
Electronic Communications of the EASST
Volume 44 (2011)

Proceedings of the
Workshop on OCL and Textual Modelling

(OCL 2011)

Aligning OCL with UML

Edward Willink

20 pages

Guest Editors: Jordi Cabot, Robert Clariso, Martin Gogolla, Burkhart Wolff
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Aligning OCL with UML

Edward Willink1

1 ed at willink.me.uk, http://www.eclipse.org/modeling
Eclipse Modeling Project

Abstract: OCL is widely used by UML and other languages to constrain meta-
models and perform evaluations on models. Unfortunately no OCL 2.x specification
has ever been aligned with any UML 2.x specification. This lack of alignment makes
some OCL compliance points such as XMI interchange unachievable. This paper
describes how introduction of an OCL Pivot Meta-Model and clear exposition of
the Values package may provide a solution to the alignment and a variety of other
specification issues.

Keywords: OCL, meta-model, pivot model, library, auto-generation, templates

1 Introduction

The Object Constraint Language (OCL) evolved, initially within the Unified Modeling Language
(UML) as the textual language for expressing constraints that could not be represented graph-
ically. As part of the UML 2.0[Obji] revision activities, OCL was separated out as a separate
specification in recognition of OCL’s utility in non-UML contexts. Unfortunately the UML Re-
vision Task Force had insufficient resources to complete the revision of OCL 1.6[Objb] to align
with UML 2.0. A partially revised OCL 2.0 draft[Objc] was all that was available to accompany
UML 2.0.

When the QVT specification was developed, the utility of OCL was recognized and OCL
2.0[Objd] formed the basis for QVT 1.0[Objg]. The QVT Finalization Task Force also final-
ized the OCL 2.0 specification, but had insufficient resources to perform the very detailed proof
reading and consistency checking for a specification involving so many cross-references.

Subsequent revisions [Obje],[Objf] have addressed a number of inconsistencies, but the major
problems remain unaddressed.

Each version of OCL 2.x states in its Scope statement that it is aligned with the correspond-
ing UML 2.x specification. Sadly this statement is only an aspiration at present. In this paper
we examine the major misalignments and outline a proposal to resolve these and other minor
misalignments.

It is hoped that by presenting the community with an early insight into changes that may be
proposed for OCL 2.4, the community may be able to contribute constructively before, rather
than after, the revised specification is adopted.

A prototype of the UML-aligned OCL meta-models may be found in the optional Examples
and Editors of the Indigo release of Eclipse OCL[MDT]. This is officially released in June 2011.
Milestone builds have been available since December 2010. The prototype uses automated con-
version starting with potentially standard UML meta-models for OCL and UML. From these a
merged OCL Pivot Meta-Model and associated Eclipse Ecore[EMF] tooling are derived. De-

1 / 20 Volume 44 (2011)

mailto:ed _at_ willink.me.uk
http://www.eclipse.org/modeling


Aligning OCL with UML

spite the use of Ecore tooling, with this approach the name of a meta-class is an OMG-compliant
‘Class’ rather than the Ecore ‘EClass’.

The UML-alignment outlined below involves very few, if any, actual changes to the concrete
syntax and semantics of OCL; the changes are intended to just make the specification say what
many users think it already says. The changes to the abstract syntax are however quite significant.

In Section 2 we discuss the OCL specification and identify some problems in the way that
it is used. Then in Section 3 we identify more technical problems. We propose an OCL Pivot
Meta-Model as a solution to all these problems in Section 4. Finally we conclude.

2 Background

Although the OCL specification is partitioned very logically, it can appear that the specification
contains more information than is necessary.

• Clause 7 provides a non-normative and readable overview of OCL

• Clause 8 specifies the Abstract Syntax, comprising the Types and Expressions classes that
define the executable language,

• Clause 9 specifies the Concrete Syntax for the grammar and non-normative Concrete Syn-
tax classes that define the readable language,

• Clause 10 specifies the Evaluation semantics using the Values and Evaluations classes to
define the behavior,

• Clause 11 specifies the OCL Standard Library which provides the operations and iterations
that make Types and their Values useful,

• Clause 12 specifies the Complete OCL language; an ability to define an independent OCL
Document that complements a pre-existing model.

• Annex A provides a more formal but non-normative foundation for OCL semantics

A problem in understanding the specification, is that constraints that apply solely to the AS
are found in Clause 8, constraints that affect construction of the AS are found in Clause 9, and
constraints that affect execution of the AS are found in Clause 10, while the operations used in
constraints are in Clause 11.

Much of Clause 10 on Evaluation seems strange, irrelevant and repetitious, but it serves an
important and surprisingly practical purpose that we discuss in Section 4.2.

Comparison of Clause 12 on Complete OCL with the preceding clauses quickly reveals that
Clause 12 is a bit thin; Clause 12 is still a preliminary draft, and it is in realizing Clause 12 that
the major UML alignment issues arise. We discuss these in Section 3.1.

2.1 OCL Specification Compliance Points

The OCL specification defines three major compliance points, with additional minor options for
evaluation.

Proc. OCL 2011 2 / 20



ECEASST

Figure 1: Basic Scenario for executable usage of UML.

2.1.1 Concrete Syntax

Interchange of concrete syntax between tools is moderately successful today, but is limited by
ambiguities in the specification and consequent divergent misunderstandings by tool implemen-
tors. These difficulties should be significantly alleviated by a sound OCL Standard Library model
as described in our companion paper[Wil].

2.1.2 XMI Interchange

XMI Interchange is important to allow the costs of parsing the Concrete Syntax to be isolated
from execution costs. In the XMI representation, all syntax sugar is removed and references di-
rectly access target features using properties such as OperationCallExp::referredOperation. This
requires the target operation to have a URI, which is only available for user models. The OCL
Standard Library has no model and no policy for establishing URIs independent of a model, so
XMI Compliance is impossible whenever a library operation is used. The lack of basic URIs is
addressed by providing a model for the OCL Standard Library as described in our companion
paper[Wil]. More serious URI problems arise with underspecification of Complete OCL and we
address these in Section 3.1.

2.1.3 Evaluation semantics

The specification requires that tools evaluate in accordance with OCL semantics, which is a
relatively modest requirement for basic arithmetic values, but becomes quite troublesome for
null, invalid and very large or high precision values.

The specification provides no API (Application Programming Interface) by which a query can
be invoked and, in practice, all OCL evaluation is encapsulated within some modeling environ-
ment. It is therefore not possible to detect whether an OCL tool uses the classes specified in
the Values package. Models do not and so practical tools do not either. This has allowed some
significant problems in the Values package to remain unreported. We address these in Section
4.2.

3 / 20 Volume 44 (2011)



Aligning OCL with UML

Figure 2: Basic OCL Integration Scenario.

2.2 OCL Usage

A standard way of using UML is shown in Figure 1. A UML model conforming to a UML
meta-model is maintained by an editing activity. When appropriate, this model is exported to
an EMOF (or Ecore) model conforming to a corresponding meta-model. The EMOF model
contributes to a code generation activity that produces a program that can be executed to exploit
EMOF objects that are instances of classes from the EMOF model.

The UML meta-model defines a rich suite of capabilities suitable for meta-modeling. The ex-
port to the EMOF meta-model reduces the capabilities to those necessary to support effective use
of models at run-time. The export applies Profiles, merges Packages and eliminates Associations
leaving just Properties at their ends.

When we extend models with OCL capabilities, we get the scenario shown in Figure 2 for
developing a UML model that includes constraints. (We omit the unchanged model execution,
in order to simplify the diagram.)

The OCL integration with UML is quite tidy with OCL providing an ExpressionInOcl class
that extends UML’s OpaqueExpression class. Distinct editors are usually required for the very
different characteristics of graphical UML and textual OCL.

The corresponding EMOF integration is troublesome because EMOF has discarded too many
UML concepts that OCL requires. We discuss the EMOF problems in Section 3.2. When we
just treat UML/EMOF and OCL in combination, and then consider constraints, defined in the
meta-model, for evaluation upon a model, we find the evaluation scenarios shown in Figure 3.

When we consider the desirable characteristics of the different ways that models are used we
find:

• Definition of models requires the richness of UML

• Execution of models benefits from the slimmed down efficient characteristics of EMOF

• Definition of OCL constraints requires much of the richness of UML

Proc. OCL 2011 4 / 20



ECEASST

Figure 3: Evaluation for UML or EMOF.

• Evaluation of OCL constraints benefits from a slimmed down efficient representation

The last two OCL considerations pull in opposite directions; a rich OCL + UML environment
for development and an efficient environment for evaluation. Neither is compatible with UML
or EMOF characteristics. UML is too rich for efficient execution and EMOF is too limited for
adequate model navigation.

The current OCL specification with its statement that OCL can be used with both UML and
EMOF is unhelpful and unrealistic. The deficiencies for EMOF behavior are too great. Tool
implementers are forced into pragmatic Bridge[AP] or Pivot[BD] solutions to support more than
one of EMOF and UML.

We will therefore propose, in Section 4.1, that the specification define a combined UML and
OCL Pivot Meta-Model that exhibits the more efficient characteristics of EMOF while retaining
the relevant richness of UML.

3 Problems

We have just identified limitations in OCL meta-models with respect to some conflicting usage
scenarios. We will now examine some more technical problems.

3.1 Complete OCL Problems

A Complete OCL document can complement a model and add features to it so that they can be
used as if they were part of the complemented model. Library types may also be complemented,
and so definition of an OclAny::isPersistent() operation may add an ability to evaluate
constraints concerning the persistent storage associated with any model element.

The additional Abstract Syntax for Complete OCL in Clause 12 comprises just the Expression-
InOcl class. Unfortunately problems arise when we try to realize the first paragraph of Clause
12.5 which states:

“A definition constraint is a constraint that is linked to a Classifier. It may only consist of
one or more LetExps. The variable or function defined by the Let expression can be used in

5 / 20 Volume 44 (2011)



Aligning OCL with UML

Figure 4: Specified relationship of a definition Constraint to a Class.

an identical way as an attribute or operation of the Classifier. Their visibility is equal to that
of a public attribute or operation. The purpose of a definition constraint is to define reusable
sub-expressions for use in other OCL expressions.”

[We will ignore the references to LetExps and variables and functions that refer to an obsolete
OCL 1.x concrete syntax and so makes the paragraph difficult to interpret for OCL 2.x.]

The subsequent description and figure show that the definition Constraint is realized by an
ExpressionInOcl that is indirectly owned by the context classifier via a Constraint. The figure is
redrawn as Figure 4 which corrects trivial UML misalignments.

The intent of “an identical way as an attribute or operation” is clear. A definition constraint
provides the definition of a feature that is usable in an OCL expression, and so must be usable
in both concrete and abstract syntax as if the defined feature formed part of the complemented
model. In UML, an attribute is a Property and both Property and Operation are Features, so a
definition Constraint should provide either a Property definition or an Operation definition.

Utility in the concrete syntax requires that the Feature definition can be looked up by hierar-
chical name in the OCL Environment. The specification of Environment lookup in Clause 9 can
resolve Property and Operation model elements. Unfortunately the Inherited Attribute rules are
missing from Clause 12 so it is unclear how a Property or Operation is resolvable from an object
structure that does not include such a feature. It is also unclear how a definition Constraint is
able to export a name into the Environment in the reverse direction to that for inherited attributes.

Utility in the abstract syntax means that a PropertyCallExp::referredProperty or an Opera-
tionCallExp::referredOperation is able to refer to the Feature definition. This requires the Fea-
ture definition to be either a Property or an Operation. None of the Constraint, ExpressionInOcl
or OclExpression classes shown in Figure 4 satisfy this requirement.

These considerations all indicate that the abstract syntax must be revised so that a definition
Constraint is realized by a Property or Operation as shown in Figure 5. With definition Con-
straints realized by features defined in models, the problem of installing the definition Constraint
for lookup in the Environment is resolved; the defined features are installed in the same way as
any other feature. The lookup results are features and so can be the target of references from the
existing expression abstract syntax.

Proc. OCL 2011 6 / 20



ECEASST

Figure 5: Property relationship of a Definition to a Classifier.

Figure 6: The Multiple Models problem for Complete OCL.

We have one more major problem to solve. What is the relationship between the Class, which
Complete OCL complements with a definition, and the Class, for which the definition is an
ownedAttribute or ownedOperation? We will examine this problem, shown in Figure 61, from a
variety of perspectives.

3.1.1 Merged or Multiple models

The simplest solution is that the two Package P’s and the two Class X’s are combined to form
merged Package P and Class X objects. However in an implementation, this means that the
Package P and the Class X in the UML model are modified by usage of Complete OCL.

The alternative is to maintain some form of composite model or index in which multiple
contributory models are treated as a coherent whole.

1 Mis-drawn using class rather than attribute notation to highlight the distinct elements involved.

7 / 20 Volume 44 (2011)



Aligning OCL with UML

3.1.2 Model Maintenance

The merged model is a conventional model and so should be amenable to support by a UML
modeling environment. However since the model is modified, it may be necessary to create a
distinct model for each usage, since each usage may have a different combination of Complete
OCL documents. The Complete OCL complements for one usage must not infect another usage.

The composite model comprises multiple unmodified conventional models, so these contri-
butions can be shared between usages. However special functionality is required to allow the
composite to behave coherently. This functionality will not be directly available from a UML
modeling environment.

3.1.3 Implicit Access

Implicit access occurs through navigation of a property, or invocation of an operation, in an OCL
expression.

For the merged model, this presents no new problems since the merged model is internally
coherent.

For the composite model the OCL tooling must direct the implicit access to use the feature
from the appropriate partial model.

3.1.4 Explicit Access

Explicit access occurs when reflection is used to access the properties. Since reflection is not
consistently specified in OCL 2.3, there is discretion as to how this is specified in the future.

In Figure 6, should the reflective access to Class::ownedAttribute for X return both X::y and
X::z hiding the distinct origins of the two features, or should there be a mechanism to obtain
distinct ownedAttributes from each?

The merged model can only present the coherent view. Additional capabilities are needed to
enable helper operations to provide partial returns.

The composite model naturally supports the disjoint view and helper operations can provide a
merged view. Reflection can therefore allow expression access to see disjoint or coherent views.

3.1.5 URIs

When a reference to a complementing definition is persisted via XMI, a URI must be established
for the definition so that the complementing definition can be reconstructed when the XMI is
loaded.

The merged model will naturally provide URIs appropriate to the merged context, which
solves the problem of providing a URI. But the merged context is unhelpful for reload, since
the distinct identity of the Complete OCL document is obscured, unless some special form of
URI is used to capture the distinct origin.

The composite model preserves the distinct model identities and so will naturally provide
URIs that correspond to the relevant document.

Proc. OCL 2011 8 / 20



ECEASST

3.1.6 Summary

Neither approach is entirely satisfactory. The merged model has significant problems with shar-
ing, URIs and full reflection. The composite model has fewer problems but requires additional
non-UML tooling to represent the composite. The first three perspectives identify implementa-
tion trade-offs that need not concern the specification. However the specification must make a
choice on the reflective behavior and URIs for Complete OCL and so the specification reduces
an implementation’s freedom from all perspectives. In Section 4.1 we propose a solution that
builds upon the composite model.

3.2 EMOF Problems

OCL is specified to be aligned with UML. Unfortunately this alignment collapses when UML is
exported as EMOF (or Ecore) and so Clause 13 is required to explain what doesn’t work and to
introduce EMOF-specific adaptations to make anything work at all.

Some functionality, such as the lack of support for Messages and States, is excluded. This
eliminates functionality that perhaps should not be in the specification at all.

Other exclusions such as the lack of support for Associations affect core modeling functional-
ity and limit the ability to navigate models.

The whole of Complete OCL is excluded, since the absence of the ValueSpecification and
Constraint classes is not rectified. Figure 2 shows the integration gap between OCL and EMOF.

EMOF omits Classifier and so the the OCL Standard Library cannot define operations for
primitive types. A workaround convention is therefore suggested in Clause 13.2 bullet 6 whereby
an accompanying class instance is provided for such types. This convention is not elaborated and
the associated packaging and URI issues are not addressed.

3.3 Other Problems

The Complete OCL and EMOF problems are serious. We now identify more minor UML-
alignment problems that we can also solve.

3.3.1 Iterator Operation

The iterate and iterator operations have no UML counterpart and so cannot be represented by
a UML meta-model. The OCL meta-model provides a Types and an Expressions package but
omits any reification of an Iterator operation and so the integration of an iteration with its context
classifier is unspecified. As a result, all support for iterators requires built-in functionality, and
indeed prior to OCL 2.3, the specification could be interpreted to require all names of iterators
to be hard-wired into the OCL grammar. OCL 2.3 clarified the status of names so that any name
can be used as an iterate or iterator operation.

In our Companion paper[Wil] we show how introduction of an Iteration class extending the
Operation class is sufficient to allow the OCL Standard Library to be modeled.

9 / 20 Volume 44 (2011)



Aligning OCL with UML

3.3.2 OclAny conformance

OCL uses the conformsTo relationship between types to determine substitutability. This rela-
tionship is almost identical to UML generalization; the main difference being the definition that
all UML classes conform to OclAny.

Direct realization of the above leads to some practical difficulties. Firstly the lookup of match-
ing features must use one algorithm to traverse the generalization hierarchy, and another to extend
on to OclAny. This irregularity becomes more of a concern when considering a UML operation
such as Classifier::conformsTo() which is specified to traverse the generalization hi-
erarchy and so requires that OclAny is part of the generalization hierarchy.

3.3.3 Reflection

The OclAny::oclType() operation was added to the OCL Standard Library when it was
realized that the MOF Element::getMetaClass() operation was not accessible for UML
meta-models, which do not merge MOF.

Since OCL mandates that all types conform to OclAny, use of OclAny::oclType() re-
quires that all types at all meta-levels must conform to OclAny.

4 Solutions

We can accommodate the conflicting UML-alignment requirements in a variety of ways.
We could eliminate all non-UML facilities from OCL, but OCL without Iterations would not

be of much utility, so this is untenable.
We could eliminate the statement that OCL is aligned with UML. This is pretty much unthink-

able given UML’s dependence on OCL.
We could revise UML so that it supports the facilities that OCL requires. This is possible

in principle, but hardly desirable since it may incur political difficulties and further practical
difficulties in mutual alignment.

In order to make OCL useful for EMOF meta-models, we could add the missing parts of UML
such as Associations and OpaqueExpressions to OCL. This can solve some EMOF problems
but creates inconsistencies whereby OCL provides additional classes solely for use in a simpler
context. To offer Complete OCL and OCL Standard Library support for EMOF without requiring
distinct EMOF and UML variants of OCL we would need to change EMOF.

4.1 OCL Pivot Meta-Model

In the following sections we will therefore pursue an alternative approach whereby we re-use
the constructive nature of the UML specification to select those packages that are relevant and
then merge these with additional OCL packages to create a new UML-derived OCL Pivot Meta-
Model.

With the OCL Pivot Meta-Model UML-derived, large parts will automatically be UML-aligned.
Since the UML and OCL meta-models are distinct, we can adjust any UML well-formedness
rules that are not applicable to OCL .

Proc. OCL 2011 10 / 20



ECEASST

Figure 7: Meta-Model merge to produce the OCL Pivot Meta-Model.

As a pivot model, the OCL Pivot Meta-Model is neutral and so independent of UML or EMOF
and so can be used in conjunction with a variety of alternate meta-models.

The OCL Pivot Meta-Model is a complete meta-model and follows the trend of ensuring that
major meta-models are self describing. In UML 2.4, a UML::Class has a UML::Class as its meta-
class. For the proposed UML-derived OCL Pivot Meta-Model, an OCL::Class has an OCL::Class
as its meta-class.

4.1.1 Meta-Meta-Model Merge

The OCL Pivot Meta-Model is derived by the package merge shown in Figure 7. The contribu-
tions to the merge are:

Basic UML
The UML InfrastructureLibrary::Core::Basic package defines the Essential MOF. It provides

efficient but inflexible representations of each class. For instance, subset properties are elimi-
nated so that an Operation is found in Class::ownedOperation, but not in Class::feature or Names-
pace::member or Namespace::ownedMember or Element::ownedElement.

Additional UML Constructs
OCL Constraint integration requires the InfrastructureLibrary::Core::Abstractions::Constraints

package.
Full type support requires the InfrastructureLibrary::AuxiliaryConstructs::Templates package.
OCL Message support requires the CallOperationAction and SendSignalAction classes that

are defined by the UML::Actions::BasicActions package and the Signal class defined by the
UML::CommonBehaviors::Communications package.

OCL State support requires State from the UML::StateMachines::BehaviorStateMachines pack-
age.

Unfortunately these packages were not intended to be merged into Basic, so they do not pro-
vide the same efficient representation. The Eclipse OCL prototype currently works around this
problem by manual creation of ‘Basic’ equivalents.

It is possible that the UML simplification process[Objh] may eliminate the Basic package
as a primary artifact, and exploit a QVT Operational transformation to derive it. It may be

11 / 20 Volume 44 (2011)



Aligning OCL with UML

Figure 8: Composite Pivot Model derived from disparate sources.

appropriate to enhance this transformation to also derive basic variants of relevant Advanced
Constructs packages.

Essential OCL
These are the packages defined by Clause 8 of the current OCL specification, with minor

enhancements to align with UML.

Complete OCL
This is the single class package defined by Clause 12 of the current OCL specification, with

some revision to align with UML.

Vendor-specific
The package merge is not constrained to the requirements of the OCL specification. Tool

vendors may merge further packages to support visitor protocols, useful operations or transient
caches.

Simplify
Following the package merge, the meta-model can be simplified to eliminate redundant classes

such as Type, see Section 4.3.2, remove redundant generalizations and convert the residual gen-
eralizations to conformances.

Proc. OCL 2011 12 / 20



ECEASST

4.1.2 Meta-Model Load

Before any evaluation on a user model can occur, its meta-model must be loaded. This currently
presents challenges since users may use a variety of UML, CMOF, EMOF and Ecore dialects
not all of which are supported by all tools. With a neutral pivot model the diverse sources are
accommodated by a variety of compilation or loading activities as shown in Figure 8.

Introduction of the OCL Pivot Meta-Model requires the user model to be converted to, or at
least interpreted in, a normalized form. The proposed OCL Pivot is similar to that advocated by
Bräuer[BD] to make implementation of Dresden OCL more flexible. The OCL Pivot presented
here is to make the OCL specification coherent.

Introduction of a meta-model load phase to the specification enables the following problems
to be resolved:

• Diverse meta-model dialects can be intermixed

• Complete OCL documents can be represented as OCL Pivot Models

• OCL Standard Libraries can be fully represented as OCL Pivot Models

• UML generalization can be re-interpreted as OCL conformance

• OclAny can be inserted into the conformance hierarchy

With all OCL concepts consistently modeled, the OCL Pivot Meta-Model can be used to
provide the URIs needed to solve the problem of XMI interchange.

With a normalized meta-model representation, limitations in OCL support such as navigating
non-navigable associations are caused by limitations in the meta-model loader rather than in
OCL. OCL is fully specified for such associations, but they are useable for EMOF only when
the org.omg.emof.oppositeRoleName tag introduced in MOF 2.4[Obja] is exploited by
both meta-model producer and consumer.

4.2 Primitive Types and Values

The representation of a value in OCL appears to be very similar to conventional languages, but
is actually very different. We will therefore examine the issue carefully.

4.2.1 Primitive Values

UML provides a PrimitiveTypes package that defines the primitives, such as Integer or String,
as a domain of values without specifying any representation or behavior. This vagueness is
important to allow a UML model to specify the required behavior of a wide variety of alternate
implementations without imposing a particular representation.

A primitive, as shown in Figure 9, can only exist within a suitable ‘container’, such as the
NamedElement::name Property that binds a String to perform the role of naming its NamedEle-
ment. For a more general purpose role such as a string value, UML defines LiteralString which

13 / 20 Volume 44 (2011)



Aligning OCL with UML

Figure 9: The String primitive attributes and their ‘containers’.

subtypes the polymorphic ValueSpecification. Similarly, OCL defines a string role in an expres-
sion using StringLiteralExpression which subtypes the polymorphic OclExpression. The pro-
gression NamedElement::name, LiteralString::value to StringLiteralExpression::stringSymbol
provides steadily richer roles, but does not specify any representation or behavior for use in
that role.

It is the OCL Standard Library that specifies primitive and non-primitive behavior, and it is
the OCL Values package that specifies an OCL representation for which that behavior applies.

In order to evaluate an operation such as String::toUpperCase() on a string, the string must
be contained in a context that supports that operation evaluation. This is a StringValue in OCL.
This is confusing to anyone familiar with almost any Object Oriented Language, since String
is conventionally a class that provides a rich suite of behaviors. In UML and OCL, a primitive
String has no associated representation or behavior. It is only as the model of a StringValue that
behavior defined by the OCL Standard Library is usable.

This confusion is compounded by practical OCL implementations that may reuse the String
type of their implementation language to realize the StringValue representation and behavior
for OCL. This reuse can work very effectively for basic functionality, but is troublesome for
precise functionality, since it is unlikely that a practical OO Language will have exactly the same
semantics as OCL. For instance, consider the irregularity whereby the UnlimitedNatural for an
unlimited value (plus-infinity) is invalid once the UnlimitedNatural is interpreted as either of
Integer or Real to which UnlimitedNatural conforms.

It is also tempting to use the Collection capabilities of an implementation language to directly
implement the OCL CollectionValue representations and behaviors. However considerable care
is needed with OrderedSet{Set{4.0}}->including{Set{4}}->size() to ensure
that the result is 1 rather than 2, since the encapsulated equality of 4.0 and 4 may not be respected
by the language semantics.

4.2.2 Object Values

The benefits of the Value hierarchy imposing consistent semantics independent of the underlying
implementation for primitive and collection values is equally applicable to object values.

OCL 2.3 specifies an ObjectValue class that maintains object history using a sequence of
LocalSnapshot instances. The ObjectValue::getCurrentValueOf(String) method determines the
prevailing value of an object property. This specification, right at the start of Clause 10, far

Proc. OCL 2011 14 / 20



ECEASST

Figure 10: Practical simplified OCL Value hierarchy for a Java tool.

exceeds what is necessary for practical tooling and probably explains why practical tools have
ignored the entire clause and realized values much more simply by direct use of implementation
language types and modeling environment objects. And equally, since the clause is irrelevant to
actual tools, the specification maintainers have failed to understand the clause and consequently
Clause 10 has more inconsistencies than any other part of the specification.

Object history is useful to define the foundation for the semantics of pre- and post-conditions
and of message histories, since the relationship between two system states must be specified.
However, a simple cache of @pre expressions is all that is necessary to support pre- and post-
conditions, and a selective trace of object activity can support OclMessage. No history at all is
required by implementations that don’t offer the @pre and message compliance points.

Discarding Clause 10 completely, and using model objects directly, loses the polymorphism
and couples the OCL tooling to a particular model object representation. Wilke[WTW] recog-
nized this limitation as the Model Instance Adaptation Variation Point and introduced Model
Instance adapters to accommodate the different object representations of Java, Ecore, XML or
Relational Data. It is ironic that this is what the OCL Specification already requires through
Value polymorphism. While maintenance of history may be an excessive implementation bur-
den, using a derived XMLObjectValue to mediate between the neutral OCL evaluation engine
and the XML specific representation is eminently sensible and necessary to provide an Object-
Value as the object representation.

4.2.3 Summary

Adopting the approach described above, a Java-based tool, might choose to delegate StringValue
and SequenceValue directly to Java’s String and ArrayList classes as shown in Figure 10, while
introducing an adapting layer of EcoreObjectValue or XMLObjectValue for specific Object rep-
resentations.

15 / 20 Volume 44 (2011)



Aligning OCL with UML

Maintaining the separation between behavioral representation and implementation representa-
tion for primitive values as specified by Clause 10.2 has considerable advantages; the behavioral
Value layer delegates to implementation types, but can impose OCL semantics consistently prior
to delegation. The Value layer may therefore provide a behavioral inheritance hierarchy that
matches the OCL primitive type hierarchy and so it does not matter whether the implementation
language has that hierarchy or not.

Unfortunately Clause 10.2 is very deficient in supporting this view. There is a StringValue
class that conforms to a PrimitiveValue class, but no BooleanValue, NumericValue or Inte-
gerValue classes. Clause 10.2 does not define any features for the PrimitiveValue classes, so
they appear to fail to fulfill their role of containing a primitive value. However in Clause 10.4,
Figure 10.14 provides a consistent model property for primitive Values, although again unfortu-
nately, Figure 10.14 as a whole exhibits a variety of meta-level confusions. Significant revision
of Clause 10 is required to support the actual OCL (and UML) primitives.

The OCL specification already requires that all values are maintained by derived Value class
instances within an evaluation. Once this aspect of the specification is implementable and real-
ized by tools, interchange within sub-tools may be easier.

4.3 Details

In previous sections we have described significant changes that are required. In this section we
identify a variety of comparatively small misalignments between UML and OCL and consider
whether and how they might be resolved.

4.3.1 Primitive Types

UML 2.4 has moved the Primitive Types to a separate package to facilitate reuse and defined
the previously missing Real type that OCL needed to use. OCL can therefore reuse this UML
package.

4.3.2 Types

UML has distinct Type, Classifier and Class classes, but OCL allows features to be added to any
type eliminating the major difference between the three UML classes. All three UML classes
can therefore be merged into one. The main challenge is to decide which name to use in the
merged OCL Pivot Meta-Model. UML has Package::ownedTypes and Class::superClasses and
we want to avoid UML users needing to learn a new or inconsistent vocabulary for the OCL Pivot
Meta-Model, so these names should persist. Type and Classifier all become Class reflecting the
availability of Class functionality for all types.

Of course with all types uniform, the need for companion classes to support Complete OCL
operations on data types is eliminated.

4.3.3 Iteration

With the OCL Pivot meta-model derived from UML by package merge, it is not necessary to
modify UML in order to introduce an Iteration class. OCL can just define an Iterations package

Proc. OCL 2011 16 / 20



ECEASST

to contribute to the overall merge.

4.3.4 ExpressionInOcl

ExpressionInOcl is shown as deriving from OpaqueExpression in the first figure of Clause 12;
this is aligned with UML. Unfortunately the remaining figures and editorial text all use derivation
from Expression which is inappropriate but easily corrected.

4.3.5 Qualified Associations

The Concrete and Abstract syntax for qualified associations has never been quite right and has
become less so as partial attempts have been made to align with UML evolution.

There is no abstract syntax for self.associationEndName[qualifiers] since Prop-
ertyCallExp does not support qualifiers.

There is no abstract syntax for self.associationClassName[qualifiers], since
AssociationClassCallExp does not support qualifiers.

There is no abstract or concrete syntax for the doubly qualified navigation that may arise
with a recursive ternary association class, since AssociationClassCallExpCS does not support
qualifiers.

Alignment with UML therefore requires a correct initial specification rather than maintenance.

4.3.6 AssociationEnd

All residual references to AssociationEnd must be revised to use Property.

4.3.7 Expression and OclExpression

UML provides for a homogeneous Expression tree in which nodes have a String name and an
arbitrary number of operands.

OCL provides for a heterogeneous OclExpression tree in which nodes have node-specific con-
tent such as OperationCallExp::referredOperation.

Both forms of expression integrate with UML classes as the derived ValueSpecification of a
Constraint.

Are two distinct trees appropriate? The OCL Abstract Syntax could be revised to extend Ex-
pression, but this would involve significant incompatibilities without any obvious benefit. OCL
tools benefit from the richer Abstract Syntax, so stronger UML alignment of OclExpression does
not seem appropriate.

4.3.8 LiteralSpecifications and LiteralExpressions

UML defines a LiteralString and OCL defines a StringLiteralExpression. These classes have
very similar inheritance from TypedElement and could be merged, perhaps introducing a derived
property to preserve whichever is obsoleted.

If merged, LiteralExpression would need to extend LiteralSpecification, allowing use of OCL
literals more directly in UML Constraints without a wrapping ExpressionInOcl. If OclExpres-

17 / 20 Volume 44 (2011)



Aligning OCL with UML

Figure 11: OCL Pivot and OCL Value Usage.

sion similarly extended ValueSpecification, then constant expressions, requiring no self, could
also be used directly.

This is relatively minor tweaking, for which there is no obvious demand. However since
it could easily accommodated by the UML to OCL merge, it is perhaps worth doing. But it
doesn’t work, the hybrid OCL::LiteralString and OCL::StringLiteralExpression would extend
OCL::ValueSpecification rather than UML::ValueSpecification, and so a derived UML::Opaque-
Expression wrapper would still be needed to permit use of OCL within UML.

The only UML-alignment that might be appropriate is a transformation of UML Literals into
OCL LiteralExpressions when a UML model is loaded. OCL tooling for pivot models would
then not need to handle two alternative forms of literal.

4.4 Practice

The way the OCL Pivot Meta-Models work in practice is shown in Figure 11.
Models upon which evaluations are to be performed are accessed via adapters between derived

ObjectValues and the available XXX representation.
The corresponding models are loaded by transforming the YYY meta-model dialect to an OCL

Pivot Model. If reflection is required, the meta-models are also transformed.
The models may be complemented by Complete OCL documents that are compiled from their

concrete syntax representation, unless a compiled version is already available.
The OCL Library is similarly compiled unless already available.
Then with all values, models and meta-models in normalized form, an evaluation can be per-

formed to produce a Value result which can be adapted back to the user’s XXX representation.
Use of this normalization ensures that OCL can operate in the same way for all model and

value representations. Use of, for instance, EMOF does not affect OCL. It becomes an EMOF
rather than an OCL problem if loading from EMOF provides insufficient model information.

Proc. OCL 2011 18 / 20



ECEASST

5 Related Work

This paper draws on previous academic work and implementations as the foundation for a pro-
posal for a revised OCL specification.

A Bridge model was used by Kent OCL [AP] to provide a simple core meta-model. The Bridge
subsequently mapped to UML1.x, Java and EMF by providing a distinct Bridge implementation
for each target meta-model.

The Pivot model was used by Dresden OCL[BD] to provide variability for meta-model rep-
resentations. A common pivot has adapters for each target meta-model. We take this further
to resolve underspecification of Complete OCL and make the XMI compliance realizable. The
Dresden pivot adopted an Ecore-like structure for generics with some dynamic typing. The pro-
posal here is UML-aligned and so re-uses UML concepts for generics with static typing.

The Dresden team[WTW] introduced a kind of pivot and adapters for model representation
variability. The proposal here clarifies the Values package to demonstrate that similar variability
is already part of the specification. It could form the foundation for a Java binding for OCL and
provide a neutral Value interchange API.

6 Conclusions

We have identified major problems in the OCL specification in regard to URIs for XMI Inter-
change and a coherent Abstract Syntax for Complete OCL.

A UML-derived OCL Pivot Meta-Model has been introduced to solve these problems and
we have shown how this solves other problems such as UML-alignment, meta-model diversity,
reflection, conformance modeling and OCL Standard Library modeling as well. The OCL Pivot
Meta-Model decouples an OCL implementation from UML and EMOF and so facilitates meta-
model diversity.

Examination of the OCL Values Package has revealed that it requires a similarly decoupling
from model representations. This requirement should be clearly expressed in the specification so
that value interchange between OCL tools is possible.

Many thanks to the anonymous referees for helpful comments.

Bibliography

[AP] D. Akehurst, O. Patrascoiu. OCL 2.0 - Implementing the Standard for Multiple Meta-
models. In OCL 2.0 - Industry standard or scientific playground? UML 2003, San
Francisco.

[BD] M. Bräuer, B. Demuth. Model-Level Integration of the OCL Standard Library Using a
Pivot Model with Generics Support. In Ocl4All: Modelling Systems with OCL. Models
2007, Nashville.

[EMF] The Eclipse Modeling Framework Project.
http://www.eclipse.org/emf

19 / 20 Volume 44 (2011)

http://www.eclipse.org/emf


Aligning OCL with UML

[MDT] Eclipse MDT/OCL Project.
http://www.eclipse.org/projects/project summary.php?projectid=modeling.mdt.ocl

[Obja] Object Management Group. Meta Object Facility (MOF) Core Specification. Version
2.4, omg document number: formal/2010-12-08 edition.
http://www.omg.org/spec/MOF/2.4

[Objb] Object Management Group. Object Constraint Language. Version 1.6, omg document
number: formal/2010-02-01 edition.
http://www.omg.org/spec/OCL/1.6

[Objc] Object Management Group. Object Constraint Language. Version 2.0 draft, omg docu-
ment number: ptc/03-10-14 edition.
http://www.omg.org/cgi-bin/doc?ptc/03-10-14

[Objd] Object Management Group. Object Constraint Language. Version 2.0, omg document
number: formal/06-05-01, 2006 edition.
http://www.omg.org/spec/OCL/2.0

[Obje] Object Management Group. Object Constraint Language. Version 2.2, omg document
number: formal/2010-02-01 edition.
http://www.omg.org/spec/OCL/2.2

[Objf] Object Management Group. Object Constraint Language. Version 2.3, omg document
number: formal/2010-11-42 edition.
http://www.omg.org/spec/OCL/2.3

[Objg] Object Management Group. Query/View/Transformation Specification. Version 1.0,
omg document number: formal/08-04-03, 2008 edition.

[Objh] Object Management Group. UML Specification Simplification Request For Proposal.
Version 2.03, omg document number: ad/2009-12-10 edition.
http://www.omg.org/cgi-bin/doc?ad/2009-12-10

[Obji] Object Management Group. Unified Modeling Language, Infrastructure. Version 2.03,
omg document number: formal/2005-07-05 edition.
http://www.omg.org/spec/UML/2.0/

[Wil] E. D. Willink. Modeling the OCL Standard Library. In OCL 2011, International Work-
shop on OCL and Textual Modelling. TOOLS 2011, Zurich.

[WTW] C. Wilke, M. Thiele, C. Wende. Extending Variability for OCL Interpretation. In OCL
2010: Workshop on OCL and Textual Modelling. Modelsl 2010, Oslo.

Proc. OCL 2011 20 / 20

http://www.eclipse.org/projects/project_summary.php?projectid=modeling.mdt.ocl
http://www.omg.org/spec/MOF/2.4
http://www.omg.org/spec/OCL/1.6
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/spec/OCL/2.0
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/OCL/2.3
http://www.omg.org/cgi-bin/doc?ad/2009-12-10
http://www.omg.org/spec/UML/2.0/

	Introduction
	Background
	OCL Specification Compliance Points
	Concrete Syntax
	XMI Interchange
	Evaluation semantics

	OCL Usage

	Problems
	Complete OCL Problems
	Merged or Multiple models
	Model Maintenance
	Implicit Access
	Explicit Access
	URIs
	Summary

	EMOF Problems
	Other Problems
	Iterator Operation
	OclAny conformance
	Reflection


	Solutions
	OCL Pivot Meta-Model
	Meta-Meta-Model Merge
	Meta-Model Load

	Primitive Types and Values
	Primitive Values
	Object Values
	Summary

	Details
	Primitive Types
	Types
	Iteration
	ExpressionInOcl
	Qualified Associations
	AssociationEnd
	Expression and OclExpression
	LiteralSpecifications and LiteralExpressions

	Practice

	Related Work
	Conclusions

