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Abstract: We explore the potential of adding objective functions to OCL operation
contracts. If an operation contract includes an objective function, the operation has
the obligation to yield results that make the objective function assume an optimal
value. Thus, an objective function expresses a preference among the possible opera-
tion results that conform to the postconditions of the operation contract and any class
invariants. Objective functions strictly increase the expressiveness of OCL opera-
tion contracts. While objective functions arise naturally in application domains like
operations research, we argue that objective functions are a useful general-purpose
specification instrument and discuss several application examples. As tool support
for operation contracts with objective functions, we present an animator for OCL
operation contracts with optimization capabilities. We ensure tool interoperability
by specifying objective functions in a UML profile.

Keywords: OCL, Operation contracts, Model execution, Animation, SAT solvers

1 Introduction

OCL has been wisely conceived with executability in mind. The language omits constructs like
unbounded quantifiers ranging over all integers that make expression evaluation intractable or
entirely impossible. Recursion used for defining operations in postconditions is restricted by
the OCL standard [Obj10] to be finite, so uncomputable operations are avoided. The collection
constructors and operations are designed in a way that prevents an uncontrolled explosion of
collection size. As a result, evaluators for OCL that check the conformance of an implementation
to its OCL specification at runtime could be implemented without resorting to sophisticated
reasoning techniques (e.g., [HDF02]). This is in contrast to other specification languages like
Z [1SO] that offer more powerful constructs. For such languages constraint evaluation can be
highly nontrivial, not to mention more difficult kinds of specification analysis like animation or
test-case generation.

Naturally, the choice to restrict the expressive power of OCL comes at a price: some speci-
fication tasks may be impossible to accomplish or require considerably higher effort. Working
around limitations of the language may also lead to specifications that obscure the problem that
was to be specified originally. This may be one of the reasons why the use of OCL operation

* This work was partially supported by the Digiteo Foundation.
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contracts appears to still not have gained widespread acceptance, although OCL has established
itself as a language for model well-formedness rules and is also widely employed for queries in
model-transformation and action languages.

A shortcoming of OCL in this respect that we identified is the difficulty to express optimiza-
tion tasks. Such problems ask for operation results for which an objective function assumes an
optimal value. Optimization problems arise naturally in application domains like operations re-
search and constitute some of the most elementary algorithmic problems. A basic example is the
problem of finding a shortest path in a graph. Figure 1 lists fundamental optimization algorithms
covered in a classic introductory algorithms textbook [Sed88].

We propose to facilitate the specification of such operations in OCL by adding objective func-
tions to operation contracts. Thus, rather than enriching the expression language of OCL, we
introduce an additional constituent of operation contracts. Objective functions in operation con-
tracts would provide immediate support in OCL for specifying optimization problems. More-
over, objective functions can also be used as a convenient means to specify that an operation
should return a solution to a certain constraint if a solution exists: make the objective function
evaluate whether the constraint holds and return the optimal value only if this is the case. Al-
together, we think that this extension would make OCL operation contracts more attractive by
facilitating the specification of many operations.

Objective functions strictly increase the
expressiveness of OCL operation contracts.
With the presence of an objective function,

it is no longer decidable whether a set of re- e Closest pair among a set of points
turned operation results conforms to an op-
eration contract. We propose to achieve tool e Minimum spanning tree of a graph

interoperability by specifying objective func-

i i ot Shortest path i h
tions in a UML profile. Existing tools can ¢ ohortest path n a grap

simply ignore the additional information rep- e Maximum network flow
resented by objective functions. Thus, exist-
ing applications of OCL are not compromised ¢ Maximum matching of a graph

by the introduction of objective functions.

R ion: Least S
The paper is organized as follows. In Sec- ¢ Regression: Least Squares

tion 2 we show how objective functions can e Knapsack problem
be included in operation contracts. Section 3
discusses applications of objective functions e Linear programming

to different specification tasks by means of an
example specification. We see that objective

functions help not only for specifying ordi- Fjgure 1: Optimization algorithms covered in a

nary optimizations problems, but also in other ¢]agsical algorithms textbook [Sed88]
situations. In Section 4 we present an anima-

tion tool that supports operation contracts with objective functions and give experimental results.
Finally, we discuss related work and conclude.
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2 Operation Contracts with Objective Functions

2.1 Syntax

Together with class invariants and different kinds of value definitions, operation contracts are a
major ingredient of OCL specifications. Recall that an OCL operation contract consists of pre-
and postconditions which are Boolean expressions. We propose to allow objective functions as a
further element of operation contracts. Obviously, the type of an objective function must support
comparison, so we restrict objective functions to expressions of type Integer or Real.! This cor-
responds to the restrictions imposed on body expressions of the sortedBy iterator. Furthermore,
every operation contract may include at most one objective function.

Another useful extension proposed to OCL operation contracts are invariability
clauses [Kos06] that specify which parts of the system state an operation may modify. We will
also consider this extension since invariability clauses are essential for animation support that we
will discuss later.

In all, an OCL operation contract for an operation op with the arguments xi, ... ,x, with these
extensions has the form:

context C :: op(xy,...,x,): T
pre: ¢(self,xi,...,x,)
pre: ...
post : y(self,xy,...,x,,result) (D
post : ...
minimize : O(self,xi,...,xy, result)
modifies only : ti(self,x1,...,X,) a1y tm(self X1,...,X,) 2 ap

Here, the OCL expressions ¢ and y are of type Boolean and 6 is an OCL expression of type
Integer or Real. The OCL expressions t1,...,t, denote sets of objects in the pre-state. We re-
quire that @pre does not occur in ¢ or t1,...,t,. The operation contract (1) requires the operation
to minimize the function 8. Thus, we extend the concrete syntax of operation contracts with the
keyword minimize. Of course, a corresponding maximize keyword can be introduced as syn-
tactic sugar as well. In short, the modifies only clause in (1) specifies that the operation may
only change the attribute a; for the objects in #;. Attributes not mentioned in the modifies only
clause may not be changed for any object. A richer syntax for modifies only clauses is pre-
sented in [Kos06].

OCL operation contracts are often defined in UML models by storing OCL expressions as
specifications of Constraint model elements. Operation elements can then reference
such constraints through associations provided for by the UML metamodel. In order to avoid
metamodel incompatibilities and to ensure the interoperability with OCL tools that do not use
our operation contract extensions, we define the new operation contract elements in a UML pro-
file. Figure 2 shows a UML profile for extending operation contracts with objective functions
and invariability clauses. The objective function is stored as a string and can be parsed when

' A further syntax extension could allow user-defined comparison functions.
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(uml)
Operation

*

«stereotype»
oclExec

= minimize: String [0..1]
E! propertiesModified: Property [*] {ordered,unique}
= objectsModified: String [*] {ordered}

Figure 2: A UML profile for operation contract extensions

needed. The modifies only clause is defined by listing the expressions ¢1,...,t, and the at-
tributes ay, . ..,a, in separate attributes of the stereotype.

It may be more systematic to rather model objective functions and modifies only clauses as
separate stereotypes of the Constraint metaclass. However, the profile in Figure 2 is simple
and can be applied easily in UML editors.

2.2 Semantics

When discussing the semantics of operation contracts we assume without loss of generality that
there is exactly one precondition ¢ and one postcondition y. Following Annex A of the OCL
standard [Obj10], we define the semantics of an operation contract to be a relation R between
pre-environments rpge and post-environments rpo5. An environment includes the system state and
values of parameters to the operation. R is defined by

R= {("prevrpost) | ¢(rpre) A V/(”prearpost)}' (2

Thus, a transition from a pre- to a post-environment is permitted by the semantics if both the
pre- and the postcondition are satisfied. The behavior of an operation implementation can be
described by a function f that maps pre-environments to post-environments. The operation im-
plementation satisfies the contract if and only if the graph of f is contained in R (graph(f) C R).

We show how this original definition of R can be modified in order to take an objective function
0 into account. Let the contract require that the operation minimizes 6. This is expressed by the
following definition of the modified semantics R’

R = {(rprevrpost) | ¢ ("pre) A lI/(”preﬂ’post)
AN rllDOSt' l//(rpre?r;)ost) = 0 (rprearpost) <0 (rpre,r;()st)} . 3
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Thus, a pair of a pre- and post-environment (rpre,rpost) can only belong to R’ if there is no
other post-environment rl’)oSt satisfying the postcondition with a smaller objective value. Hence,
the objective function constrains the set of permitted transitions and may forbid transitions that
are allowed by the original semantics R. Note that there only is a difference to the original
semantics if the contract is underspecified, i.e., there is a valid pre-environment for which there is

more than one post-environment satisfying the postcondition. Otherwise, r{mt = Ipost Whenever

v (rpl‘e’rll)ost)’ and the additional condition in (3) could never be violated. Thus, the objective
function selects preferred post-states in case several are permitted by the postconditions.

Also note that the addition of the objective function increased the expressiveness of OCL
operation contracts since the new semantics R’ cannot in general be obtained by simply adding
a postcondition 6 (rpre, rpost) <c (rpre) for some OCL expression c. This only is an alternative
if there exists such an expression c¢ that computes the optimal value of the objective function
from the pre-environment. However, this cannot always be the case, since the values of OCL
expressions are effectively computable, but the existence of a post-environment rl’,Ost violating (3)
is in general undecidable. Even in cases in which it is possible to designate such an expression c,
it is likely that this expression is much more complex than the addition of an objective function
to the operation contract.

Finally, note that objective functions in operation contracts differ considerably from the min
and max operations on collections that are provided by the OCL standard library. While these
operations select the minimum and maximum from a finite collection, objective functions operate
on the set of all possible post-states, which tends to be much larger than an OCL collection or
can even be infinite.

If a subclass redefines the operation, the semantics of the redefined operation must conform to
the Liskov substitution principle. Specifically, the set of possible post-states rpos¢ that can result
from calling the redefined operation in a certain pre-state rp satisfying the precondition ¢ must
be a subset of the set of post-states reachable from this pre-state rpr by calling the operation in
the superclass. The objective function can be redefined in the subclass as long as this requirement
is met.

The modifies only clause further constrains the semantics of the operation contract. How-
ever, unlike for objective functions, it is also possible to express this restriction through postcon-
ditions. Such a transformation is described in [Kos06].

3 Applications of Objective Functions

In this section we demonstrate the usefulness of objective functions by presenting several ap-
plication examples. As running example we use the simplified model of a build tool shown in
Figure 3. A project comprises several CompilationUnits. In general, the task of the build tool
is to arrange all CompilationUnits into adequate CompilationJobs. A CompilationJob des-
ignates an ordered sequence of compilationUnits that are to be processed in order to complete
the job. The assignment of CompilationUnits to CompilationJobs may be driven by various
considerations. In particular, there can be dependencies between CompilationUnits, which is
modeled by an association. Moreover, CompilationUnits can have different sizes.

5/18 Volume 44 (2011)
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Project

=1 name: String [1]

&% getBalancedCompilationJobs(Integer[1]): CompilationJob[*]
&% getOrderedCompilationJob(): CompilationJobl0..1]
% getindependentCompilationJobs(): CompilationJob[*]

(1]

- compilationUnits  [*]

CompilationJob CompilationUnit
- referencedBy [#]
= cpu: Integer [0..1] =1 size: Integer [1]
[0..1] [1.%]| =1 file: String [1]

- compilationUnits {ordered,unique}
- dependsOn [*]

Figure 3: Excerpt from a possible UML model of a build tool

3.1 Ordinary Optimization Problems

As as first example, we consider a plain optimization task that is representative for many similar
ones with an operations research background. The goal is to achieve efficient parallel process-
ing of compilationJobs by assigning CompilationUnits tO CompilationJobs such that the
longest execution time of any CompilationJob is minimized and the entire process is completed
as early as possible. This is accomplished by the operation getBalancedCompilationJobs spec-
ified in Figure 4, which returns a set of CompilationJobs that arrange the CompilationUnits
of the Project such that total execution time is minimized. The parameter n indicates the maxi-
mal number of CompilationJobs created and would usually correspond to the number of CPUs
available. The postcondition al1UnitsReturned specifies that the set of compilationUnits in-
cluded in the returned compilationJobs are exactly the compilationJdobs of the Project for
which the operation is called. The postcondition jobLimitMet limits the number of returned
CompilationJobs to the argument passed to the operation. In this operation contract, most of
the behavior is specified in the objective function. In the objective function, we first compute
the total sizes of all returned CompilationJdobs by applying collectNested and sum. We use
collectNested here in order to make explicit for readability that no flattening is performed.
Then the value of the objective function is defined to be the maximum of all total job sizes,
which is an estimate of the total execution time. Finally, the modifies only clause specifies
that the attribute compilationJob may only be changed for the compilationUnits belonging
to the Project for which the operation is called and that the values of all other attributes may
not be affected by the operation. This invariability clause make some previous @pre decorations
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context Project::getBalancedCompilationJobs (n: Integer): Set (CompilationJob)

post allUnitsReturned:
result->collect (compilationUnits)->asSet () = compilationUnits@pre

post jobLimitMet: result->size() <= n

minimize: let
jobSizes: Bag(Integer)
= result->collectNested(job |
job->compilationUnits->collectNested (size@pre)->sum())
in
jobSizes->max ()

modifies only: compilationUnits::compilationJob

Figure 4: Operation contract for evenly distributing compilation units among processes

superfluous, but we decided to keep these in order to already make explicit in the postconditions
that these are values from the pre-state.

This problem of optimizing parallel execution is NP-hard since the subset sum problem can
be reduced to it. Thus, even a relatively simple implementation is likely to be substantially more
complex than the operation contract.

3.2 Problems that do not always have a Solution

The task of the next operation getOrderedCompilationJobs that we specify is to find a com-
pilation order that respects the dependencies of the CompilationUnits. In other words, we
desire a topologically sorted sequence of the compilation units. The contract is shown in Fig-
ure 4. An interesting aspect of this operation is that there is no valid compilation order if the
dependency graph has a cycle. In this case the operation should return nui1. The postcondi-
tion allUnitsReturned specifies that if the result is not null, i.e., a solution exists, then the
set of compilationJobs returned are exactly the compilationJdobs of the Project, as in the
previous contract. The postcondition resultSorted states that, if the result is not null, no
CompilationUnit depends on another unit occurring later in the returned sequence.

This operation does not solve an optimization problem at first sight. The objective function
of the contract expresses that the operation should return a non-null result whenever possible,
i.e., when it is not excluded by the postconditions. The presence of the objective function is
essential for the contract to be complete, since otherwise an implementation that always returns
null even if a valid compilation order exists would satisfy the contract. Note that it is not suffi-
cient to simply add the additional postcondition post: not result.oclIsUndefined(), since
this would make the postconditions unsatisfiable in case there is no valid compilation order, and
the contract would not be implementable. An admissible alternative would be to add a precondi-
tion expressing that the postconditions are satisfiable, i.e., that the dependency graph is acyclic.
This choice would be possible for this operation because the satisfiability of the postconditions
is decidable in this case. It is clear, however, that such a precondition testing whether the depen-
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context Project::getOrderedCompilationJobs () : CompilationJob

post allUnitsReturned: (not result.oclIsUndefined())
implies
result.compilationUnits—>asSet ()
= compilationUnits@pre

post resultSorted:

(not result.oclIsUndefined())
implies
let

units: OrderedSet (CompilationUnit) = result.compilationUnits
in

Sequence{2..units->size ()}

—>forAll (i | Sequence{l..i-1}
->forAll(j | units->at (j).dependsOn@pre->excludes (units->at(i))))

minimize: if result.oclIsUndefined() then 1 else 0 endif
modifies only: compilationUnits::compilationJob

Figure 5: Operation contract for ordering compilation units by dependencies

dency graph has a cycle would be much more lengthy then the objective function in Figure 4.
Thus, the possibility of adding an objective function to the contract helped considerably to spec-
ify the operation in a concise and comprehensible manner. This technique of preferring non-null
results by means of an objective function is applicable in general to problems that do not always
have a solution.

3.3 Other Disguised Optimization Problems

Next we consider another task that is usually not regarded as an optimization problem. We are
seeking a set of compilationJobs that can be processed independently, e.g., for allowing par-
allel execution as discussed above for the operation getBalancedCompilationJobs. But this
time we do not arrange the cCompilationUnits based on their size but according to their depen-
dencies. We require that there is no dependency between any two CompilationUnits belonging
to distinct CcompilationJdobs. In order to be as flexible as possible for execution, we desire
to have as many independent CompilationJobs as possible. This amounts to finding the con-
nected components of the dependency graph. The operation get IndependentCompilationJobs,
whose contract is shown in Figure 6, is specified to return a set of CompilationUnits
that meets these requirements. As for the previous operations, the first postcondition ex-
presses that the compilationUnits included in the returned CompilationJobs are exactly the
CompilationJobs of the Project. The next postcondition jobsIndependent states that ev-
ery CompilationJob returned includes all compilationunits that depend on any unit in the
job. This rules out any dependencies between any two CompilationUnits belonging to distinct
CompilationJobs.

In order to ensure that the returned compilationJobs correspond to the connected compo-

Proc. OCL 2011 8/18



Eg ECEASST

context Project::getIndependentCompilationJobs(): Set (CompilationdJob)

post allUnitsReturned:
result->collect (compilationUnits)->asSet () = compilationUnits@pre

post jobsIndependent:
result->forAll (compilationUnits->forAll (
compilationUnits—->includesAll (dependsOn@pre)))

minimize: -result->size() —— this maximizes the size of the result set
modifies only: compilationUnits::compilationJob

Figure 6: Operation contract for grouping compilation units into independent jobs

nents of the dependency graph, we still need to specify that there actually is a dependency
between every pair of CompilationUnits that belong to the same CompilationJdob. Other-
wise, an implementation may always return just a single CompilationJob that includes all
CompilationUnits. However, we find this requirement difficult to express using postcondi-
tions, since two CompilationUnits may depend on each other via several other intermediate
CompilationUnits. This is where the objective function comes in handy. The objective func-
tion defined in Figure 6 requires the operation to return a maximal number of CompilationJobs.
This implies that every job corresponds to exactly one connected component of the dependency
graph. Thus, the possibility of adding an objective function to the contract helped again to keep
the contract simple.

4 Tool Support for Animation

Tool support is important for the adoption of specification languages by users. In this section
we show how tool support for animation can be accomplished for OCL operation contracts that
include objective functions. Animation [DKC89] is the task of performing computations that
comply with the specification based on user-provided input data. For animating an operation
contract, the user constructs a system state in which the operation is called and provides any
arguments to the operation. Animation yields a new state and if necessary a return value that sat-
isfy the postconditions, the objective function and any other restrictions stated in the specification
such as class invariants.

If support for animation is available, users can validate requirements by animating the specifi-
cation on sample sets of input data (scenarios). This is possible if the implementation is partially
or even entirely unavailable. For incomplete, faulty or inadequate specifications, animation will
typically lead to strange and alarming results. In contrast to automatically generated test cases,
which result from exploring input data structures according to certain criteria, animation based
on user-supplied input avoids too artificial scenarios. Animation can help users gain confidence
in the specification by allowing the execution of scenarios that are common for the application
domain.

Animation is particularly powerful if it is accomplished by generating a prototype implemen-
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tation. The generated code can be linked with components of the system that are already finished.
This allows the system to be tested as a whole, although the complete implementation of some
parts is not yet available. It may even be possible to entirely omit the manual implementation of
certain features if they can be animated efficiently enough. We think that animation support for
UML/OCL operation contracts is a useful complement to existing methods for executing other
UML model constituents like statecharts or action language code.

In the remainder of this section, we first give an overview of our animation tool OCLexec’.
See [KKW10] for a more detailed description. Then we show how the tool can be extended to
deal with objective functions and present some experimental results.

4.1 Overview of OCLexec

OCLexec generates Java method bodies that enforce the postconditions of the operation and all
class invariants. It serializes an intermediate representation of the operation contract to a file that
the generated method body can access as a resource. The method body only reads the serialized
file and calls a library routine responsible for simulating the operation. Note that inserting code
in method bodies should not interfere with other code that may have been generated for the
model. Thus, the modeler can use her favorite tool for the overall code generation and then use
OCLexec only for selected method bodies.

As intermediate representation, OCLexec uses a language of arithmetic expressions with
bounded quantifiers and uninterpreted functions. A bounded quantifier has the form V#; < x <
tr.p(x). Here x is the bound variable, #; is the lower bound and #, is the upper bound of the
quantifier. It turns out that UML/OCL constraints can in large part be represented by integer
expressions; solutions of these encoded constraints are assignments to their free variables and
uninterpreted function symbols that evaluate to 1. The underlying state of an OCL expression is
represented by uninterpreted function symbols for attributes. Object references can be encoded
as integer values. We have currently not implemented support for real numbers. Thus, we will
later require objective functions do be of type Integer.

For animating an operation, we translate the postconditions of the operation and all relevant
invariants to arithmetic constraints with bounded quantifiers. The conjunction of the resulting
formulas expresses the condition that must be satisfied when the operation returns. In the next
step we attempt to find a model for this formula, i.e., an assignment of specific functions to the
function symbols for which the formula evaluates to true. Since our translation preserves the
semantics of the operation contract, a model found yields a new system state conforming to the
contract. The new state can be directly constructed from such a model. We only search for
models that comply with the respective pre-state.

To find a model of the formula, we construct a Boolean circuit that computes the validity of
the formula. The Boolean circuit is encoded in conjunctive normal form (CNF), which can then
be solved by an off-the-shelf satisfiability (SAT) solver. A solution to the Boolean satisfiability
problem yields a model for the original arithmetic formula. In order to generate a Boolean
formula from an arithmetic formula with bounded quantifiers, the quantifiers occurring in the
arithmetic formula need to be eliminated. Some quantifiers can be removed by skolemization.

2 http://www.pst.ifi.Imu.de/Research/current-projects/oclexec
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procedure solve(¢):

bounds := initial_bounds (@)

forever do
CNF := generate _CNF (¢, bounds)
(solved, solution) := call_SAT_solver (CNF)
if solved then

return solution

end if

increase_bounds (bounds)
end forever
end procedure

Figure 7: Basic constraint solving procedure for operation contract animation

For the remaining quantifiers, we substitute the quantified variable for every value within the
range of the quantifier, translate the resulting formulas to Boolean circuits and feed them into
the respective gate (A or V). Thus, the quantifier ranges need to be small enough in order to
make this quantifier elimination manageable. It is clearly not feasible to always perform the
substitution for the largest possible quantifier range, which may include e.g. all 32-bit integers.
Therefore we may at first restrict the values of certain function symbols in the intermediate
representation. Through interval arithmetic, we can then derive a restricted range for each lower
and upper quantifier bound. Thus, we can obtain a sufficient translation of a quantified formula
by instantiating the quantified variable only for the restricted set of values that can be between the
quantifier bounds. If the function symbol ranges are chosen to be small enough, this set of values
the quantified variable can assume is manageable. Restricting the range of a function symbol
results in an under-approximation of the original satisfiability problem, i.e., certain models are
excluded, whereas every solution to the under-approximation is a valid model for the formula.

If no model is found for the first choice of restricted function symbol ranges, a more expensive
attempt with larger ranges is made, and so on. This basic procedure is depicted in Figure 7. It
always terminates when a solution exists. If no solution exists, the procedure may terminate
unsuccessfully after the bounds have reached a limit, e.g., a maximal 32-bit number, or if the
formula has no function symbols that require bounding. However, due to the large number of
possible system states, the procedure will not always terminate within reasonable time.

4.2 Extension to Support Objective Functions

We now show how this basic animation procedure can be extended to support objective functions.
The fundamental problem is that it is generally undecidable whether a better solution exists that
improves the value of the objective function. Such a superior solution may only be constructible
using much larger bounds. Therefore we encourage the user to supply a time limit for animation
with an objective function in order to ensure termination. In order to promote early termination,
we also consider over-approximations of the satisfiability problem based on the same bounds
used for under-approximation as described above. If we determine that an over-approximation
of the problem of finding an improved solution is unsatisfiable, we know that such a solution
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does not exist for any bounds and can stop the search. However, solving over-approximations is
always incomplete, so unfortunately user-provided time limits are in general unavoidable.

We construct over-approximations by adding fresh Boolean variables to formulas resulting
from the unfolding of quantifiers outlined above. These new variables represent the unknown
value of the quantified formula in case the quantifier bounds exceed the bounds used for the
translation. For a universal quantifier V#; < x <t,.p (x) we construct the Boolean formula

(n <1b(t) A b (1)) <t = p(b()))

A (n<Ib()+1 A b(n)+1 <tp = p(b(t)+1))
“)
A (I <ub(nn) A ub(n)  <n = p(ub(n)))

A (h<Ib(f) v ub (1) >t = a)

where 1b(z) and ub(¢) are a lower and upper bound, respectively, of the values the term 7 can
assume when the function values that t depends on are within the bounds used for the translation.
The Boolean variable a is a fresh variable that represents the unknown value of the quantified
formula in case the lower bound #; of the quantifier is smaller than Ib (¢,) or the upper bound 7,
is larger than ub (#;). The new variable a does not have any effect if #; > 1b(¢;) and 7, < ub(z,)
or the quantified formula evaluates to false due to the values of p(Ib(t1)), ..., p(ub(%2)).

Example 1  Consider a quantified formula
O=Y0<x<f+g.h(x)=1. &)

Here f and g are constants (nullary functions) and h is a unary function. If we use bounds that
restrict f and g to assume values in [—2,2], we obtain through interval arithmetic an upper bound
of 4 for f + g. We apply the scheme (4) witht; =0 and t, = f + g. Since the lower bound t; is
constant, comparisons with it can be eliminated, and we obtain the following unfolding of ¢:

0<f+g =h(0)=
1<f+g =h(1
2<f+g =h
3<f+g =h
4<f+g =h(4)=
4> f+g =a

(
(
(
( (6)
(
(

> > > > >

The overall procedure for animating with an objective function is shown in Figure 8. We can
test the existence of a solution meeting a certain bound on the value of the objective function
by calling the SAT solver with an appropriate set of Boolean literals as assumptions. When
called with assumptions, a SAT solver restricts the search to models in which the assumptions
are true. Clauses learned by the solver remain and can be used when solving later under different
assumptions. Both MiniSat [ES04] and SAT4J [BP10] are SAT solvers that provide an interface
for solving under assumptions.
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| Operation |n=3]n=5[n=T7][n=10[n=15[n=20|
getBalancedCompilationJobs (2) 3.0 3.0 50 | >1000 | >1000 | >1000
getOrderedCompilationJdob () 2.5 12 37 | >1000 | >1000 | >1000
getIndependentCompilationJobs () 3.0 9 10 140 | >1000 | >1000
getCompilationOrder () (input cyclic) 1.0 1.0 1.0 1.5 1.5 | >1000
getCompilationOrder () (input acyclic) 1.0 1.0 1.0 1.5 1.5 | >1000

Table 1: Experimental results (execution times in seconds)

For every choice of bounds we compute a solution by binary search that is optimal among
all solutions within these bounds. We assume that the objective function assumes values within
a certain interval [f_min,f_max| that we determine e.g. by restricting the values of all function
symbols to 32-bit numbers. This has the additional benefit of preventing infinite looping in case
there is no optimal solution.

We maintain a lower bound on the value of the objective function, which is to be minimized,
with the hope of observing at some point that we have obtained a solution that is optimal uncon-
ditionally. After having searched for a solution that is as good as possible for the chosen bounds,
we again perform a binary search for determining the best lower bound. For determining the
lower bound we can reuse the same CNF since we can also control over-approximation over the
assumption interface. We terminate after a solution has been found and the timeout is reached or
a solution has been found whose value of the objective function matches the lower bound.

4.3 Experimental Results

We evaluated our animation tool on the specification presented in section Section 3 for random
inputs. When generating an input with n compilation units, we added every possible dependency
between compilation units with probability 0.1/n, so it was sufficiently unlikely that a cyclic
dependency graph was generated. File sizes were sampled uniformly between O and 10000.
Unfortunately, our over-approximation scheme was not able to identify optimal solutions for
any of the operations, so user-defined timeouts were necessary for animating these operations.
Table 1 shows the total execution times for animating the operations obtained by adding the best
attainable value of the objective function as an additional postcondition. The measurements were
performed on a machine with 2 GB RAM and a dual-core 2.4 GHz P8600 mobile CPU. The SAT
solver used was MiniSat [ES04], a well-known state-of-the-art SAT solver.

We conclude that the animation of many interesting scenarios involving objective functions
is possible. However, for large inputs animation becomes infeasible due to quickly increasing
runtimes. These runtimes may seem disappointing, considering that polynomial-time algorithms
exist for topological sorting and the identification of connected components. Recall that the we
are processing a high-level specification in a relatively general-purpose language.

In order to evaluate our approach to over-approximation, we modified the contract of the
operation getOrderedCompilationJob as shown in Figure 9. Over-approximation succeeds for
this modified contract, which we animated with dependencies added with probability 10/, so
the dependency graph very likely had a cycle. Table 1 shows the time required to determine
that 1 is the optimal value of the objective function and the operation can return an empty result.
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procedure solve(¢, f, max_time):
initialize timer for timeout

bounds := initial_bounds (@)
found_solution := false
best_value := f_max + 1
lower_bound := f_min
do

CNF := generate_.CNF (¢, bounds)

local_min := lower_bound

do

mid := local_min + (best_value — local_min) div 2

(solved, solution)
:= call _SAT_solver (CNF, f<mid, under—approximate)

if solved then

found_solution := true
best_solution := solution
best_value := mid
else
local_min := mid + 1
end if
while best_value > local_min
local_max := best_value
while lower_bound < local_max
mid := lower_bound + (local_max — lower_bound) div 2

(solved, solution)
:= call_SAT_solver (CNF, f<mid, over—approximate)

if not solved then

lower_bound := mid + 1
else
local_max := mid
end if
end while

increase_bounds (bounds)
while not found_solution or timeout(max_time)
or lower_bound = best_value

return best_solution
end procedure

Figure 8: Constraint solving procedure for animating with an objective function f
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context Project::getCompilationOrder (): OrderedSet (CompilationUnit)

post allUnitsReturned: (not result->isEmpty())
implies
result->asSet () = compilationUnits@pre

post resultSorted:
(not result->isEmpty())
implies
Sequence{2..result->size ()}
->forAll (i | Sequence{l..i-1}
—>forAll(j | result—->at (j) .dependsOn@pre—->excludes (result—->at(i))))

minimize: if result->isEmpty() then 1 else 0 endif
modifies only: nothing

Figure 9: “Tuned” variant of the operation contract in Figure 5

The table also show the time consumed by animating the modified contract when processing
the acyclic graphs used for animating the other contracts, which are essentially identical to the
runtimes for animating the cyclic dependency graphs with the same number of vertices. We note
that animation of the modified contract in Figure 9 is more efficient than the original contract in
Figure 5. The reason may be that, in contrast to the original contract, the modified contract does
not specify the creation of new objects.

5 Related Work

Objective functions are widely used in mathematical modeling languages like AMPL [FGKO02]
or GAMS [GAM]. Such modeling languages can be processed by suited optimization engines.
Modeling languages are often tailored to the kind of solver that reads them and usually favor
convex or polynomial constraints and objective functions. Sugar [TTB10] is an example of
a constraint programming language that features objective functions. Modelica [Mod] is an
object-oriented mathematical modeling language.

We extended the UML/OCL language by means of a UML profile. A more comprehensive
approach to extending OCL based on modularization is presented in [AZHOS].

Pioneering work on animating UML/OCL can be found in [OK99, GS00]. Animators for
operation contracts have also been implemented, for example, for the specification language
JML [BDLUOS, KW06, CW09]. The jmle animator [KW06, CW09] works by generating a
prototype implementation in Java, as does our animator OCLexec. Another recent tool along
these lines is Squander [MRYJ11] that animates operation contracts in a tailored specification
language.

An alternative to our approach of encoding the constraints as a Boolean SAT problem is to em-
ploy solvers based on the lazy SMT paradigm [Seb07] like Z3 [MBO08]. These solvers integrate
separate solvers for subtheories such as the theory of linear arithmetic or the theory of uninter-
preted functions. This avoids encoding these subtheories using large Boolean formulas. The Z3
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solver supports a notion of so-called contexts that provide similar functionality as the assumption
interface of MiniSat [ES04] and SAT4J [BP10]. Another type of solver applicable to this kind of
optimization problem are MAX-SAT solvers, e.g., one of the solvers in the SAT4J package. Such
solvers are likely to be more efficient than optimizing via assumptions since they are tailored to
optimization. Sugar [TTB10] is a SAT-based constraint solver that also performs optimization
over an assumption interface to a SAT solver. In the implementation of OCLexec, we use an
adapted version of the Kodkod solver [TJO7] for constructing the CNF. Kodkod is a SAT-based
solver for relational logic and includes effective algorithms for constructing and compressing
Boolean representations. We do not make use of higher-level features of Kodkod such as encod-
ing of relations. Kodkod also features a form of optimization based on appropriate support by the
SAT solver used. Nitpick [BN10] is a SAT-based model finder that deals with problematic quanti-
fiers by computing an undefined value when the value of the quantified formula is unknown. Our
over-approximation approach can detect slightly more unsatisfiable constraints. The technique
of under- and over-approximation that we use corresponds to abstraction-refinement techniques
in verification [CGJ"03]. Such techniques can be more powerful if the under-approximation is
computed according to the result of the over-approximation and vice versa. We do not use this
kind of adaptive approximation in our approach.

6 Conclusions and Future Work

We showed how OCL can be extended with objective functions. Objective functions strictly
increase the expressiveness of OCL operation contracts. Optimization problems arise naturally
in application domains like operations research. Moreover, objective functions are also useful
in various other situations and thus can be a valuable aid in writing concise and comprehensive
operation contracts. We ensure tool interoperability by specifying objective functions in a UML
profile.

As tool support for objective functions we present an animator for OCL operation contracts
that supports objective functions. We perform optimization through the assumptions interface
of the SAT solver used for constraint solving. Over-approximations of the constraint satisfac-
tion problem are constructed for identifying optimal solutions. Since over-approximation is in-
evitably incomplete, user-defined timeouts are generally needed for animation with an objective
function.

As future work we consider adding symmetry breaking predicates to the constraints solved for
animating. This could improve the effectiveness of our over-approximation technique and may
also improve the efficiency of constraint solving in general. We would also like to integrate our
animation method into a comprehensive code generation system.
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