
Electronic Communications of the EASST
Volume 42 (2011)

Proceedings of the
4th International Workshop on

Multi-Paradigm Modeling
(MPM 2010)

Active Model Patterns with Interactive Model Transformation

Tamás Mészáros and Tihamér Levendovszky and Gergely Mezei

13 pages

Guest Editors: Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Lazlo Lengyel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Active Model Patterns with Interactive Model Transformation

Tamás Mészáros1 and Tihamér Levendovszky2 and Gergely Mezei3

1 mesztam@aut.bme.hu, 3 gmezei@aut.bme.hu
Department of Automation and Applied Informatics

Budapest University of Technology and Economics, Budapest, Hungary

2 tihamer@isis.vanderbilt.edu
Institute for Software Integrated Systems

Vanderbilt University, Nashville, TN, USA

Abstract: With the proliferation of domain-specific languages, the generalization
of OO patterns is a natural demand. Concepts and tools supporting pattern specifi-
cation and execution for arbitrary domain-specific languages facilitate to meet these
requirements. Our previous work introduced the Active Model Pattern Infrastructure
and possible realizations for its static aspect. In this paper, we contribute a realiza-
tion for the operational aspect of the framework. We propose graph rewriting-based
interactive model transformation to describe and automate often recurring opera-
tional patterns in domain-specific modeling. We have extended a general transfor-
mation system with localized application of the rules and facilitate run-time cus-
tomization possibilities for the domain engineer to influence the execution of the
operations. We can specialize this approach to provide an implementation of the
static aspect as well. We have realized our solution in the Visual Modeling and
Transformation System.

Keywords: active model patterns, model transformation, VMTS

1 Introduction

Using OO patterns such as design patterns [GHJV95], architectural patterns [Bus96], refactoring
operations [Fow99] has considerably simplified the design process of software systems. Patterns
provide proven solutions for frequently recurring problems. They are usually described in an
intuitive and informal way. For instance many design patterns can be described as an incom-
plete UML model fragment that needs to be inserted into the destination class diagram. Code
refactoring operations, however, are usually represented with example code fragments and tex-
tual explanations. Nowadays, as domain-specific modeling is gaining an increased popularity, a
noticeable amount of experience and knowledge have been collected among the experts of the
different domains. A straightforward idea is to adapt OO patterns with automated tool support
to the practice of domain-specific modeling as well. As Domain-Specific Modeling Languages
(DSMLs) are meant to be used in arbitrary domains, thus, in accordance with [LLM09], DSML
patterns are referred to as model patterns.

In our previous work [LK09], the basics of the Active Model Pattern (AMP) concept were
introduced. An AMP can be regarded as the combination of design patterns and refactoring

1 / 13 Volume 42 (2011)

mailto:mesztam@aut.bme.hu
mailto:gmezei@aut.bme.hu
mailto:tihamer@isis.vanderbilt.edu

Operational Model Patterns

operations in a domain-specific environment.
The AMP approach has three orthogonal aspects. The static aspect of AMP realizes the

domain-specific static model pattern support. Static model pattern is the common name of
domain-specific design patterns, architectural patterns, and patterns in general with arbitrary
intention. They can be considered incomplete model fragments that are inserted into the target
model. The AMP concept also includes universal design-time model manipulations, which are
referred to as the operational aspect of AMP. Model refactorings or often recurring operation
sequences during editing usually cannot be expressed with an incomplete model fragment with
the static aspect. The operations can be considered on-demand, localized model transformations
applied interactively. They can be realized either by a model transformation environment or
by programming the modeling API directly (optionally supported with a proprietary DSL). The
third aspect of AMP is the tracing aspect. It covers the detailed logging of model manipulations
for certain operations, such as undo/redo purposes.

[LK09] presented two approaches and their realization in the Generic Modeling Environment
(GME) [La01] for the application of static model patterns. (i) The first one is based on the
extension of the metamodel of the application domain. The pattern infrastructure generates an
extended metamodel which is able to store pattern operations (insert/bind/ignore) in addition to
the original properties of model elements. Pattern designers must use this specialized metamodel
for the definition of patterns. (ii) The other approach uses the original metamodel and DSL to
build the patterns, and assigns tags to the model elements to mark the model as a pattern. This
solution requires the modeling environment to be able to tag its modeling elements with arbitrary
information, even if the structure of the tag is not defined in the metamodel.

In this paper, we present an approach that supports the operational and the static aspects of
Active Model Patterns with interactive graph rewriting-based model transformations. Using
graph transformations [EEPT06], we could describe active patterns (both static and operational)
without using the API of the modeling environment directly. In this case, graph production rules
could describe the modifications in a precise way, thus facilitating further analysis on them.

In the following, we shortly illustrate an example domain and model patterns to realize (Sec-
tion 3.1), then we collect the features that we expect an interactive model transformation envi-
ronment to support AMPs (Section 3.1). In Section 3.2, we illustrate how we have realized the
requirements in an existing system. In Section 4, we show how we can realize the operational
pattern of the case study using the transformation system. Section 5 presents how the static as-
pect of AMPs can be implemented building on the operational aspect. Section 6 summarizes the
related work and finally, Section 7 concludes.

2 Motivation

The motivation of our work is to aid editing Animation Framework (VAF) [MMC09][LM09]
models in the Visual Modeling and Transformation System (VMTS)[VMT][LLMC07] with ex-
tensive tool support. The VMTS Animation Framework is a flexible framework supporting the
real-time animation of models both in their visualized and modeled properties. The architecture
of VAF is illustrated in Figure 1.

VAF separates the animation of the visualization from the dynamic behavior (simulation) of

Proc. MPM 2010 2 / 13

ECEASST

E
H

_
U

I
(…

)

PNAnimator

PortModels PortViews PortPN PortTimer

P
o

rt
M

o
d

e
ls

P
o

rt
V

ie
w

s

E
H

_
P

e
triN

e
t (…

)

P
o

rtP
N

E
H

_
T

im
e

r (…
)

P
o

rtT
im

e
r

Initialize

EH_GT

PortGT

ProcessNextCFEdge

ProcessStartNode

Matching

ApplyCurrentMatch

ApplyInternalCausalities

ApplyInternalCausality

Initialized

PreNextCFEdge

PostNextCFEdge

PreStartNode

PostStartNode

PreDecision

PreEndNode

PreRuleNode

PreInitMatch

PreMatching

PreApplyMultipleMatch

PreApplyCurrentMatch

PreInternalCausalities

PreInternalCausality

PostInternalCausality

PostInternalCausalities

PostApplyCurrentMatch

PostApplyMultipleMatch

PostRuleNode

AgsiCFEdge

InternalCausalityResult

AgsiCFEndNode

TrafoOutputPlaces

AgsiInternalCausality

IAgsiCFNode

AgsiRuleExecutionResults

Animator state machineHigh level animation model

Event handler model
Event handler

implementation

Animated model

.

Animation

engine

gen.

ref.

E
N

V
IR

O
N

M
E

N
T

.

PortPN PortTimer PortViews PortModels

GetDiagramView Default

Selecting

GettingView

Highlighting

Firing

[no fireable transitions]

PortPN:EventGetFireableTransition

[fireable transition]

PortViews:EventGetView

[PortViews:EventGetView_]

PortViews:EventHighlight

[PortTimer:Tick]

[PortTimer:Tick]

PortPN:EventFire

PortViews:UnHighlight

Figure 1: The Architecture of the VMTS Animation Framework

the model. In our approach, the domain knowledge can be considered a black-box whose in-
tegration is supported with visual modeling techniques. Using this approach, we can integrate
various simulation frameworks or self-written components with event-driven communication.
The animation framework provides three visual languages to describe the dynamic behavior of
a metamodeled model, and their processing via an event-driven concept. Events are parametriz-
able messages that connect the components in our environment. The services of the presentation
framework, the domain-specific extensions, possible external simulation engines (ENVIRON-
MENT block in Figure 1) are wrapped with event handlers, which provide an event-based in-
terface. Communication with event handlers can be established using events. The definition
of event handlers and the possible events is supported with a visual language. (Event handler
model in the figure). The default implementation of an event handler can be generated [LM09]
based on the interface of the wrapped objects (Implementation block). The animation logic can
be described using an event-driven hierarchical state machine, called Animator (Animator state
machine block). The transitions of the state machine are guarded by conditions testing the in-
put events and fire other events after performing the transition. The input (output) events of the
state machine are created in (sent to) another state machine or an event handler. The events
produced by the event handlers and the state machines are scheduled and processed by a DEVS
[ZKP00]-based simulator engine (Animation Engine). The event handlers and the state machines
are connected through ports in a high-level model (High level animation model).

In this paper, we use the previously mentioned state machine language to illustrated our ap-
proach of AMPs. The metamodel of this language is depicted in Figure 2.

Figure 2: Metamodel of the target domain

3 / 13 Volume 42 (2011)

Operational Model Patterns

State chart models may contain the usual start as well as end nodes and states (StartState,
FinalState, AnimState), the states are connected with Transition edges. Each transition edge has
a Guard and an Action property that describe the condition that must be satisfied to perform a
transition and the actions to be executed on that transition. States and the StateMachines have
a common Container ancestor that may contain sub-states through containment edges. Thus,
states may be composite as well.

2.1 An Operational Pattern

The example operation we realize with interactive model transformation is the unflattening of the
state chart model. More precisely, the selected fragment of the state chart model is turned into
a newly created composite state. Those outgoing transitions of the states that have a common
Guard and Action property and a common target state are replaced with one leaving transition
from the composite state. This process is illustrated in Figure 3.

Figure 3: State chart unflattening

2.2 A Static Pattern

Figure 4 illustrates a static pattern for VAF state charts: a frequently used feature is the high-
lighting of a model element in a specific state of the state chart if the mouse hovers over the
element. Occasionally, there may be multiple highlighted elements as well: [ML08] presents
a visual model transformation debugger that highlights the match for a rule element under the
mouse cursor after the successful match.

Figure 4: Static pattern to highlight element under mouse cursor

BaseState can be considered the default state without highlighting, and if a MouseEnter event
is received, then a Highlight event is sent to the framework and the state machine proceeds to
the MouseOver state. The corresponding guard condition is

PortPeripherals.PeekIsOfType< EHUI.EventMouseEnter>(),
and the action script is

Fire(new EHUI.EventHighlight(this, PortPeripherals.
PeekAs< EHUI.EventMouseEnter>().View) Color = Colors.Green , PortViews)

Proc. MPM 2010 4 / 13

ECEASST

The target of the Highlight event in the action script is the View property of the received
MouseEnter event: it identifies the visual object under the mouse cursor. Similarly, if a MouseLeave
event is received, then the respective transition emits an UnHighlight event, and the BaseState
becomes active again. Note, that PortPeripherals and PortViews are the conventional names of
the ports to send and receive events to/from peripheral devices and the UI in VAF.

In the next sections we discuss the requirements and the conceptual as well as implementation-
level solutions to realize tool-support for the introduced operational and static pattern.

3 An Interactive Graph Rewriting-Based Model Transformation En-
gine

We use interactive graph transformation as the execution framework for AMP. By interactive
we mean that the domain engineer who executes the pattern application can visually trace and
actively influence the behavior of the transformation. In the following we summarize the require-
ments and the realization of such a transformation system.

3.1 Requirement specification

We expect an interactive transformation engine to meet the following requirements to facilitate
the implementation of the AMP approach.

1. The interactive selection of those model elements that should be involved in the transfor-
mation. The input of a usual transformation engine is one or several models. Therefore,
we need to identify those elements of these models which may be used during the trans-
formation. In case of the state chart unflattening this means the selection of those nodes
that should be encapsulated in a composite state.

2. The engineer should be allowed to edit the rewriting rules at runtime: both their attributes
and to perform structural changes on the rule.

3. The modeler should be allowed to modify the matches of the rewriting rules interactively.
Requirement 2 and 3 is necessary to support static model patterns as shown in Section 5:
thus we can exactly define how an inserted pattern should join the existing model elements.

4. If a complex model transformation (e.g. a model refactoring) is executed on the host
model, it is possible that several branches of the transformation should be enabled or dis-
abled according to the intentions of the domain expert. Here we assume that the execution
order of the rewriting rules in the transformation is controlled by a control structure. For
this purpose, the transformation control should be prepared to mark those branches where
the user may have influence on the execution. For example in the state chart unflattening
example we may ask the modeler whether to create an explicit start node in the composite
state, or rather connect to the first child state of it directly. Depending on the selection of
the modeler additional rewriting rules might be executed.

5. The transformation engine should provide a facility to ask for optional parameters from
the domain engineer during the execution of the transformation: e.g. if the transformation
creates new elements, several properties of the new elements (e.g. their name) should be
asked instead of generating a default property value.

5 / 13 Volume 42 (2011)

Operational Model Patterns

6. Finally, it is not enough to modify the underlying model repository, the changes should be
reflected by the visualization as well: of course, deleted elements should be removed from
the view, new elements should be displayed, and the changes in the attribute configurations
should also be reflected in the visualization.

3.2 Realization of the AMP approach in VMTS

In the following, we guide through the requirements specified in Section 3.1, and illustrate with
the help of the case studies how we have realized operational active model patterns in VMTS.

The interactive selection of those model elements that should be involved in the transforma-
tion. Recall that we suggest localized graph transformations to describe operational patterns. It
is localized, because only several (selected) elements are involved in the transformation, and not
the entire model. In VMTS, the model elements selected in the view are marked with a ”se-
lected” flag. This flag can then be tested in the transformation, and the matcher can be restricted
to find only the marked elements. In our case the flag is stored in a general Tag property, which
is the member of each model element and is reserved to store arbitrary runtime meta information
that is not persisted. In the textual constraints of the rules we may simply test this property.
But, because this is a frequently used feature, we have extended the transformation specification
language with a flag for the nodes and the edges: if the flag is set on an LHS element, then only
the elements from the current selection are matched there.

The engineer should be allowed to edit the rewriting rules at runtime. Note that, because of the
interpreted feature of the transformation engine, we may modify the production rules any time
during the transformation (if the transformation is paused or waiting for user input), because the
rule specifications are processed right when executing them.

The engineer should be allowed to modify the matches of the rewriting rules interactively. We
facilitate the modification of the matching phase on two levels: (i) bind several elements of the
rewriting rule to the elements of the host graph, and let the engine finish the match, (ii) and to
modify a successful match manually. We provide a visual solution for both of them. Figure
5(a) illustrates a rewriting rule that matches two consecutive states connected with a transition
edge (matchNode1,matchTransition1 andmatchNode2), and inserts a new state between the two
existing nodes.

(a) Visualizing and modifying a match (b) Editing attributes

Figure 5: Match visualization and attribute editing

The rule element matchNode1 is bound to the node State2 in the host graph. The binding is
visualized with the ”0” tag next to the elements (a unique index starting from 0 is assigned to
each pattern-host graph binding), and a blue outline highlights the matched element as well if one

Proc. MPM 2010 6 / 13

ECEASST

hovers the mouse over the pattern item. An existing match can be modified, or an initial match
can be defined with the help of the mouse: by clicking on the rule element while holding the
Alt button, the pattern element (matchNode1) receives the focus which is expressed with a red
outline. Those elements of the host graph which have a type compatible with that of the pattern
element are highlighted with green. By clicking on one of them, the match is changed. Note that
even those elements of the pattern that define the creation of a new element (createNode1 and
the connecting edges in the figure) can be bound to existing elements of the host graph this way.
Thus the matcher and the rewriting logic is configured to count on them when searching for a
valid match, and not to create them in the rewriting phase.

Influencing the execution order of the transformation rules. We have two possibilities to in-
fluence the execution order of the rules interactively: (i) because of the interpreted feature of the
engine, we can create/delete/reconnect edges in the control flow, provided that the execution is
waiting for input or is paused. However, this is not a typical use case, as usually the transforma-
tion control should not be directly edited by the user. Instead, (ii) on the edges in the control flow
one can create guard expressions and action scripts that prompt for user input and the engine
proceeds its execution accordingly.

Asking for optional parameters. If a transformation creates new elements in the host graph,
several properties of the new elements may be required to be customized by the user. E.g. the
default name of new elements is typically changed right after creation. In order to support this
requirement we have slightly modified the transformation definition language and the transfor-
mation engine. A new attribute called PostCon f iguration is added to the possible attributes of
the rewriting rule elements. Each item of PostCon f iguration couples an attribute name and a de-
fault value. After performing a rewriting rule, the marked attributes are listed in a popup window
where the user can set all the selected attributes at once (Figure 5(b)).

Changes in the model should be reflected in the visualization. As in case of numerous other
model transformation environments, the model transformation engine of VMTS modifies the
model objects only, but not their visualization. Therefore, we had to extend the interpreted
transformation engine to (i) remove deleted edges and nodes, (ii) display newly created edges
and nodes and (iii) to place the new elements in a way to follow the layout of the rewriting rule.
We also made the coordinates of the model elements accessible in the textual constraints and
the imperative code assigned to the rules, thus, they can be used both in the matching phase and
edited in the rewriting phase. Furthermore, we apply the data binding features of the underlying
UI framework (Windows Presentation Foundation - WPF) of VMTS to reflect attribute changes
in the visualization as well.

4 Case study

In the following we present how we have realized the operational pattern outlined in Section 2
using the interactive model transformation system. Figure 6 illustrates the control flow graph of
the transformation. It wraps the selected states with a composite state, and optionally creates a
start state inside the new composite state, if exactly one selected element among all has incoming
edges from outside the selection. All of those outgoing transitions of an arbitrary node within
the selection that share their guard condition with one outgoing transition of each other node are

7 / 13 Volume 42 (2011)

Operational Model Patterns

reconnected to the composite state. Those outgoing transitions of the other selected nodes that
also share the action script and have the same target state are removed as well (i.e. the composite
state already has those transitions).

Figure 6: Control flow graph of the state chart unflattening transformation

The transformation works as follows. The CountStart rule (Figure 7(a)) matches all the states
in the selection (innerNode) that have an incoming transition from a node outside the current
selection, and puts those state nodes into a list. This is necessary, because in case the list contains
only one element (i.e. one selected node has one incoming edge), we may offer to create a start
node inside the composite node, and redirect the incoming edge to the composite node (as shown
in Figure 3).

(a) CountStart rule (b) SelectNext rule (c) SelectOne rule

(d) CreateStart rule (e) CheckTransitionsWithSameGuard rule

(f) CreateFallback rule (g) SinkStates rule (h) RemoveRedundant rule

Figure 7: Rewriting rules to unflatten a state chart diagram

The SelectOne rule (Figure 7(c)) selects an arbitrary node (containedNode, called re f erence
node from now on) within the selection, and places it into a newly created container
(newContainerState). Both the containedNode and the newContainerState nodes are flagged

Proc. MPM 2010 8 / 13

ECEASST

so that they can be identified later. In addition, the container state is positioned and sized to
cover the rectangle of the selection, and containedNode keeps its original absolute position in-
side it.

The SelectOne rule is left by two flow edges: the guard condition of the one leading to
CreateStart (Figure 7(d)) asks the user whether to create an explicit start state within the new
composite state. But only if CountStart found only one selected node with an incoming edge
from outside the selection. If there is more than one such node or the user answers ’No’, then the
execution proceeds to SelectNextTransition. Otherwise, CreateStart creates a new start state
within the composite state, redirects the incoming edge to the composite state, and creates a
transition within the start node and the state marked by CountStart.

The SelectNextTransition, CheckTransitionsWithSameGuard and
CreateFallbackEdge rules iterate through the edges of the reference node, and if the guard ex-
pression of either outgoing transition is used for one outgoing transition for each other selected
state, then that transition is pushed one level up to the composite state. This means that a tran-
sition can be pushed up without changing the semantics of the state chart, if all the selected
states have an outgoing transition with the same guard expression. The SelectNextTransition
(Figure 7(b)) selects and marks one non-marked outgoing transition of the reference node, then
CheckTransitionsWithSameGuard (Figure 7(e)) tries to match another selected state without an
outgoing transition with the same guard (phrased in the textual constraints of the rule). If it fails,
then the transition can be pushed up (CreateFallbackEdge in Figure 7(f)). Otherwise, (and also
after CreateFallbackEdge) a new transition is searched for by SelectNextTransition.

If there is not any non-marked outgoing transition for the reference node, then the remaining
selected states are moved into the composite state (SinkStates - Figure 7(g)). Finally,
RemoveRedundantTransitions (Figure 7(h)) removes those outgoing transitions of the selected
nodes that have a corresponding outgoing transition on the composite node with the same guard
and action expression and target state. Transitions with the same guard, but different action script
or target node are left, as they override the behavior of the composite state.

5 Realizing static model patterns as operational patterns

By exploiting the features of the interactive model transformation environment, we can easily
realize a static DSML pattern application framework. The key idea is to represent each static
DSML pattern as a single rewriting rule (an operational pattern) that creates the elements in the
target model, and to execute the rule. As presented in Section 3.2 we can coordinate the matching
phase of the rule, and select those elements which already exist and those elements that should be
created and attached to the existing elements. With the help of the PostCon f iguration attribute,
we can also select those properties of the inserted nodes and edges that may be customized at
insertion time.

The generation of the insertion rule can be considered an operational pattern as well. The pat-
tern consits of two rules (illustrated in Figure 8) that are executed exhaustively. Rule CreatedNode
matches all the selected nodes (nodeCreated) once, and creates (indicated by the blue back-
ground) the corresponding rule nodes (nodeCreatedRule) in the target model. The rule nodes are
configured to perform the insertion of a node with the appropriate type. Similarly, Rule CreatedEdge

9 / 13 Volume 42 (2011)

Operational Model Patterns

matches all the selected edges once (createdEdge), and creates the related rule edges (createdEdgeRule)
in the target model. Rule CreatedNode stores the mapping between the elements of the source
model (nodeFrom, nodeTo)and the elements of the target rewriting rule (pNodeFrom, pNodeTo),
thus, Rule CreatedEdge can identify the corresponding endpoints of the created rule edge. The
imperative code of the resulting rule is also configured to produce the same attribute configura-
tion than that of the source model fragment. The nodeCreated and edgeCreated elements are
also flagged (indicated by the gray background) not to be matched again in the same transforma-
tion.

(a) CreatedNode rule (b) CreatedEdge rule

Figure 8: Rewriting rules to generate a static pattern insertion rule

As a result, the transformation generates a rewriting rule that is topologically isomorphic to
the selected model fragment, and performs the insertion of the copy of that model fragment into
an arbitrary model. This process is illustrated in Figure 9 for the highlighting pattern.

Figure 9: Composite state initialization pattern

The generated production rule contains one element for each corresponding pattern element:
BaseState, MouseOver and the connecting transition edges. The Action property of each el-

ement in the rule is set to Created by default, meaning that each element of the pattern will be
inserted as a new element in the target model if the rule is executed. However, as we can bind
Created elements to existing model elements during the matching phase, we can skip the cre-
ation of one or several elements. E.g. if we bind the BaseState node of the pattern to an existing
host graph element, then it is not created, only the connecting elements.

A drawback of using plain rewriting rules to insert static DSML patterns is that the special
syntax of the rewriting rules is displayed, and not the concrete syntax of the pattern. This may be
uncomfortable for domain engineers being not familiar with the rewriting rule syntax. Therefore,
we have extended the transformation engine to be able to present the pattern using its original
syntax: we have added a PatternTrace attribute to the elements of the rewriting rules, which may
point to the model elements of the source model of the pattern. This attribute is initialized by
the transformation which generates the insertion rule. As this attribute defines an exact mapping
between the elements of the pattern and the source model, instead of presenting the rewriting

Proc. MPM 2010 10 / 13

ECEASST

rule during the transformation, the matches can be shown directly on the source model using
the syntax of the source domain. This solution still has two drawbacks: (i) irrelevant parts of
the source model are also shown, (ii) if the source model is modified, the mapping may become
invalid. To overcome these limitations, we have extended the rule generator transformation to
clone the selection, and - in addition to building the rewriting rule - to build a model which
contains the selected model fragment only. Then, the PatternTrace attribute of the rule elements
point to the elements of this clone model only.

6 Related Work

Since our research is related to DSML patterns, we do not consider UML-based solutions to be
the related work of our research. Our previous work [LLM09] provides an extensive summary
about UML-based design pattern approaches. To the best of our knowledge, besides VMTS,
only GME has published its tool support for domain-specific model patterns to certain extent.
A screencast about a promising ongoing research [Rei] on DSM refactorings became available
recently, but we found the work unpublished otherwise. However, there are several tools that
support some sort of interactive model transformation.

[ZLG05] introduces another GME solution: the Embedded Constraint Language is based on
OCL [OMG06] but has imperative features as well. Using ECL one can describe model refac-
torings imperatively. The transformation framework also supports localized execution, however,
this approach is rather close to direct API programming.

AToM3 [LV02] provides a visual designer to build graph rewriting-based transformations, and
facilitates the immediate visualization of the changes performed on the models. Furthermore,
we can also access the UI through the API from the rules. However, AToM3 does not support
localized transformations, and one cannot influence the matching process directly either. The
system does not provide a built-in support for static patterns either.

AGG [Tae04] also supports the visual specification of graph rewriting-based model transfor-
mations, furthermore, it facilitates the step-by-step execution of both the individual rules and the
whole transformation. One can initialize or modify a match manually just like in VMTS, and
manually select the rules to execute as well. An AGG based solution [Bie06] suggests graph
rewriting to describe inplace model refactorings as well. As AGG has a layered, sequential con-
trol flow that does not support user interactions and conditional branchings, thus the engineer has
much less influence on the execution order compared to VMTS. Static model pattern support is
also a missing feature of AGG.

[TMM07] also suggests graph rewriting-based model transformation for refactoring opera-
tions. The solution generates executable code from the visual specification of the rewriting rules.
However, it lacks the possibility to model the execution order of the rules, thus, it needs to be
written in plain JAVA.

[EWL] The Epsilon Wizard Language (EWL) is a language tailored to interactive in-place
model transformations on user-selected model elements. EWL is integrated with the Eclipse
Modeling Framework (EMF) [BSM+03] and the Graphical Modeling Framework (GMF) [GMF10]
and as such, wizards can be executed from within EMF and GMF editors. The drawback of EWL
is that it is close to direct API programming, as refactoring operations are described using JAVA.

11 / 13 Volume 42 (2011)

Operational Model Patterns

7 Conclusion

In this paper, we provide a complete framework to define and apply various model patterns with
arbitrary intention in a domain-specific environment. We have presented the requirements and
the realization in VMTS of an interactive graph rewriting-based model transformation frame-
work. We provide possibilities to interactively influence the execution both on high (control
flow) and on low (rule) level at runtime. The introduced transformation system serves as the ex-
ecution engine for the operational aspect of AMPs that describe frequently used complex model
manipulations and refactoring operations in domain-specific modeling. With the specialization
of the operational aspect we can easily realize the static aspect of AMPs as well. The presented
approach is motivated and illustrated with a case study from the VMTS Animation Framework.
Future work contains the design and realization of the tracing aspect of AMPs. Another open
issue is how the operational pattern specifications could be generalized, and how the same trans-
formation could be applied in different domains by the parameterization of the transformations.

Acknowledgements: This work is connected to the scientific program of the ”Development of
quality-oriented and harmonized R+D+I strategy and functional model at BME” project. This
project is supported by the Hungarian Academy of Sciences - the Office for Subsidised Research
Units and by the New Hungary Development Plan (Pr:TÁMOP-4.2.1/B-09/1/KMR-2010-0002)

Bibliography

[Bie06] E. Biermann et al. EMF Model Refactoring based on Graph Transformation Con-
cepts. ECEASST 3, 2006.

[BSM+03] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. J. Grose. Eclipse Modeling
Framework. Addison-Wesley Professional, 2003.

[Bus96] F. Buschmann et al. Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. Wiley, Chichester, UK, 1996.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science). An EATCS Series.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[EWL] Epsilon Wizard Language. http://www.eclipse.org/gmt/epsilon/doc/ewl/.

[Fow99] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA, 1999.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GMF10] Eclipse Graphical Modeling Framework home page. http://www.eclipse.org/gmf,
2010.

[La01] A. Lédeczi, et al. Composing Domain-Specific Design Environments. Computer
34(11):44–51, 2001.

Proc. MPM 2010 12 / 13

ECEASST

[LK09] T. Levendovszky, G. Karsai. An Active Pattern Infrastructure for Domain-Specific
Languages. Proceedins of the First International Workshop on Visual Formalisms for
Patterns, 2009. in press.

[LLM09] T. Levendovszky, L. Lengyel, T. Mészáros. Supporting domain-specific model pat-
terns with metamodeling. Software and Systems Modeling 8(4):501–520, 2009.

[LLMC07] L. Lengyel, T. Levendovszky, T. Mészáros, H. Charaf. Supporting Design Patterns in
Graph Rewriting-Based Model Transformation. In International Working Conference
on Evaluation of Novel Approaches to software Engineering. Barcelona, Spain, 2007.

[LM09] T. Levendovszky, T. Mészáros. Tooling the Dynamic Behavior Models of Graphical
DSLs. In In proceedings of the 13th International Conference on Human-Computer
Interaction. San Diego, USA, July 2009.

[LV02] J. de Lara, H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-
modelling. In FASE. Pp. 174–188. 2002.

[ML08] T. Mészáros, T. Levendovszky. Visual Specification of a DSL Processor Debugger. In
Proceedings of the 8th OOPSLA Workshop on Domain-Specific Modeling. Pp. 67–72.
Nashville, USA, 2008.

[MMC09] T. Mészáros, G. Mezei, H. Charaf. Engineering the Dynamic Behavior of Metamod-
eled Languages. Simulation, Special Issue on Multi-Paradigm Modeling 89:793–810,
2009.

[OMG06] OMG. Object Constraint Language, version 2.0. 2006.
http://www.omg.org/technology/documents/formal/ocl.htm.

[Rei] J. Reimann. Generic Model Refactoring Based on Roles.
http://emftext.org/index.php/Refactoring.

[Tae04] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Valida-
tion of Software. In Application of Graph Transformations with Industrial Relevance
(AGTIVE 2004). LNCS 3062 3062, pp. 446–453. Springer, 2004.

[TMM07] G. Taentzer, D. Müller, T. Mens. Specifying Domain-Specific Refactorings for An-
droMDA Based on Graph Transformation. In AGTIVE 2007. Lecture Notes in Com-
puter Science 5088, pp. 104–119. Springer, 2007.

[VMT] Visual Modeling and Transformation System. http://vmts.aut.bme.hu.

[ZKP00] B. P. Zeigler, T. G. Kim, H. Praehofer. Theory of Modeling and Simulation. Academic
Press, Inc., Orlando, FL, USA, 2000.

[ZLG05] J. Zhang, Y. Lin, J. Gray. Generic and Domain-Specific Model Refactoring using a
Model Transformation Engine. In Volume II of Research and Practice in Software
Engineering. Pp. 199–218. Springer, 2005.

13 / 13 Volume 42 (2011)

	Introduction
	Motivation
	An Operational Pattern
	A Static Pattern

	An Interactive Graph Rewriting-Based Model Transformation Engine
	Requirement specification
	Realization of the AMP approach in VMTS

	Case study
	Realizing static model patterns as operational patterns
	Related Work
	Conclusion

