
Electronic Communications of the EASST
Volume 44 (2011)

Proceedings of the
Workshop on OCL and Textual Modelling

(OCL 2011)

Using an OCL Impact Analysis Algorithm
for View-Based Textual Modelling

Axel Uhl, Thomas Goldschmidt and Manuel Holzleitner

20 pages

Guest Editors: Jordi Cabot, Robert Clariso, Martin Gogolla, Burkhart Wolff
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Using an OCL Impact Analysis Algorithm
for View-Based Textual Modelling

Axel Uhl1, Thomas Goldschmidt2 and Manuel Holzleitner3

1 axel.uhl@sap.com
3 manuel.holzleitner@sap.com

SAP AG
Walldorf, Germany

2 thomas.goldschmidt@de.abb.com
Industrial Software Systems,

ABB Corporate Research,
Ladenburg, Germany

Abstract: The Object Constraint Language (OCL) has become a vital part of many
frameworks, tools and languages within model-driven engineering. One such appli-
cation of OCL is the use for describing rules in concrete syntax definitions. Within
the textual modeling framework FURCAS, OCL is extensively used for the definition
of lookup and attribution rules. Based on these rules the model which is described by
such a textual representation is created and updated accordingly. Changes on models
over which such an expression is specified require the expression to be re-evaluated
to keep the constructed model up-to-date. However, the effort for re-evaluating OCL
expressions over a set of model elements grows with the number of elements, the
complexity of the expressions, and the number of model changes. Thus, having
large models and/or complex expressions places considerable performance costs on
OCL evaluation. Techniques to reduce this effort have been presented in previous
work but do not cover the full range of OCL expressions, in particular calls to oper-
ations defined in OCL, including recursive operations. In this paper, we present an
approach that is applicable to the full range of OCL expressions. We validated our
approach based on a large set of models and complex expressions to evaluate the
performance impact of our newly introduced techniques.

Keywords: OCL, Impact Analysis, Change Propagation, Incremental Re-Evaluation

1 Introduction

The Object Constraint Language (OCL) [RG99, CW02, The10], as a standard for defining con-
straints on models as well as metamodels has been widely adopted in modeling approaches and
tools over recent years. When constraints are evaluated they tell whether a model is in a con-
sistent state or not. Furthermore, OCL is used as query language in many modeling tools and
frameworks, such as model transformation [The05] or source code analysis [SS08]. Additionally
OCL is used for lookup or attribution rules of concrete syntax definitions. The textual model-
ing framework FURCAS [GBU09a, GBU09b] makes extensive use of OCL for such purposes.

1 / 20 Volume 44 (2011)

mailto:axel.uhl@sap.com
mailto:manuel.holzleitner@sap.com
mailto:thomas.goldschmidt@de.abb.com

OCL Impact Analysis for Textual Modelling

context Department: : allSubDepartments() body:
self .subDepartments−>iterate (dep; subDeps = Set{self} |

subDeps−>union(dep.allSubDepartments()))

Listing 1: The definition of the allSubDepartments() operation.

For example, it uses parameterized OCL queries to express lookup rules that resolve references
expressed by textual identifiers.

However, modifications to the model require such expressions to be re-evaluated as their re-
sults may have changed. Re-evaluating a large set of OCL expressions on a potentially large
model can be very time consuming and therefore hinders the usability of such modelling tools
significantly. A solution required here needs to find out if an expressions needs to be re-evaluated
given a certain change of the model. Based on this information, the textual modeling framework
can update models according to the attribution and lookup rules.

This problem has been investigated before in [CT05, CT09, AHK06]. However, the solutions
presented there are incomplete especially with regard to recursive operation calls as well as loops
and iterations.

The contribution of this paper is an algorithm for reliable and efficient impact analysis of OCL
expressions. First, we introduce a general approach for computing the impacted context elements
of an OCL expression after model changes. We show by induction that all kinds of expressions
can be handled by this approach. We validate our approach using a non-trivial metamodel and
a set of corresponding textual syntax definitions which include complex OCL expressions and
show that the effort of computing these paths amortizes reasonably.

The remainder of this paper is structured as follows. To clarify the problem statement, we
give a small motivating example in Section 2. Section 3 discusses related work. We provide an
analysis on how change events affect expression values in Section 4. Our approach for tracing
back to possibly affected context elements is introduced in Sections 5 and 6. Section 7 presents
the results of the validation which we conducted. Finally, Section 8 concludes and outlines future
work.

2 Motivating Example

In this section we will introduce a motivating example that clarifies the problem of OCL impact
analysis within textual modeling. This example will serve as running example throughout the
rest of the paper and will be referred to from the sections that introduce our approach.

Our running example is based on a metamodel that defines classes for Department, Per-
son, Manager and Project. Figure 1 depicts this example metamodel. A Department
may have several sub-departments, one Manager and several Employees. Employeeswork
in Projects. The Department class defines an operation allSubDepartments(), im-
plemented in OCL as shown in Listing 1, which returns the set of all Departments which
are transitively contained in the subDepartments containment association. Listings 2 and 3
show two textual syntax definitions for this metamodel, one for the creation of Departments
and one for Projects.

Proc. OCL 2011 2 / 20

ECEASST

allSubDepartments()

name : String

DepartmentManager

name : String
salary : Integer

Employee

name : String
isDepartmentWide
: Boolean

Project

* projects*projectTeam

1

department
0..1

manager

*
department

0..1

employees

1 leads

*lead

*

parentDepartment

0..1

subDepartments

Figure 1: The department metamodel.

allSubDepartments()

name : String

Department

Development :

Department

salary = 5000

John : Manager

Manager

name : String
salary : Integer

Employee

name : String
isDepartmentWide
: Boolean

Project

* projects*projectTeam

1

department
0..1

manager

*
department

0..1

employees

1 leads

*lead

salary = 4700

Jane : Manager

salary = 3800

Judy : Employee

Administration :

Department

salary = 5100

Anne : Manager

salary = 4700

Amber : Employee

salary = 4300

Arthur : Employee

* manager * manager

isDepartment

Wide = false

NewProduct :

Project

lead

projectTeam

isDepartmentWi

de = true

CommonCosts

: Project

lead

*

parentDepartment

0..1

subDepartments

subDepartment

Figure 2: An example instance of the depart-
ment metamodel.

FURCAS allows for the definition of multiple syntaxes as views on a single underlying model
(called view types in FURCAS [GBU09b]). Therefore, it is possible to edit the same model using
different views on it. We use the Departments view type use in this running example for the
definition of departments and their managers and employees. This view type includes an example
usage of the lookup functionality for which FURCAS uses OCL expressions parameterized with
a question marks. In this case the expression is used to select an employee of the department
by name and assign him/her as the Manager of the Department. The second view type
Projects is responsible for providing a syntax for creating Projects and assign project
leaders as well as Employees working in that project. There are two different notions of
projects distinguished by its property isDepartmentWide. These notions are also reflected
in the two different alternatives of the Project template. If isDepartmentWide is true,
that means that all employees of the project leader’s department are automatically assigned
to that project (alternative 1). The second alternative lets modelers assign employees to projects
by their name.

Figure 2 shows an example model which is modified through two views as shown in Listings
4 and 5. The Department view shows two Departments “Development” and “Adminis-
tration” both having 3 employees. The Projects view shows two projects “NewProduct” and
“CommonCosts” which is a department wide project. According to the first alternative of the
Projects template, all employees of the “Development” Department are assigned to the
“CommonCosts” Project.

If we consider a change that adds a new employee “Jack” to the “Development” department,
this modification invalidates the result of the query of the first alternative of the Project tem-
plate. Also, a change of the project leader from “Jane” to “Amber” would invalidate this result.
Removing the “Administration” department from the sub-departments of the “Development” de-
partment would also require the employees of “Administration” to be removed from the “Com-
monCosts” Project. To be able to update the model accordingly, all OCL expressions for all
context elements would have to be re-evaluated. With the approach presented in this paper, we

3 / 20 Volume 44 (2011)

OCL Impact Analysis for Textual Modelling

1 viewtype Departments {
2 template Department {
3 ‘‘department’ ’ name
4 ‘‘managed’ ’ ‘‘by’ ’ ‘ ‘: ’ ’ manager {
5 query = self .employees−>select (e | e.oclIsTypeOf(Manager) and e.name = ?) }
6 ‘‘{‘‘ employees {separator = ‘ ‘; ’ ’} ‘‘} ’ ’
7 }
8 template Employee {
9 ‘‘employee’ ’ name ‘ ‘: ’ ’ salary

10 }
11 template Manager {
12 ‘‘manager’ ’ name ‘ ‘: ’ ’ salary
13 }
14 }

Listing 2: Concrete syntax definition for the department metamodel.

1 viewtype Projects {
2 template Project {
3 ‘‘project ’ ’ name ‘‘lead’ ’
4 ‘‘by’ ’ lead { query = Employee. allInstances()−>select (e | e.name = ?) }
5 [[−−alternative 1
6 {{ isDepartmentWide = true }}
7 ‘‘departmentWide’ ’
8 {{ projectTeam = self . lead .department .allSubDepartments() .employees }}
9 | −−alternative 2

10 {{ isDepartmentWide = false }}
11 ‘‘{‘‘ employees {query = self . lead .department .employees−>select (e | e.name = ?) ,
12 separator = ‘ ‘; ’ ’}
13 ‘‘} ’ ’
14]]
15 }
16 }

Listing 3: Concrete syntax definition for the department metamodel.

will show that we can reduce the set expressions and context elements that has to be re-evaluated
to a minimum.

3 Related Work

The problem which is tackled in this paper is related to the problem of incremental attribute
grammar evaluation to which a solution is presented in [RTD83]. Interesting programming envi-
ronments can be based on such approaches such as the Cornell Program Synthesizer [TR81]. The
approach presented here handles attribute definitions expressed in OCL which includes recursive
operations. Such expressions are used by the FURCAS language workbench [GBU09a, Gol10]
to update features of a model that represents the program’s abstract syntax tree.

There is a multitude of textual modeling frameworks such as EMFText [HJK+09] or XText
[Fou10]. Many of them also rely on a declarative specification of the concrete textual syntax
from which they generate parsers and pretty printer components. However, none of them facil-
itates the full power of OCL expressions to compute attribute values for their abstract syntaxes.

Proc. OCL 2011 4 / 20

ECEASST

1 department Development managed by John {
2 manager John : 5000; manager Jane : 4700; employee Judy : 3800
3 }
4 department Administration managed by Anne {
5 manager Anne : 5100; employee Amber : 4200; employee Arthur : 4300
6 }

Listing 4: View on the example model using the Department view type.

1 project NewProduct lead by Jane { Judy }
2 project CommonCosts lead by John departmentWide

Listing 5: View on the example model using the Projects view type.

This part is mostly implemented in a host language such as Java. Therefore, these approaches
also do not include an incremental attribute computation based on specified dependencies. See
[GBU08] for an complete overview on textual modeling approaches including a classification of
their capabilities.

The re-evaluation problem specific to OCL expression has already been investigated in [CT05,
CT09, AHK06]. Those existing approaches distinguish between a so-called class-scope analysis
and an instance-scope analysis. The class scope analysis deals with the registration of event
handlers to specific types of events so that for example an OCL expression involving only a
certain association only gets re-evaluated when links of that specific association are added or
removed. The instance-scope analysis is then responsible for efficient reduction of the number
of context elements for which the expression has to be re-evaluated. However, the solutions
presented there are incomplete, particularly with regard to operation calls, recursive operation
calls and complex iterations and loops.

EMF-INCQUERY [BHRV10] is another approach for incrementally executing queries over
large scale EMF models. The approach is based on the graph pattern formalism with which a de-
veloper can formulate the queries. EMF-INCQUERY uses a caching infrastructure to store results
of executed queries. The cache implementation of EMF-INCQUERY uses the so called RETE al-
gorithm [For82] to store partial matches of the graph patterns which are used in the query. The
cache recognizes modifications to the underlying model by utilizing the event mechanism pro-
vided by EMF. Using this approach allows for a significant improvement in query performance.
However, as EMF-INCQUERY strongly relies on its internal cache to produce the performance
gains, the downside of this approach is the memory overhead produced by the cache. For exam-
ple, for a model size of 25k model elements the cache size is around 14 MB.

Garcia and Möller [GM08] introduce an approach for the incremental evaluation of OCL
constraints. Their approach is based on the DITTO algorithm which was originally designed for
a subset of Java [SB07]. DITTO is an automatic incrementalization approach for invariant checks
based on functional memoization. In contrast to view materialization, this approach caches the
inputs and outputs of a function. Whenever a function is called with the same input parameters
the resulting value can be drawn from the cache. Garcia and Möller also account for actual object
graph over which an expression navigates which is considered as implicit input parameter of the
constraint. However, it remains yet to be seen how this works towards incremental re-evaluation

5 / 20 Volume 44 (2011)

OCL Impact Analysis for Textual Modelling

strategies for OCL expressions after model changes.

4 How Change Events Affect Expression Values

Our goal is to find out for which context elements o a given OCL expression evaluates to a
different value due to a given change event. We relax our goal by assuming that the overall
expression may change its value when one of its subexpressions changes its value. Later, we
will add specific rules to detect cases where a particular change of a subexpression’s value can
be proven to have no impact on the overall expression’s value.

For some (sub-)expression types we understand that their value is influenced by a model
change, but not always does this lead us to the self object based on which to re-evaluate them.
In particular, an allInstances() call, influenced only by deletions and creations of objects
of the class on which allInstances() is called, are not evaluated on individual objects. In-
stead, if an allInstances() call’s value changes, it changes for all elements of the overall
expression’s context type.

For all other (sub-)expression types, it is not the existence of an object that decides about an
expression’s value but the values of an object’s properties through which an object is connected
to other objects on behalf of references. Change event notifications that signal the modification
of a property’s value have an impact on the value of property call expressions. Based on this,
we have to identify the navigation paths along properties that may have led from the overall
expression’s self object to the source of the property call expression.

5 Computing self from Change Notifications

Let us assume we received a change event notification for a property change with the single
source object s which is always an element of a class type because objects of non-class types are
immutable values, so no change event notifications can be emitted for those.

For each property call expression p in the parse tree of the overall expression e under analysis
we desire to find a computable function selfp,e(s) that for the change event source object s can
compute the set of context objects o on which the overall expression e may evaluate to a result
different from the result obtained before the change. In those cases where the overall expression
e is obvious, selfp(s) is a shorthand for selfp,e(s).

For example, self is the source expression of the property call expression self.a. If
we receive a change notification for property a on object s, the function for the (sub-)expression
self is defined as self self.a(s) := s. It computes those context objects for which self evaluates
to s and hence for which the overall expression may have changed its value due to the change
indicated by the notification.

For a property change event, we can determine all PropertyCallExp expressions p in the
tree that navigate that property. For all of those, we compute selfp(s). The union of all these
results over all applicable expressions p is the set of context objects for which the expression
may have changed its value.

We now declare a function

tracebackn,e(s : Element, t : Sequence(Property)) : Set(Element)

Proc. OCL 2011 6 / 20

ECEASST

for class-typed objects s that we will use in our definition of selfp(s).

Definition 1 (traceback) tracebackn,e(s, t) computes a set of context elements o such that when
the overall expression e is evaluated for o then the objects or values to which the subexpression
n of the overall expression e evaluates contains{

the single class-typed object s if t->isEmpty()
a tuple with s in tuple part identified by t->first() if t->notEmpty()

Typically, the overall expression to which the subexpression n belongs is obvious. Therefore,
tracebackn(s, t) is short for tracebackn,e(s, t). Like selfn(s), we define tracebackn,e(s, t) only for
single objects s.

With the traceback function we can now define the selfp,e(s) function with p being a property
call expression that has n as its source expression, as follows:

self p,e(s) := tracebackn,e(s , Sequence{})

In other words, self p,e(s) is the set of context elements o such that when e is evaluated for o,
the property call expression’s source expression n may evaluate to the source element s on which
the change occurred. This, in turn, implies the possibility for a change of the n subexpression in
case e is re-evaluated on o, and this was the definition of self p,e(s).

6 Implementing the tracebackn,e(s, t) Function

We will now inductively implement the tracebackn,e(s, t) function for all types of OCL expres-
sions. The implementation in most cases is recursive for those expressions that have a source or
argument expressions. We define tracebackn,e(s, t) using OCL.

In the implementation of traceback it is sometimes necessary to construct an expression based
on the structure of the expression node n for which the traceback function is being implemented.
For example, if we want to navigate from an object x across a property to the opposite end of an
property call expression n we write

x. ‘n. referredProperty .getOpposite() ‘

meaning that the expression between backquotes, which results in a property to be navigated,
is first evaluated and then placed into the expression in which it is used. You may compare
this with the backquote expansion performed by a Unix command line shell. In fact, the OCL
expression constructed for the implementation of the traceback function will just hold the name
of the element resulting from the expression in backquotes, replacing the backquoted part.

6.1 PropertyCallExp

There are two flavors of a property call depending on the type of the source object from which
the property value is to be retrieved. If the source object’s type is a class, the traceback func-
tion has to determine all objects of the source expression’s class whose property value for the
referredProperty is—or in the case of a multi-valued property: contains—s. If the source

7 / 20 Volume 44 (2011)

OCL Impact Analysis for Textual Modelling

object’s type is a tuple type, the attribute access fetches a tuple component whose value is defined
by the value expression of a TupleLiteralPart owned by a TupleLiteralExp.

For a property call expression n the traceback function is therefore defined as follows:

tracebackn(s, t) :=
let t ′ : Sequence(Property) =

i f n . source . type .oclIsKindOf(TupleType) then
t−>prepend(n . referredAttribute)

else
t

endif in
let sourceObjects :Set(Element) =

i f n . source . type .oclIsKindOf(TupleType) then
Set{s}

else
‘n . source . type ‘ . allInstances ()−>select (

‘n . referredProperty ‘ = s)
endif in

sourceObjects−>collect (so | tracebackn.source(so, t ′)))

Note, that sourceObject is always a single element because a class-typed element at any
point in time can be an attribute value of at most one other element; for the tuple case, s is passed
through unchanged, so the invariant that s represents a single element is maintained trivially.

The reverse navigation here is specified using a general, yet complexity-wise expensive and
scope-wise not precisely defined all- Instances() expression. However, an implementa-
tion can apply three major improvements:

• For containment properties, including EMF attributes, typical repository implementations
– including EMF – provide efficient navigation to an element’s container.

• For non-containment, non-elementary properties, a repository may provide query capabil-
ities that can evaluate the reverse navigation more efficiently than actually evaluating an
allInstances() expression.

• An OCL environment may allow its users to define scope and visibility rules obeyed when
reverse-navigating references.

Some modeling environments allow its users to declare derived properties, e.g., by specifying
an OCL expression as the derivation rule. Such a derived property declaration is equivalent to
a parameterless OCL-specified operation whose handling by traceback is explained in Section
6.10. We therefore do not treat OCL-specified derived properties here because it does not restrict
the general applicability of the approach.

6.2 IfExp

An if-expression n has three subexpressions: the condition, the then-branch and the else-
branch. The result of the IfExp is defined either by the then-branch or the else-branch.
Therefore, the traceback function only has to go down those branches. The condition expression

Proc. OCL 2011 8 / 20

ECEASST

may contain its own property call expressions that trace back to self but since it does not
evaluate to the IfExp’s result it plays no role in the definition of the traceback function for the
IfExp itself. We therefore define:

tracebackn(s, t) := tracebackn.thenExpression(s, t)−>union(
tracebackn.elseExpression(s, t))

6.3 TypeExp, PrimitiveLiteralExp, EnumLiteralExp, NullLiteralExp, InvalidLit-
eralExp

These classes of expressions don’t have subexpressions, are themselves not a self expression
and evaluate to a constant value c. Remember that they occur somewhere in the tree of the overall
expression e which is defined for the context element class C. By definition, s can only be of a
class type and therefore never assume the value obtained from evaluating any of the expression
types discussed here. Consequently, for all three expression types, we can define:

tracebackn(s, t) := Set{}

6.4 CollectionLiteralExp

Recall that the tracebackn(s, t) function is defined only for s being a single element that has a
class as its type. Therefore, for a context element o to be part of the tracebackn(s, t) result and
with n being a CollectionLiteralExp, s can not be the whole collection but may only
occur in any of the literal’s parts when evaluated for a context o. In particular, we don’t have to
consider CollectionRange parts because their elements are of type Integer which is not
a class.

The traceback function for a CollectionLiteralExp expression n is hence defined as
follows:

tracebackn(s, t) := n . parts−>select (p |
p.oclIsKindOf(CollectionItem))−>collect (p |

tracebackp.item(s, t))

6.5 TupleLiteralExp

By definition, s can only be of class type. Therefore, if for tracebackn(s, t) the list of tuple parts
t to extract is empty, n cannot evaluate to a tuple for any context, so the empty set results.

If t contains a Property identifying a tuple literal part by its name, the traceback function
needs to compute the context objects for which the identified tuple literal part’s value expres-
sion can evaluated to s, with the first element of t removed. Therefore:

tracebackn(s, t) :=
i f t=Sequence{} then

Set{}
else

tracebackn.part->select(attribute.name=t->first().name).value(s,
t−>subSequence(2 ,t−>size ()) ,V)

endif

9 / 20 Volume 44 (2011)

OCL Impact Analysis for Textual Modelling

6.6 IteratorExp

Expressions of this type subsume predefined iterator expressions such as collect, select,
reject, exists, forAll, isUnique, sortedBy, collectNested, one or any. They
all define a single implicit, a single explicit or multiple explicit iterator variables and operate
on the evaluation result of a source expression. This behavior causes a special propagation
through the traceback function for VariableExp expressions in case the variable referred by
the VariableExp is an iterator variable of an IteratorExp expression (see Section 6.9.1).

Some iterators, such as exists and isUnique result in a value of type Boolean. By def-
inition, those iterators can never produce s as their result because s is always class-typed. Other
iterators, such as select or reject compute a sub-collection of the source collection. The
collect and collectNested iterators are special in that they map each combination of
iterator variables over the source collection to some other object computed by the body expres-
sion.

We define tracebackn(s, t) for IteratorExp expressions n as follows:
tracebackn(s, t) := i f n.name = ’select ’ or n.name = ’reject ’

or n.name = ’sortedBy’ or n.name = ’any’ then
tracebackn.source(s, t)

else
if n.name = ’collect ’ or n.name = ’collectNested’ then

tracebackn.body(s, t)
else
-- iterator with Boolean result
Set{}

endif
endif

6.7 IterateExp

The result of an iterate expression is computed by its body expression. Therefore, the
traceback definition for iterate applies itself to the body as follows:

tracebackn(s, t) := tracebackn.body(s, t)

The more difficult part about the iterate construct is evaluating the traceback function for
the “result” variable that keeps the result of the previous iteration or an initialization value (see
Section 6.9.2).

6.8 LetExp

The value of the let-expression is defined by its in-expression. Therefore,
tracebackn(s, t) := tracebackn.in(s, t)

6.9 VariableExp

There are five types of variables that a VariableExp expression may access, each of them
discussed by one of the following subsections. We will work out the traceback definitions for

Proc. OCL 2011 10 / 20

ECEASST

each of them separately. It should be sufficiently obvious how to combine them into a single
definition of the traceback function.

6.9.1 Iterator Variables

Iterator variables are those defined by iterator expressions such as select or collect. The
values that the iterator variable can assume are taken from the values of the collection over
which the iterator expression loops. This collection is computed by the n.source expression.
Therefore,

tracebackn(s, t) := tracebackn.referredVariable.loopExp.source(s, t)

6.9.2 Iterate Result Variable

The result variable of an iterate expression can be initialized by an expression. In this case,
it may be referred in the iterate’s body expression. In any case, at the end of each iteration,
the result of evaluating the body expression is assigned to the result variable.

For the result variable to assume the value s it either has to have been initialized to s by its
initialization expression, or the iterate expression’s body has at some point evaluated to s.
We can therefore define:

tracebackn(s, t) :=
tracebackn.referredVariable.initExpression(s, t)−>union(
tracebackn.referredVariable.baseExp.body(s, t))

6.9.3 Operation Parameters

To understand the possible values an operation parameter can assume, we have to look at the
expressions calling the operation to which the formal parameter belongs. We can limit the set
of operation calls considered to those reachable from the root expression There is no direct link
between the expression used as actual parameter and the called operation’s formal parameter.
Instead, the binding happens through two indirections.

First, the variable declaration referred by the variable expression is linked to the operation’s
formal parameter only by name equality. Second, the formal parameter is linked to the actual
parameter only by the position in the parameter list. With this, we can define the traceback func-
tion for variable expressions referring to variable declarations representing a formal parameter
of an operation op whose body expression contains n:

tracebackn(s, t) :=
let params:Sequence(Parameter) = op .parameters in
let fp :Parameter = params−>select (name = n . referredVariable .name) in
let pos:Integer = params−>indexOf(fp) in
let actualParamExprs:Collection(OclExpression) = op . referringExp−>collect (

arguments−>at (pos)) in
actualParamExprs−>collect (ape | tracebackape(s, t))−>flatten ()

This definition computes the formal operation parameter in the let-expression for p, its po-
sition in the list of formal parameters as pos and with that the actual parameters of all operation

11 / 20 Volume 44 (2011)

OCL Impact Analysis for Textual Modelling

call expressions calling op used for the formal parameter bound to p. For each of those actual
parameter expressions, the traceback function is used to determine the context objects for which
the value passed as the parameter under consideration could have been s. The resulting collection
of collections of context elements is finally flattened.

6.9.4 self

The self expression can occur in two shapes: inside or outside of an operation body definition.
If it occurs outside of operations, it evaluates to s if and only if it is evaluated with s as context
object.

If it occurs inside an operation body, similar to the operation parameters discussed in 6.9.3,
the source expressions of all operation calls to the respective operation that are reachable from
the root expression analyzed need to be considered.

Let’s assume, the operation containing the occurrence of the self expression is bound to op
which is empty in case the occurrence of self is outside of an operation. Then we can define:

tracebackn(s, t) :=
i f op−>isEmpty() then

s
else

op . referringExp .source−>collect (selfSource | tracebackselfSource(s, t))−>flatten ()
endif

6.9.5 Let Expression Variables

The let variable’s value is defined by the LetExp expression’s variable declaration and its re-
spective initExpression. Therefore, for variable expressions accessing a let-expression’s
variable, we define

tracebackn(s, t) := tracebackn.referredVariable.initExpression(s, t)

6.10 OperationCallExp

The operation call’s value is determined by its body. The parameter variable values and the value
for the self variable will be traced back to the argument expressions1 We define:

tracebackn(s, t) := tracebackn.referredOperation.body(s, t)

It may be noted that this leads to a recursive definition for recursive operations.

6.10.1 oclAsType()

If n is an OperationCallExp where the operation called is oclAsType(), traceback is
defined as follows:

1 The way our implementation handles this, all matching argument expressions of all calls to the operation will be
considered. While this ignores our knowledge about the particular call hierarchy, it eases caching.

Proc. OCL 2011 12 / 20

ECEASST

tracebackn(s, t) := i f s .oclIsKindOf(‘n.arguments−>at (1) ‘) then
tracebackn.source(s, t)

else
Set{}

endif

If s is not of the type requested by the oclAsType() cast operation, for no context element
o can the cast expression evaluate to s. In all other cases, the cast expression may evaluate to s if
the cast’s source expression may evaluate to s.

6.10.2 Calls to Standard Library Operations

The standard library defines many operations on collections, such as including, excluding
and isEmpty. The OCL specification [The10] defines them again in terms of OCL expressions.
In most cases, the result expression for the operation’s return value is provided as an OCL ex-
pression.

However, in some cases the result is not defined using the = operator and a direct OCL
expression but rather by a set of OCL-specified predicates that span the operation result, the
value of self as well as the argument values. Examples of such operations are union and
intersection.

The union operation can be specified directly in OCL as

context Set(T) : :union(s :Set(T)) :Set(T)
body:

s−>iterate (i ; acc:Set(T)=self | acc−>including(i))

The example illustrates that just because the OCL specification chooses a different way to
specify some of the standard library operations on collections, this does not exclude the possi-
bility to provide a closed specification as an OCL expression for them. It is left as an exercise to
the reader to prove this for the remaining standard library operations as well.

6.11 Putting it All Together

Because traceback is defined for each specialization of OclExpression, it is complete for
the entire OCL language specification. The standard library operations map down to standard
OCL constructs that are covered by traceback.

We need to assemble the entire traceback function from the fragments provided in the sections
on each of the OCL constructs. The tracebackn,e(s, t) function is defined as a case distinction
over the type of the node n as follows:

tracebackn,e(s, t) :=
i f n .oclIsKindOf(IfExp) then

tracebackn.thenExpression(s, t)−>union(tracebackn.elseExpression(s, t))
else

if n .oclIsKindOf(TypeExp) or n .oclIsKindOf(PrimitiveLiteralExp) or
n .oclIsKindOf(EnumLiteralExp) or n .oclIsKindOf(NullLiteralExp) or
n .oclIsKindOf(InvalidLiteralExp) then

Set{}

13 / 20 Volume 44 (2011)

OCL Impact Analysis for Textual Modelling

else
. . .

endif
endif

6.12 Application to the Motivating Example

We can now apply the traceback function to the motivating example. We will show the com-
putation of the context element for the following change event: Removing the “Administration”
department from the sub-departments of the “Development” department alters the Depart-
ment.subDepartments feature which is used by the self.subDepartments subex-
pression of the Department::allSubDepartments() operation’s body expression (see
Listing 1) which in turn is called by the FURCAS property initialization expression for the
projectTeam property in the first alternative of template Project, as shown in Listing 3.
Intuitively, this change would require the employees of “Administration” to be removed from the
projectTeam property of the “CommonCosts” Project. Starting from this change event
the traceback computation works as follows:

selfself.subDepartments, self.lead.department.allSubDepartments().employees(Development) =
-- applying the definition of self:
tracebackself, self.lead.department.allSubDepartments().employees(

Development, Sequence{}) =
-- applying rule for VariableExp (see Section 6.9) for the self case
-- for occurrences inside operation bodies. op.referringExp.source leads
-- to the self.lead.departmentexpression.
self . lead .department−>collect (selfSource | tracebackselfSource(

Development, Sequence{}))−>flatten () =
tracebackself.lead.department(Development, Sequence{}))−>flatten () =
-- applying the PropertyCallExp rule for the non-Tuple case,
-- see Section 6.1; n.source.type is Employee:
Employee. allInstances ()−>select (department=Development)

−>collect (so | tracebackself.lead(so , Sequence{}))−>flatten ()
-- Evaluating the Employee.allInstances()->select combination and applying the
-- PropertyCallExp rule for the non-Tuple case, this time for self.lead:
Set{John, Jane , Judy}−>collect (so |

Project . allInstances ()−>select (lead=so)−>collect (so2 |
tracebackself(so2, Sequence{})))−>flatten () =

-- Now, self does not occur inside an operation body. We expand
-- Project.allInstances() and traceback accordingly:
Set{John, Jane , Judy}−>collect (so | Set{CommonCosts, NewProduct}
−>select (lead=so)−>collect (so2 | so2))−>flatten () =

-- evaluate collect/select combination and flatten; note that NewProduct is
-- part of the result because Jane from the Developmentdepartment leads it:
Bag{CommonCosts, NewProduct}

The result contains both, “CommonCosts” and “NewProduct” which is correct from a trace-
back point of view because for both projects the expression self.lead.department.all-
SubDepartments().employees has changed its value. For both projects it evaluated to

Proc. OCL 2011 14 / 20

ECEASST

Set{ John, Jane, Judy, Anne, Amber, Arthur} before the change and Set {
John, Jane, Judy} after the change. However, the “NewProduct” project did not have its
projectTeam property initialized by the self.lead.department.allSubDepart-
ments(). employees expression because its isDepartmentWide property is false. It
can be removed from the context elements by the FURCAS runtime before re-evaluation starts.

6.13 Further Performance Improvement Attempts

We evaluated four more approaches particularly aiming at more precise results with fewer ele-
ments in the traceback results for which the evaluation result has not actually changed. Due to
space limitations we outline them only briefly.

6.13.1 Partial Evaluation

Change notifications identify the element changed, as well as the old and new value for the
feature that changed. This information can be used to evaluate the subexpression immediately
affected by the change for the model state before and after the change. If the subexpression
happens to be the source of another expression then in some cases it is possible to evaluate that
other expression, again for the state before and after the model change. For example, if a change
notification describes the change of an element’s name attribute, and there is an expression
self.name = ’abc’, then this expression can be evaluated for the old and new model state.
If the name attribute changed from a value not equal to ’abc’ to another value not either equal
to ’abc’ then the overall expression remains false.

This principle can be recursively extended along the expression tree. Partial evaluation may
fail in case the values for variables are not known. However, our benchmarks show that in many
cases partial evaluation results in significant performance gains.

Partial evaluation can also be applied to IteratorExp expressions that use Boolean pred-
icates to select or reject elements. Such an expression can only produce a certain element if it
passed the respective predicate. If partial evaluation can prove that the element at hand cannot
have passed the predicate, the current traceback path can be pruned at that point.

6.13.2 Delta Propagation

Partial evaluation can only continue as long as the subexpression whose old and new value are
known is used as the source expression of another expression. However, if the old and new value
of a collect iterator’s body expression are known then due to the flattening that happens for
collect we can infer how the change propagates to the collect expression’s value. In
particular, if elements are added to the body’s value, the collect value at least contains these
elements, too.

We found a class of expressions that propagate such changes monotonically, including the
collect expression. For example, the select iterator is monotonic in its source expression.
When elements are added to a select’s source then the result can at most change by adding
these elements.

We propagate changes through monotonic expressions, resulting in a superset of changes pos-
sible for the overall expression. If this superset can be proven to be the empty set then we know

15 / 20 Volume 44 (2011)

OCL Impact Analysis for Textual Modelling

that the changes can not imply any changes to this overall expression.
Our benchmarks have shown the additional efforts for delta propagation to pay off significantly

based on the reduction in elements for which re-evaluation needs to be triggered.

6.13.3 Operation Call Selection

In Section 6.9 we have specified how to trace back VariableExp expressions referring to
operation parameters and an operation’s self variable. Recall how we determined all possi-
ble calls to the operation to find all possible substitute expressions for the parameter or source
expression, respectively.

This procedure can be sharpened further, particularly for the case where an operation body is
traced because a single OperationCallExp referring to the operation is being traced back. In
this case we know exactly which call to use to substitute the parameter and self variables. Our
benchmarks show that this improvement results only in minor gains only in some cases which
came as a surprise (see Figures 4a and 4b).

6.13.4 Unused Checks

We found out that in some special cases, based on the information delivered by the change
notification, it is possible to prove that a subexpression is not used during the overall expression’s
evaluation. For example, if the change immediately affected an expression within a IfExp’s
then expression and sufficient information was delivered to evaluate the IfExp’s condition to
false, we know that the then expression does not contribute to the IfExp’s value. Therefore,
the then expression’s change has no effect on the overall expression.

Based on this idea we defined and implemented an unused function which we can evaluate for
any change and any subexpression. It also carries forward the values of variables inferred so far
which increases the share of successful partial evaluations, such as for the IfExp’s condition
expression.

Our benchmarks, however, have shown that the vast amount of partial evaluations necessary
for trying to prove that a subexpression does not contribute to the overall expression’s value on
average does not pay off (see again Figures 4a and 4b). It may be possible that clever caching of
partial evaluation results may change this, but we haven’t investigated this any closer yet.

7 Validation

The most important questions we hoped to get answers for by our experiments were these:

• Would the impact analysis still provide benefits for changes that have far-reaching effects,
or would it be better for those cases to just re-evaluate the expressions affected on all their
context elements?

• How well would which variant of the impact analysis algorithm perform for which sce-
nario?

• How great would the overall benefits be—if any—for the respective scenario?

Proc. OCL 2011 16 / 20

ECEASST

(a) Central change. (b) Large peripheral change.

Figure 3: Re-evaluation times for a central change affecting most parts of the model (Fig. 3a)
and for many changes in the rims of the larger model (Fig. 3b). The upper red dashed line
shows re-evaluation of all OCL expressions on all applicable contexts. The middle dotted black
line shows re-evaluation of those OCL expressions whose filter condition matches the respective
change notification, on all applicable contexts. The lower solid blue line shows re-evaluation
of those OCL expressions whose filter condition matches the respective change notification,
restricted to those context elements identified by the instance scope analysis.

• How do the different algorithm variants such as unused checks, partial evaluation and delta
propagation influence overall performance?

• Can the impact analysis make global OCL re-evaluation scale to large model sizes?

We performed two large benchmarks [Hol10] with EMF models of approximately 4,000 ele-
ments and 10,000 references, using 380 OCL expressions and two different change logs that we
re-played. Using the technique described in [Hol10], we chop off parts of this model to obtain
a series of realistic models of varying sizes. The first change log describes 150 changes in core
parts of the model, causing major ripple effects during re-evaluation and therefore to be consid-
ered a “worst-case” scenario. The second change log has 1,700 changes mostly in the peripheral
areas of the model where we don’t expect major ripples.

We were able to compare various algorithm variants, as shown in Figure 4. Presented below
are the results of the best-performing one. Figure 3a for the central changes shows the improve-
ments using the impact analyzer as compared to only using event filtering applied by the class-
scope analysis described in [CT05, CT09, AHK06], compared to the most naı̈ve approach where
all expressions on all their context objects are re-evaluated after each change. Re-evaluation with
event filtering only takes approximately 2.4 times longer than when using the impact analyzer.
The complete re-evaluation takes about twelve times longer.

Figure 3b shows the results for the large, peripheral change log. There, relative savings are,
as expected, even greater and scalability is even better as fewer ripples occur during traceback
evaluation. Using only event filtering instead of the full impact analyzer causes the re-evaluation

17 / 20 Volume 44 (2011)

OCL Impact Analysis for Textual Modelling

1186 1994 2307 2957 3595 3735 3785

0e
+

00
1e

+
10

2e
+

10
3e

+
10

4e
+

10
5e

+
10

1. Without unused checks, TracebackSteps
2. Without unused checks, without OperationCallExp selection, TracebackSteps
3. Without delta propagation, without unused checks, TracebackSteps
4. Without unused checks, without delta propagation, without OperationCallExp selection, TracebackSteps
5. With delta propagation, NavigationSteps
6. Without delta propagation, NavigationSteps
7. Without OperationCallExp selection, TracebackSteps
8. All optimizations activated, TracebackSteps
9. Without delta propagation, TracebackSteps
10. Without delta propagation, without OperationCallExp selection, TracebackSteps

Total re−evaluation time meaned

Number of model elements (model size)

To
ta

l r
e−

ev
al

ua
tio

n
tim

e
in

 n
an

os
ec

on
ds

(a) Central change.

1175 2015 2388 2652 3642 3871 3942 3979

0e
+

00
2e

+
10

4e
+

10
6e

+
10

8e
+

10

1. Without unused checks, TracebackSteps
2. Without unused checks, without OperationCallExp selection, TracebackSteps
3. Without delta propagation, without unused checks, TracebackSteps
4. Without unused checks, without delta propagation, without OperationCallExp selection, TracebackSteps
5. With delta propagation, NavigationSteps
6. Without delta propagation, NavigationSteps
7. Without OperationCallExp selection, TracebackSteps
8. All optimizations activated, TracebackSteps
9. Without delta propagation, TracebackSteps
10. Without delta propagation, without OperationCallExp selection, TracebackSteps

Total re−evaluation time meaned

Number of model elements (model size)
To

ta
l r

e−
ev

al
ua

tio
n

tim
e

in
 n

an
os

ec
on

ds

(b) Large peripheral change.

Figure 4: Re-evaluation times for a central change affecting most parts of the model (Fig. 4a)
and for many changes in the rims of the larger model (Fig. 4b), comparing the effects of the
different performance improvements discussed in Section 6.13.

to take approximately 20 times longer. Full re-evaluation takes about 120 times longer2. Note,
that given the good scalability these ratios will increase even further for growing models.

More detailed analyses have shown that the use of the allInstances() operation affects
the scalability properties. At least with a simple implementation of this operation, re-evaluation
times for those expressions increase with growing model size which the impact analyzer cannot
avoid. For expressions not using allInstances() we were able to show that there is no
measurable increase in re-evaluation time for growing models when the changes are peripheral
and therefore do not cause major ripple effects.

Figures 4a and 4b show the impact of the further improvements discussed in Section 6.13,
again benchmarked for the two different change sets.

Regarding the algorithm’s reliability, our various tests have not shown a single case where
context elements for which an expression changed its value were missing from the analysis re-
sults. While lacking formal proof, this indicates that the conservative construction of the context
element set is correct.

8 Conclusions and Outlook

We have presented an algorithm that for an OCL 2.2 expression and a model change event re-
liably and efficiently determines a set of context elements for which the expression may have
changed its value due to the change signaled by the event. The algorithm has asymptotically
optimal complexity and handles operation calls, including recursive operation calls, correctly.

Based on our implementation, we have conducted measurements with a non-trivial meta-
model, many different OCL expressions of different complexities, and a number of sample

2 We obtained these ratios from our measurements; they are hard to recognize “visually” in the figures.

Proc. OCL 2011 18 / 20

ECEASST

models. We used the Eclipse EMF MDT/OCL 3.1.0 evaluator and based our impact analysis
implementations on it. Partial evaluation, delta propagation and selective operation call trace-
back improved performance significantly. With this, even for worst-case scenarios with central
changes causing ripples throughout the model, using the impact analyzer pays off on average,
leading to a reduction in re-evaluation efforts by a factor of twelve compared to the most naı̈ve
approach, and still a factor of 2.4 compared to the event filtering-only approach. For average
cases with moderate ripple effects these factors improve to 120 and 20, respectively.

Our benchmarks show that the impact analyzer makes incremental OCL re-evaluation scalable
and hence practical for applications such as model validation, notification synthesis for OCL-
specified derived properties as well as OCL-based attribute grammars.

Further research should be devoted to more intelligent variable value inference during com-
puting the traceback function. Regarding the unused function, caching techniques should be
considered for the many partial evaluations it requires. Last but not least, special rules for stan-
dard library operations with known semantics can be applied during unused evaluation.

We have made the impact analyzer described here available as part of the Eclipse MDT/OCL
distribution, starting with Eclipse Indigo, in the OCL Editors and Examples feature in the Mod-
eling category.

Bibliography

[AHK06] M. Altenhofen, T. Hettel, S. Kusterer. OCL Support in an Industrial Environment. In
MoDELS Workshops. Pp. 169–178. 2006.

[BHRV10] Incremental Evaluation of Model Queries over EMF Models. 2010. Accepted.

[CT05] J. Cabot, E. Teniente. Computing the Relevant Instances That May Violate an OCL
Constraint. In CAiSE. Pp. 48–62. 2005.

[CT09] J. Cabot, E. Teniente. Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9):1459–1478, 2009.

[CW02] T. Clark, J. Warmer (eds.). Object Modeling with the OCL, The Rationale behind the
Object Constraint Language. Lecture Notes in Computer Science 2263. Springer,
2002.

[For82] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19(1):17 – 37, 1982.

[Fou10] E. Foundation. Eclipse XText Website. http://www.eclipse.org/Xtext/, 2010. Last re-
trieved 2010-07-06.

[GBU08] T. Goldschmidt, S. Becker, A. Uhl. Classification of Concrete Textual Syntax
Mapping Approaches. In Proceedings of the 4th European Conference on Model
Driven Architecture - Foundations and Applications. Lecture Notes in Computer
Science 5059, pp. 169–184. Springer-Verlag Berlin Heidelberg, 2008.

19 / 20 Volume 44 (2011)

http://www.eclipse.org/Xtext/

OCL Impact Analysis for Textual Modelling

[GBU09a] T. Goldschmidt, S. Becker, A. Uhl. FURCAS: Framework for UUID-Retaining Con-
crete to Abstract Syntax Mappings. In Proceedings of the 5th European Confer-
ence on Model Driven Architecture - Foundations and Applications (ECMDA 2009)
- Tools and Consultancy Track. CTIT, 2009.
http://www.furcas.org

[GBU09b] T. Goldschmidt, S. Becker, A. Uhl. Textual Views in Model Driven Engineering.
In Proceedings of the 35th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 2009.

[GM08] M. Garcia, R. Möller. Incremental evaluation of OCL invariants in the Essential
MOF object model. In Modellierung 2008. GI-Edition Lecture Notes in Informatics,
pp. 11–26. 2008.

[Gol10] T. Goldschmidt. View-Based Textual Modelling. PhD thesis, Karlsruhe Institute of
Technology (KIT), 2010.

[HJK+09] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, C. Wende. Derivation and Re-
finement of Textual Syntax for Models. In Proc. of the 5th European Conference
on Model-Driven Architecture Foundations and Applications (ECMDA-FA 2009).
Pp. 114–129. Springer, 2009.

[Hol10] M. Holzleitner. Performance Analysis of an OCL Evaluation Infrastructure. 08 2010.

[RG99] M. Richters, M. Gogolla. On the Need for a Precise OCL Semantics. In France
et al. (eds.), Proc. OOPSLA Workshop “Rigorous Modeling and Analysis with the
UML: Challenges and Limitations”. Colorado State University, Fort Collins, Col-
orado, 1999.

[RTD83] T. Reps, T. Teitelbaum, A. Demers. Incremental Context-Dependent Analysis for
Language-Based Editors. ACM Trans. Program. Lang. Syst. 5(3):449–477, 1983.

[SB07] A. Shankar, R. Bodı́k. DITTO: automatic incrementalization of data structure invari-
ant checks (in Java). SIGPLAN Not. 42(6):310–319, 2007.

[SS08] M. Seifert, R. Samlaus. Static Source Code Analysis using OCL. In Cabot and Van
Gorp (eds.), OCL’08. 2008.

[The05] The Object Management Group (OMG). MOF QVT Final Adopted Specification.
Nov. 2005.
www.omg.org/docs/ptc/05-11-01.pdf

[The10] The Object Management Group (OMG). Object Constraint Language, Version 2.2.
May 2010.
http://www.omg.org/spec/OCL/2.2/PDF

[TR81] T. Teitelbaum, T. Reps. The Cornell program synthesizer: a syntax-directed pro-
gramming environment. Commun. ACM 24(9):563–573, 1981.

Proc. OCL 2011 20 / 20

http://www.furcas.org
www.omg.org/docs/ptc/05-11-01.pdf
http://www.omg.org/spec/OCL/2.2/PDF

	Introduction
	Motivating Example
	Related Work
	How Change Events Affect Expression Values
	Computing self from Change Notifications
	Implementing the tracebackn,e(s,t) Function
	PropertyCallExp
	IfExp
	TypeExp, PrimitiveLiteralExp, EnumLiteralExp, NullLiteralExp, InvalidLiteralExp
	CollectionLiteralExp
	TupleLiteralExp
	IteratorExp
	IterateExp
	LetExp
	VariableExp
	Iterator Variables
	Iterate Result Variable
	Operation Parameters
	self
	Let Expression Variables

	OperationCallExp
	oclAsType()
	Calls to Standard Library Operations

	Putting it All Together
	Application to the Motivating Example
	Further Performance Improvement Attempts
	Partial Evaluation
	Delta Propagation
	Operation Call Selection
	Unused Checks

	Validation
	Conclusions and Outlook

