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Abstract:

This paper introduces a domain-specific language for modelling and simulation-

based design of multi-tier systems. Multi-tier systems are complex and very few

general models have been developed. Rather, models are always dedicated to a

specific architecture. Our approach allows for rapid experimentation with different

multi-tier alternatives. Not only parameters, but also structure can be drastically

varied. Using graph transformation, multi-tier systems models are translated into

Queueing Petri Nets (QPNs) in a systematic way for analysis with the SimQPN

simulator. We describe QPN, our multi-tier architecture visual language, as well

as the transformation between them. A case study demonstrates the power of the

approach for design-space exploration.

Keywords: Multi-ParadigmModelling; Meta-Modelling; Multi-tier Systems; Queue-

ing Petri Nets; Design-space Exploration.

1 Introduction

Multi-tier architectures have become the standard for advanced information systems. The

information system provides services to its connected clients via business methods. The appli-

cation server, considered as a middle-tier, is responsible for the method execution. All sensitive

data is stored in a database system, called the backend-tier. Whenever a method has to retrieve

or update such data, the application server makes the corresponding calls to the database system.

In a typical multi-tier architecture [AASM07, WK05, CCE+03], a web-server is often placed

between the client and the application server. In this case, clients are often web-browsers, and

the web-server is responsible to accept HTTP requests, transform them to calls to the application

server, and return the responses of the application server to the client in the form of dynamically

generated web-pages. A web-server is also considered a middle-tier component.

Due to the complexity of multi-tier systems, in particular, the complex interactions between

their components, it is hard to predict their performance. Hence, simulation-based performance

analysis of models of multi-tier systems is highly desirable. Very few models have been de-

veloped however. Existing models target a specific architecture of a multi-tier system such as

models of the SPECjAppServer2004 benchmark [Kou06]. Alternately, models are quantitative,

based on queueing networks [ZR06].

In this paper, we present a modelling- and simulation-based approach for the study of a broad

class of multi-tier systems. The approach provides a domain-specific visual modelling language

for multi-tier architectures whose semantics is given in terms of Queueing Petri Nets (QPNs).
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The choice of QPNs as a semantic domain allows for both quantitative and qualitative analysis

of the modelled system. The behaviour of each type of component in a multi-tier system, such

as database server, application server, or load balancer, is provided in the form of a QPN. In our

framework, the domain-specific multi-tier models are automatically transformed into complete

QPN models for performance analysis.

In this work, we develop visual modelling languages using our meta-modelling and model

transformation environment AToM3 [LV02]. The first is a multi-tier architecture description

language. The second is a QPN modelling language. We use graph transformation models to

explicitly describe and subsequently execute the transformations between both. We export the

QPN models in XML format for use in the SimQPN [KB06] discrete-event simulator.

The paper is organized as follows: In section 2, an overview of some Petri Net variants leads

to Queueing Petri Nets. Section 3 presents our two modelling languages and uses them to model

a typical multi-tier system. Section 4 presents the rule-based transformation from the multi-tier

model to the QPN model. Section 5 presents some of the simulations results. This leads to

simulation-based design-space exploration. Finally, conclusions and future work are presented

in Section 6.

2 Queueing Petri Nets

In this section we briefly describe the Queueing Petri Nets formalism. We start from simple

Place/Transition Petri Nets then we gradually add extra features.

Place/Transition Petri Nets

Place/Transition Petri Nets (P/T PNs) are a formalism for describing the behaviour of concur-

rent asynchronous processes. They allow for an elegant description of synchronization.

A P/T PN is a bipartite directed graph composed of places and transitions [BK02]:

PN = (P,T, I−, I+,M0),where :
1. P is a finite and non-empty set of places.

2. T is a finite and non-empty set of transitions.

3. P∩T = /0.
4. I−, I+ : P×T → N0 are the backward and forward incidence functions.

5. M0 : P→ N0 is the initial marking.

The interconnections between places and transitions are specified by the incidence functions

I− and I+. If I−(p, t) > 0, an arc connects a place p to transition t and place p is called an

input place of the transition. If I+(p, t) > 0, an arc connects a transition t to place p and place

p is called an output place of the transition. Each arc has a weight which is a natural number

given by the incidence function. The initial distribution of tokens in the net (called marking)

is given by the function M0 which specifies how many tokens are contained in each place. The

operational semantics (behaviour) of P/T PNs describes how the marking of the net evolves as

transtions fire. A transition t is enabled (for firing) if each of its input places contains at least as

many tokens as the weight of the arc connecting it to t. An enabled transition may fire, in which

case it removes tokens from its input places and creates tokens in its output places. The number

of tokens removed and created are specified by the arc weights.
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Coloured Petri Nets

Coloured Petri Nets (CPNs) [BK02] are an extension to P/T PNs whereby each token has

a colour property. A set of colours is assigned to each place by a colour function. This set

specifies the types of tokens that are accepted in this place. For each transition t in a CPN, a

guard function, providing a set of first-order formulas over the colours of tokens, defines firing

modes for t.

Generalized Stochastic Petri Nets

Another extension to P/T PNs are Generalized Stochastic Petri Nets (GSPNs). Transitions in

GSPNs can be immediate or timed. The immediate transitions can be fired once they are enabled,

while the timed transitions have to wait for a certain amount of time before firing. This time is

generally defined as an exponentially distributed function. If many immediate transitions are

enabled at the same time, the next transition to fire is selected based on firing weights assigned

to the transitions. The firing of immediate transitions always has priority over that of timed

transitions.

A Generalized Stochastic Petri Net is defined as a 4-tuple GSPN = (PN,T1,T2,W ),where :
1. PN = (P,T, I−, I+,M0) is the underlying P/T Petri Net.

2. T1 ⊆ T is the set of timed transitions, T1 6= /0

3. T2 ⊂ T is the set of immediate transitions, T1∩T2 = /0,T = T1∪T2
4. W = (w1, ...,w|T |) is an array whose entry wi ∈ R

+ :

- is a rate of a negative exponential distribution specifying the firing delay,

when transition ti is a timed transition

- is a firing weight, when transition ti is an immediate transition

Coloured Generalized Stochastic Petri Nets (CGSPNs) [DCB88] are defined by the combina-

tion of CPNs and CGPNs.

Queueing Networks

A Queueing Network (QN) consists of a collection of service stations and customers. The

service stations represent system resources while the customers represent users or transactions.

Figure 1: A Service Station

A service station (see Figure 1) is composed

of one or more servers and a waiting area.

When a request arrives at a service station, it is

immediately serviced if a free server is avail-

able. Otherwise, the request has to wait in

the waiting area. Different scheduling strate-

gies [BGMT98] can be used to serve the re-

quests waiting in the waiting area. Some typ-

ical scheduling strategies are:

• FCFS (First-Come-First-Served): Requests are served in order of arrival.

• LCFS (Last-Come-First-Served): Requests are served in reverse order of arrival.
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Figure 2: A Queued Place and its shorthand notation

• PS (Processor-Sharing): Requests are assumed to be served simultaneously with the

server being equally shared among them.

Queueing Petri Nets

Combining Coloured Generalized Stochastic Petri Nets (CGSPNs) with Queueing Networks

(QNs) yields a modelling formalism called Queueing Petri Nets (QPNs) [Bau93]. Places in

QPNs are of two types: ordinary and queued. A queued place (see Figure 2) is composed of a

queue (service station) and a depository. After being served by the service station, (coloured)

tokens are placed onto the depository. Tokens, when fired onto a queued place by any of its

input transitions, are inserted into the queue according to the scheduling strategy of the queue.

Tokens in the queue are not available for output transitions while tokens in the depository are

available to all output transitions of the queued place. White rectangles in Figure 2 represent

timed transitions while black rectangles represent immediate transitions.

3 Modelling multi-tier systems

Anecdotal evidence shows that domain-specic modelling (DSM) can lead to drastic increase in

productivity [KT08]. DSM raises the level of abstraction if it is used properly by the user. Using

Domain-Specific Visual Languages (DSVLs) in particular, designers are provided with high-

level, intuitive notations which allow them to build models with concepts of the domain without

dealing with low level details.

Multi-tier Model

Bearing this in mind, we constructed a simple DSVL for the multi-tier architecture domain.

Figure 3 shows an example model in our DSVL of a typical multi-tier architecture system. It

consists of two types of clients, three application servers (ASs), two database servers (DBs) and

one physical hard-drive. The load is distributed between the ASs via an application server load

balancer. The same applies for the database servers. Clients send their requests to the AS load

balancer which balances the load between the ASs. The latter submit their requests to the DBs

via the DB load balancer. As the visual modelling environment for the DSVL encodes all domain

constraints, designers can focus fully on the design process. In particular, they are shielded from

lower-level concerns such as the construction of simulation models to analyze performance.
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Figure 3: A a sample architecture in our multi-tier DSVL

Figure 4: Multi-tier DSVL abstract and concrete syntax

The abstract syntax of our multi-tier DSVL is specified using a Class Diagram meta-model

as shown in Figure 4 (constraints omitted). In the figure, the concrete syntax of the DSVL is

given linking visual representations to the different abstract syntax elements (concrete syntax of

associations omitted).

In this article, we use AToM3, A Tool for Multi-formalism and Meta-Modelling [LV02] for all

modelling, meta-modelling and model transformation.

QPN Model

Multi-tier model representations as described above are sufficient to specify system structure.

Due to the high level of abstraction, the system’s behaviour is however not readily inferred.

Following the work of Kounev [Kou06], we use the QPN formalism as a semantic domain,

to express the behaviour of multi-tier architectures. We again used AToM3 to design (abstract
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and concrete syntax of) a QPN visual language. Figure 5 shows our QPN model for the sample

multi-tier architecture from Figure 3. Each server in this architecture is modelled as a queueing

Figure 5: A QPN Model for the sample multi-tier architecture

place. Queueing places with more than one server can be used but for simplicity we assume that

all are limited to one server. Rather than modelling each client separately, we classify clients

according to their transaction type, which leads to different categories of clients. In a multi-tier

system, transactions can be divided into many sub-transactions. These can in turn be divided

into read-only or write-only sub-transactions. We encode these different types as QPN colours.

For each client transaction, this leads to three coloured tokens. The first token (C) represents

the global transaction initiated by the client. The second (CR) and the third (CW) represent

the read-only and write-only sub-transactions respectively. At this point, we have defined the

queued places and the coloured tokens in our model, but we still have to define the transitions

and their firing modes. Let’s assume that for a class C of clients, a transaction is initiated. This

transaction contains NR read-only sub-transactions and NW write-only sub-transactions. This

will define the firing weights of transitions on the client side. In our QPN model, the transitions

C1 t1 and C2 t1 define the firing weights for each transaction initiated by a client of type C1.

The transitions to C1 Tx and to C2 Tx are used to control the number of parallel transactions of

the class C1 running at the same time. The transition to C1 Tx will fire only if it receives NR

tokens of the colour CR and NW tokens of the colour CW. The ordinary place C1 is initiated

with the number of parallel transactions of class C1 running at the same time. Each queued place

is parametrized with accepted coloured tokens and some data related to the time needed by the

server to process each of these tokens.

4 Model Transformation: mapping multi-tier onto QPN

So far, we have described two models for a multi-tier system. The first, multi-tier domain-
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(a) database server rule (b) application server rule

Figure 6: Transformation rules for servers

specific model, highlights the structure of a multi-tier architecture and can rapidly be constructed

by a designer. The second, QPN model, gives a detailed specification of the behaviour (assuming

QPN semantics is known). We now provide semantic anchoring of the multi-tier formalism by

providing a mapping between a multi-tier model and a corresponding QPN model, for all models

in the multi-tier DSVL.

This approach has several advantages. On the one hand, it cleanly separates the two lan-

guages: the designer of multi-tier systems need not know (and is unlikely to know) about the

QPN formalism, yet, thanks to the mapping, a QPN model can be automatically generated for

each multi-tier model. This allows for performance analysis through simulation. Note that in

this setup it is necessary to provide trace-ability: backward links from the QPN model (and sim-

ulation results) to the context of the multi-tier domain model. On the other hand, the approach

allows for the structured variation of the mapping. This could be to other formalisms (such as

DEVS for detailed discrete-event simulation) or target platform languages (in case multi-tier ap-

plication synthesis is desired). The mapping could also be modified to encode other detailed

design choices such as the use of thread pools (as will be demonstrated later on).

We choose to model the multi-tier to QPN mapping explicitly, in a rule-based fashion, based

on graph transformation. This approach is structured, which makes it easy to understand and

re-use. It also ties in nicely with the meta-models of both source and target formalism.

We define an ordered (by priority) collection of transformation rules using AToM3. These rules

are represented using the concrete syntax of source- and target languages. Each rule contains a

left hand side (LHS) and a right hand side (RHS) model pattern. A “match” of the LHS pattern in

the (to be transformed) host model is searched for. Elements which appear in the LHS but not in

the RHS of a rule are deleted. Elements which appear in the RHS but not in the LHS of a rule are

deleted. Elements which appear in both LHS and RHS are retained. Post-rule-application model

attribute values can be specified based on pre-rule-application attribute values. A few multi-tier

to QPN rules are shown to illustrate the approach.

Part (a) of Figure 6 shows our first transformation rule in a condensed notation where both LHS

and RHS of a rule are shown in a single figure. The database server in the middle is transformed

to a queueing place. The hard drive and the database load balancer are also transformed to

queueing places. The transitions between these queued places are immediate transitions and their

firing modes depend on the accepted tokens in these queued places. Part (b) of Figure 6 shows a

rule for transforming an application server and its connected components (the AS load balancer

7 / 14 Volume 42 (2011)



Modelling- and Simulation-Based Design of Multi-tier Systems

Figure 7: Transformation rule for a class of clients of category C

and the DB load balancer). Figure 7 shows another transformation rule which transforms a

class of clients to its equivalent components in the QPN model. As explained before, each

transaction initiated by a client of class C generates NR read-only sub-transactions and NW

write-only sub-transactions. On the left of the figure, three ordinary places and three firing

transitions are generated. From the hard drive queued place (on the right side of the figure),

read-only and write-only sub-transactions are collected and then sent back to their original place

which subsequently generates a new transaction in the system. Those NR read-only and NW

write-only sub-transactions are removed from their places only if there are more than NR and

NW tokens in the collector places respectively. As intended, the transformation results in the

model previously constructed by hand, shown in Figure 5. Not only is the transformation-based

approach less error prone, the domain-expert’s mapping knowledge is now explicitly represented

in the transformation model.

The rule-based approach also allows for modular modification of the behaviour/realization of

a multi-tier architecture. Figure 8 shows a modified version of the transformation rule in part (a)

of Figure 6. On the RHS, we add a place representing the thread pool of the database server. This

place contains initially a number of tokens which represents the maximum number of available

parallel threads handling sub-transactions on the database server. Figure 9 shows the impact of

the minimal modification of one rule on the full transformation from the multi-tier model to the

QPN model. Two places, TP DB1 and TP DB2, were generated for the database servers DB1

and DB2 respectively. Note that both source and target models appear, with some traceability

links. This is not surprising as the rules did not delete source model elements.

5 Simulation-based Design-space Exploration

Once we transform the multi-tier model to a QPN model, we can export the latter in XML

format suitable as input for the QPN analysis and simulation tool SimQPN [KB06]. Based

on the simulation results (performance metrics), we may wish to change some parameters or

add/remove some components in the multi-tier model, then repeat the full transformation process
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Figure 8: Transformation rule for a database server with a Thread Pool place

Figure 9: Result of full transformation of multi-tier model to QPN model with Thread Pools
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Figure 11: Utilization and throughput of each Application Server

Figure 10: Design-space exploration

as shown in Figure 10. We now present some

simulations results for the multi-tier archi-

tecture shown in Figure 3. We varied the

number of application servers in the 2 to 10

range and performed several simulation runs

for each of these architectures. Using multiple

runs is necessary to verify statistical proper-

ties of the obtained performance metrics. Fig-

ure 11 shows the utilization (%) and through-

put (1/s) of each application server in each

multi-tier architecture. The x-axis of these fig-

ures presents the simulation time. The utiliza-

tion and the throughput, calculated for each application server, are quite stable from which we
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Figure 12: Overall Throughput of all Application Servers

conclude that a simulated run-time above 105s is sufficient to obtain relevant results. We notice

that as the number of application servers increases, the utilization and throughput decrease. This

was expected since the application server load balancer in our models uses a fair load distribution

among all application servers.

The utilization of an application server can help a designer to decide which architecture satis-

fies some desired performance requirements. Another metric that can be useful in such decisions

is the overall throughput of all application servers. It is equal to the sum of the throughputs of

all application servers. Figure 12 shows this value for all architectures used in our simulations.

In this figure, we notice that there is no apparant benefit of using more than three application

servers. Based on the utilization of each application server and the overall throughput in each

simulation, we can define performance criteria to help select the optimal architecture. We wish

to use each application server as intensely as possible but without exceeding critical load limits

where the application server becomes a bottleneck. It is common for a multi-tier system designer

to target 70% as utilization for each application server and maximize the overall throughput of

all application servers. This leads us to maximize the following function:

f (util,oThr) = oThr/ABS(util−70)

where:

- util: stands for the application server utilization, and

- oThr: stands for the overall throughput.

Adding a new application server is costly in terms of hardware as well as software licenses.

For simplicity, we assume that this cost is a linear function of the number of application servers

(NAS). By using this parameter, our new objective function to maximize becomes:

g(util,oThr,NAS) = f (util,oThr)/NAS

Figure 13 shows the values of this function for all architectures used in our simulations. From

this figure, we conclude that a maximum value for the objective function g is reached for the

multi-tier architecture with four application servers.
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Figure 13: Values of the g Objective Function

Note that to arrive at this conclusion, a designer only needs to build and modify multi-tier

architecture models. Generation of QPN models, simulation, and collection of performance

metrics is fully automated. Even though running the simulations takes several hours per design

alternative, the designer’s effort is minimal. Furthermore, the whole process is traceable and

repeatable. If necessary, a domain expert may modify the transformation model, again with

minimal effort. For those designers who had the expertise to do simulation-based performance

analysis, this greatly simplifies the process, and eliminates mistakes. For designers who did not

have the expertise, simulation-based performance analysis now comes within reach.

6 Conclusions and Future Work

In this paper, we presented a framework for simulation-based design of multi-tier architec-

tures. The framework constructs a multi-tier domain-specific visual modelling language. Mod-

els in this language are transformed into Queueing Petri Net (QPN) models for simulation-based

performance analysis (using the SimQPN simulator). Both multi-tier and QPN languages are

meta-modelled using AToM3. The transformation too is explicitly modelled using transforma-

tion rules. We have validated our approach using some simple (deceptively, at least at the multi-

tier DSVL level) examples. The tests give results consistent with the literature and practical

experience. We have shown how easily the architecture of the high level model can be varied

in order to improve the load of each server. Our framework should accelerate further research

into new multi-tier architectures by simulating many configurations before implementing them

in a real environment. In the near future, we will replace the manual design-space exploration

by a set of rules (a grammar) which will generate reasonable candidate designs given certain

functionality and performance criteria. We are also working on a web/SVG-based version of our

visual modelling environments which should lower the treshold of this approach.
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