
Electronic Communications of the EASST
Volume 45 (2011)

Proceedings of the
Fourth International Workshop on Formal Methods

for Interactive Systems
(FMIS 2011)

Supporting Mobile Application Development with
Model-Driven Emulation

Judy Bowen and Annika Hinze

5 pages

Guest Editors: Judy Bowen, Steve Reeves
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Supporting Mobile Application Development with
Model-Driven Emulation

Judy Bowen 1 and Annika Hinze 2

Computer Science Department
The University of Waikato, Hamilton,

New Zealand
1jbowen@cs.waikato.ac.nz,

2hinze@cs.waikato.ac.nz

Abstract: In this paper we outline our proposed approach for supporting mobile
application development by using models as inputs to an emulator. We describe a
new user interface to a parser tool previously developed, which enables developers
to make design decisions about the user interface of the mobile application whilst
ensuring that the resulting application adheres to the models. This paper describes
work currently in progress.

Keywords: Design, mobile applications, human factors, reliability

1 Introduction

Applications for smart phones have many complex (and often conflicting) requirements and soft-
ware development for such devices typically takes place using emulators. Smart phone applica-
tions provide multiple modes of interaction and feature-rich interfaces on a small screen and may
make use of several interacting services and components to provide functionality. Such complex
applications with multiple interactions require careful modelling to ensure correctness of both
component behaviours and the interactions between those components. When we also take into
consideration how users will interact with such systems we require a method of including this in
the models, as well as ensuring that the modelled system is correctly implemented. In previous
work [HBWM10] we introduced a model-driven emulator for the interactionand GUI design
of mobile applications. This took the approach of modellingfunctional behaviours and user re-
quirements and parsing these in conjunction with design constraints to automatically generate an
emulated application. We also discussed how such an approach might be modified to support an
interface design-driven process. In this paper we present our initial work on developing such a
design-driven process and show the extensions we propose tothe parser tool to support this.

2 Introduction to the Example and Process

For this paper we use a simplified example from the design of a tourist information system TIP
[HVB09], which has been previously well studied. In this small example the system displays
a map to the user along with a reference on the map to their current location (determined via
GPS). The user enters the name of a destination to the system and the map is updated to show

1 / 5 Volume 45 (2011)

mailto:jbowen@cs.waikato.ac.nz
mailto:hinze@cs.waikato.ac.nz


Supporting Mobile Application Development with Model-Driven Emulation

Figure 1: Prototypes for the example user interface

the destination along with a marked route from their currentlocation to that destination. The
prototypes for the GUI of this example are given in Figure1. The intention is that once the
prototypes have been developed (in conjunction with users and based on their requirements) they
are transformed into formal models, namely presentation models and presentation interaction
models (PIMs) [BR07]. These models enable us to formally describe the intended behaviours of
a prototype (via the presentation model) as well as the navigational possibilities (via the PIM).

At the same time a formal specification of the functionality of the system is developed. In
earlier work on the TIP system formal model, discrete event system models (also called VALID
models) [HMM06] and UPPAAL [HME09] were used to describe functionality and component
interaction. In [HBWM10] we transformed these intoµcharts [Ree05] which enabled us to com-
bine them with the user interface (UI) design models which also useµcharts.µcharts describe
reactive systems and can be composed with otherµcharts enabling us to take UI models and
functional models and combine them to produce a model of the entire system.

The first stage in modelling the UI designs is to transform theprototypes into a presentation
model (a manual process supported by the PIMed tool [PIM]). The presentation model describes
the behaviour of the prototype in terms of its component widgets which consist of a tuple being
the widget name, the widget category and the associated behaviours:

(widget name, widget category, (I behaviour, S behaviour)).
Behaviours fall into two categories,I behaviours relate to the behaviour of the interface itself
(and are, therefore, typically navigation behaviours fromone state of the UI to another) andS
behaviours relate to the underlying functionality of the system (i.e. they allow users to perform
functional operations). The presentation model for the prototype shown in Figure1 is given
below:

ParserGUI is LocationWin : RouteWin
LocationWin is (Map, Responder, (SShowLocation))

(DestEntry, Entry, ())
(GoButton, ActionControl, (IGoRoute, SShowRoute))

RouteWin is (Map, Responder, (SShowRoute))
(NewButton, ActionControl, (IGoLocWin, SShowLocation))

Proc. FMIS 2011 2 / 5



ECEASST

From the presentation model we can then develop the presentation interaction model (PIM),
which shows the availability of the behaviours described inthe presentation model. Each com-
ponent of the presentation model (e.g. LocationWin and RouteWin) is abstracted as a state in
a finite state automata, and transitions between states are added labelled by the Ibehaviours of
the respective presentation model which represent such a state change. The PIM for the above
example is shown in Figure2.

ParserGUI

LocationWin RouteWin

I_GoRoute

I_GoLocWin

Figure 2: Presentation Interaction Model (PIM)

The existing parser tool reads in a textual description ofµcharts (user requirement models and
functional models) and creates the necessary Java and XML files to automatically generate an
Android emulator application. The intention for the new process is that the parser will also use
the PIM and an XML description of the presentation model which will provide the detail of the
user interface. Figure3 shows the proposed process.

3 Additional Requirements for the Parser

Currently when the emulator application is created all of its widgets are determined by the parsed
user requirements model, and they are all are naively implemented as buttons. So our previous
example would result in an emulator application consistingof two screens each with a single
button which would enable the user to toggle between the two screens. What we would like
to do is use the additional information from the presentation model and PIM to create a more
realistic emulation (i.e. one that more closely represents the prototype in both appearance and
behaviour). By using the presentation model and PIM in conjunction with the existing models
we can ensure that the emulation remains consistant with theformal description and prototype,
and therefore, hopefully ensure the final implementation islikewise consistent and correct.

Figure 3: Model-Driven Mobile Simulator: Architecture

3 / 5 Volume 45 (2011)



Supporting Mobile Application Development with Model-Driven Emulation

3.1 Using the Presentation Model as Input

In order to use the presentation model data as an input to the parser we need to export the model
in an XML format and update the parser to include this information. We already have a defined
XML DTD for presentation models but will need to extend the PIMed tool to export models in
this format (currently it only exports tests in XML). The presentation model data will enable us
to populate a front-end GUI for the parser with the names and behaviours of all widgets in the
model and enable the developer to select appropriate emulator widgets.

3.2 Parser GUI

The parser GUI is invoked once the developer has imported a set of models to be parsed. We have
developed a first version of this which lists widgets (by state) that have associated Ibehaviours
(i.e. those which cause transitions in the PIM) only. Once the parser has been extended to take
the presentation model data as an input the parser GUI can be extended so that all widgets will
be listed. Figure4 shows a mockup of how the parser GUI will look once this step has been
completed.

Figure 4: Mock up of parser GUI

We list the IBehaviour widgets first along with their respective behaviours. The instantiated
widget type is set to a default value ofButton as this is commonly the way such controls will
be implemented (the option to change this is still availablefrom the drop-down menu). Then the
rest of the widgets and their behaviours are listed with a drop-down menu of available widgets to
choose from. As well as all possible widgets that the emulator can support (such as checkboxes,
radio buttons, text fieldsetc.) we provide an optionOther which can be assigned to widgets
such as the map. There is no automated way of adding such a widget to the emulator so by
selecting theOther option we can have a place-holder in the UI until the functional map widget
can be coded. In future work it might be possible to link the choice ofOther to some mechanism
whereby the coding for such widgets can be added at this pointfrom within the parser GUI, but
that is beyond the aims of the current project.

Proc. FMIS 2011 4 / 5



ECEASST

3.3 Current Status

The parser GUI has been developed in a limited format (as described in the previous section) and
is able to correctly add selected widgets to the emulated application. The next step in the project
is to change the parser to also accept the presentation modelXML in order to display all of the
widgets in the GUI and make these selectable. This will also require changes to be made to the
PIMed tool to enable the models to be exported in the XML format.

Once these two stages have been completed we will be able to begin testing the parser and
GUI on larger sections of the example from the tourist information system TIP so that we can
begin gathering feedback on the usability of the tool and investigate other development options
which might be useful to support (such as sizing and positioning of widgets).

4 Conclusion

This work is still its early stages, but the development of the initial version of the parser GUI
and the experiments performed with this so far suggest that this will be a useful extension to our
previous work. Not only will it enable us to develop more realistic applications on the emulator
(which in turn enables us to use such emulations for partial user studies) but it ensures that the
applications meet the requirements expressed in the formalmodels without the developer being
required to directly consider these.

Bibliography

[BR07] J. Bowen, S. Reeves. Formal Models for Informal GUI Designs.Electronic Notes
in Theoretical Computer Science183:57–72, 2007.

[HBWM10] A. Hinze, J. Bowen, Y. Wang, R. Malik. Model-drivenGUI & interaction design
using emulation. In Sukaviriya et al. (eds.),EICS. Pp. 273–278. ACM, 2010.

[HME09] A. Hinze, Y. Michel, L. Eschner. Event-based Communication for Location-based
Service Collaboration. In Bouguettaya and Lin (eds.),ADC. CRPIT 92, pp. 127–
136. Australian Computer Society, 2009.

[HMM06] A. Hinze, P. Malik, R. Malik. Interaction design fora mobile context-aware sys-
tem using discrete event modelling. In Estivill-Castro andDobbie (eds.),ACSC.
CRPIT 48, pp. 257–266. Australian Computer Society, 2006.

[HVB09] A. Hinze, A. Voisard, G. Buchanan. Tip: Personalizing Information Delivery in a
Tourist Information System.Journal of IT & Tourism11(3):247–264, 2009.

[PIM] PIMed. An editor for presentation models and presentation interaction models.
Available from: http://www.cs.waikato.ac.nz/Research/fm/PIMed.html.

[Ree05] G. Reeve.A Refinement Theory forµCharts. PhD thesis, The University of
Waikato, 2005.

5 / 5 Volume 45 (2011)


	Introduction
	Introduction to the Example and Process
	Additional Requirements for the Parser
	Using the Presentation Model as Input
	Parser GUI
	Current Status

	Conclusion

