..*

dstLeftLink 0..* dstRightLink 0..*

dstSplitLink
0..*

srcRightLink
0..*

srcSplitLink
0..*

srcSplitLink
0..*

Figure 8: The customized migration transformation µ
′
3,4,5 introducing the notion of direction. In

this transform, items with a check are created, and items with an X are removed from the models.

A new problem arises when allowing the evolver to manually create migration operations.
After this phase, it cannot be guaranteed anymore that m′ conforms to MM′, as the evolver is
allowed to implement anything he/she wants in the customized migration transformations. In
our framework, we offer a solution to uphold this guarantee by providing maximal control over
the creation of the migration operation, while still offering full expressiveness. This control is
provided by two mechanisms, a preventive mechanism and a corrective mechanism: Restricted
metamodel: as a preventive mechanism, it is only allowed to use language constructs of the
corresponding difference operation(s) when editing or creating a µ

′
S (with S a sequence of one or

more consecutive indices, though in many cases this is just one index x, as suggested in Figure 7).
This means that we consider only a part of the total evolution for this migration, particularly
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MMmin(S)−1 to MMmax(S) (in the case of |S| = 1 this would be MMx−1 to MMx), as intended by
the step-wise migration. Again, changes of a previous evolution step δi with i < min(S) are
considered carried through, and changes any future evolution step δ j with j > max(S) are not yet
considered at all. For example when creating µ

′
3,4,5 in Figure 7, the changes δ1 and δ2 are carried

through, and changes δ6 and δ7 are disregarded for now. Only for changes δ3, δ4 and δ5, will a
migration transformation be created, aiding transformation modularity.

Technically, this degree of control is achieved by merging the metamodels MMmin(S)−1 and
MMmax(S) into a merged metamodel MMmin(S)−1,max(S). This way, an in-place transformation can
be created. Since in this context it is possible that a µ

′
is created for more than one δ , the merged

metamodel can include more than one δ . The merging algorithm described above can be used
recursively. For example if S = (3,4,5) then MM2,3,4,5 =merge(merge(merge(MM1,δ2),δ3),δ4)
is the metamodel used in the µ

′
3,4,5 in-place transformation. MM2,3,4,5 is shown in Figure 9.

Notice the cardinality relaxation of SplitLink, LeftLink and RightLink;
Checkout transformation: as a corrective mechanism, full model conformance is ensured of

the partly migrated instance model to the partly evolved metamodel in the checkout transforma-
tion γ . This step is automatically achieved in our approach by applying the default migration
transformations of the difference operations immediately after the customized migration step,
i.e., γi ◦µ

′
i . After all, the default migration transformation is constructed so that its output mod-

els are syntactically correct. This way, e.g., instances of deleted metaclasses that are by accident
not deleted by the customized migration transformation, are deleted by the checkout transfor-
mation, thereby ensuring conformance to the partly evolved metamodel. Typically however, the
evolver has designed his/her customized migration transformation so that model conformance is
already ensured. The checkout transformation merely validates conformance in the general case.

M is composed of usual transformation models, is stored as any other transformation model.
Thus, future instance models conforming to the old version can be migrated later.

3.2.3 Execution

Junction
<<Model>>

SplitLink
<<Connection>>

RightLink
<<Connection>>

LeftLink
<<Connection>>

Rail
<<Model>>

On
<<Connection>>

Link
<<Connection>>

Train
<<Atom>>

TrainPlace
<<Model>>

src
1

src
0..2

src 0..1

dst
0..1

src 0..1

dst
0..*

dst 0..* dst 0..*

src 1

dst
0..*

Figure 9: The merged metamodel MM2,3,4,5
used for µ

′
3,4,5.

At first glance, the execution of the migration suite
M is straightforward. On all instance models m, M
is applied. More specifically a sequence of in-place
transformations, like µi, µ

′
j and γ j, are applied in

the given order. The ad hoc execution is not op-
timal however: in order for each of the in-place
transformations to be executed, the instance model
must be converted to that particular merged meta-
model of the step. After execution, the result must
be converted to the partly evolved metamodel. For
example, a model m5 conforming to MM5, must
be converted first to MM5,6. Then, the in-place
transformation µ6 can be applied, and the result-
ing model must be converted to metamodel MM6.
These conversions are trivial: a simple search/replace script on the data file of the instance model
or a trivial transformation that implements a one-to-one mapping of elements can be automat-
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ically generated. However, this can cripple the execution performance of the migration. In
Figure 10, a conversion is needed every time a different metamodel is used (i.e., a grey verti-
cal line is crossed) throughout the execution of M. The top of Figure 10 represents the naive
execution, requiring many conversions.

As a solution, after creation of migration transformation M, the different metamodels used in
the in-place transformations are relaxed to the merged metamodel that spans all δi in ∆. All pos-
sible instance models throughout all migration steps can be expressed in the resulting metamodel
MM∆. Every in-place transformation’s used metamodel is changed to MM∆. Of course, this has
to be done only once for M instead of for all instance models. With this optimized approach, an
m that needs to be migrated only has to be converted twice: before applying the in-place trans-
formations of M, and after applying the in-place transformations of M. In between, all artefacts
use the same metamodel MM∆, and only in-place transformations are applied. The bottom of
Figure 10 represents the optimized execution. The absence of model-to-model transformations
adds to the execution performance of the migration because after evolution, it is probable that
models only change slightly, if at all. If the evolver is confident in his/her customized migration
transformation, he/she has the option to disable the execution of the checkout transformations,
further improving the execution time of M.

m m'
μ1 μ2 μ'3,4,5 μ'7

m1 m2 m5

μ6
m6

γ3 γ4 γ5 γ7

M
M
1

M
M
L

M
M
0,
1

M
M
1,
2

M
M
2

M
M
2,
3,
4,
5

M
M
5

M
M
5,
6

M
M
6

M
M
6,
7

M
M
L
'

m m'
μ1 μ2 μ'3,4,5 μ'7

m1 m2 m5

μ6
m6

γ3 γ4 γ5 γ7

M
M
L

M
M
Δ

M
M
L
'

Figure 10: The naive execution needing a lot of conversions (top) and the optimized execution
needing only two conversions (bottom).

4 Related Work

Co-evolution has been subject for research since the introduction of object-oriented database sys-
tems [BKKK87], consequently a significant body of knowledge exists (cf. [Rod92] for a survey)
how to migrate data with the goal of preserving as much information as possible. However, in
modeling language evolution, the changes to model semantics adds a new “twist” to problems
faced in database schema evolution. In this section we focus on most closely related approaches
dedicated to reflecting changes of metamodels on models.

Sprinkle et al. [SK04] considered co-evolution of models by using changed semantics to de-
sign co-evolution transformations. This differs from a syntactically driven approach that uses
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the metamodel deltas. In that work as well as in [SGM09], the authors proposed that syntactical
co-evolution (where the importance is only to load, but not interpret, the models) is feasible auto-
matically, but it seems to be impractical for semantic evolution. In the general case of semantic
evolution concerns, semantics-preserving transformations must be developed by language en-
gineers manually, based on their understanding of the semantic intent of the original models.
However, for specific cases, semantically-preserving co-evolution transformations are possible.
In this work, we are following this distinction by proposing an approach based on in-place graph
transformations (1) for providing predefined transformations for syntactical migration and (2)
for developing specific transformations for semantical migration.

There are several approaches for co-evolution which are based on M2M transformations.
Garces et al. [GJCB09] proposed a set of heuristics to automatically compute differences be-
tween two metamodel versions in order to adapt models. The computed differences are stored
in a so-called matching model, acting as input for a higher-order transformation (HOT), produc-
ing a migration transformation. Cicchetti et al. [CDEP08] presented a similar approach, i.e.,
the approach is again based on a metamodel differences acting as input for a HOT. In [Wac07],
Wachsmuth proposed to combine ideas from object-oriented refactoring and grammar adaptation
to provide the basis for automatic (meta)model evolution. In this respect, metamodel relations
are defined based on M2M transformations, building the basis for the definition of semantics
preservation and instance preservation. Gruschko et al. [GKP07] tackled co-evolution of mod-
els by using M2M transformations by following a conservative copying algorithm. Conservative
copying means that for initial model elements for which no transformation rule is found a default
copy transformation rule is applied. This algorithm is implemented in model migration frame-
work Flock [RKPP10]. In [NLBK09] the Model Change Language (MCL) is introduced. MCL
is declarative and graphical language supporting a set of co-evolution idioms and conservative
copying. Co-evolution rules going beyond the supported idioms have to be defined in terms of
C++ code. Most of the mentioned M2M-based approaches intend to shield a user from creat-
ing standard copy rules by providing matching techniques or conservative copying techniques.
However, the non-automatically derivable parts have to be manually defined which seems to be
more challenging for the user compared to using in-place transformations. This is due to the
fact that the user has to reason on how elements look like in the source model, how elements are
represented in the target model, and how they are transformed by analyzing the trace informa-
tion enforcing the user to work with three models. In contrast, in our approach, only one model
is necessary for defining the co-evolution rules by using our unified metamodel in combination
with in-place transformations.

Herrmannsdoerfer et al. proposed COPE [HBJ09] for specifying the coupled evolution of
metamodels and models. The co-evolution of metamodels and corresponding models is realized
by a set of so-called coupled transactions, composing a whole co-evolution problem of modular
in-place transformations. Although the main goal of COPE is similar to ours, there are several
differences in the realization. We tackle co-evolution of models by employing well-known graph
transformation languages, rather than using a model evolution language. Like COPE, we utilize
an incremental evolution approach, refraining from a single evolution process. However, our
incremental process is supported by computing intermediate merged metamodels, thus we allow
to model the migration of models by ensuring all metamodel constraints. Although the automated
synthesis of the intermediate metamodels gives up some control, it provides an ability to verify
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well-formedness, and differs from the metamodel-independent representation of models used in
COPE, which lacks the possibility for intermediate validation.

5 Conclusion

This paper presented a technique to deal with metamodel evolution and model co-evolution; de-
spite the problem is an active field of research and a number of solutions have been proposed,
several difficulties still demand for being alleviated. In particular, it has been illustrated a mech-
anism based on in-place migrations to reduce the accidental complexity of transformation design
by shifting the focus on single co-evolutionary scenarios, in a step-by-step fashion. The evolver
acts in a controlled environment which is narrowed down by the metamodel merging operation,
which constraints her/his operative power and ensures syntactic consistency. Moreover, thanks
to the in-place co-evolution unaffected instances are left untouched allowing, for example, the
propagation of external links that would be lost after a re-creation of the same model element.

The approach enjoys a high degree of modularity, as relying on small co-evolution steps, which
also results in an enhancement of re-use chances of the developed migration transformations. In
fact, the technique permits us to store both the manipulation a metamodel has been subject to
and the corresponding countermeasures to re-establish the well-formedness of existing models.

Future investigations will be devoted to the analysis of the metamodel evolution representa-
tion and default migration transformations in order to further improve the degree of automation
and re-use. Additional work will also consider the performance characteristics of the approach.
Moreover, the approach will be extended to support the co-evolution of not only instance models,
but also transformation models.
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