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Closure and Attention Activation in Human Automatic Behaviour:
A Framework for the Formal Analysis of Interactive Systems

Antonio Ceronel

United Nations University, International Institute forf8eare Technology (UNU-IIST)
Macau SAR China

Abstract: Automatic behavioucan be defined as a fast processing human activity
that does not require attention to occur. According to Narmuad Shallice’s model

of attention and automaticity the majority of responsesuarder fairly automatic
control triggered by environmental cues. In this paper wisdea process algebraic
framework to formalise Norman and Shallice’s model andsthate it through two
case studies: Driving and using an Automatic Teller Mac{iNEM). Finally we
show how to use model-checking to analyse model instamtigtand present the
outcome of the analysis for the ATM case study.

Keywords: Formal Methods, Interactive Systems, Automaticity, Afim EXx-
pectancy, Contention Scheduling.

1 Introduction

The use of formal methods in the analysis of interactiveesyisthas started in the 1990's in the
domain of safety-critical systems, where the relevant huommponent of the system is repre-
sented by operators with expected expertise and skillsra@grebehaviour was often modelled
as defined by the interface requirements, rather than instefngeneral cognitive capabilities
and limitations.

Nowadays, as a consequence of ubiquitous computing andpvieled technology, issues of
safety and security originated by human-machine intesadie no longer restricted to skilled
operator’s behaviour in traditionally critical domainsich as transportation, chemical and nu-
clear plants, health and defence, but actually permeatey mspect of everyday human life.
Driving behaviour Ran94 and interaction with an Automatic Teller Machine (ATMRXCB0g
are two examples of aspects of everyday life in which cogmi@rrors may lead to safety and
security violations.

Large variations in the typology and motivations of humanteriacting with computer systems
make it impossible to define a predicted user's behavioumdrerrors are actually the very
result of an unexpected user behaviour that emerges thitbadhteraction. To best capture such
an emergent behaviour, user's models must specifgdigmitively plausible behaviouthat is,
all possible behaviours that can occur and that involvediffit cognitive processeBBDO(Q].

A number of recent works have explored the use of formal nsaalnderstand how cognitive
errors can affect user performance. Curzon and Blandfo&Df] model the behaviour of a
user who assumes all tasks completed when the goal is adhiendorgets to complete some
important subsidiary taskp@st-completion error)Cerone and Elbegbaya@[07 set the most
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pessimistic scenario, in which the user is a novice, withimah skills, and explore alternative
user behaviours corresponding to a variety of attitudespmndonalities. RukSeenas, Curzon
and Blandford RCBO0{ see rational behaviour as a game between planning aspgutal of a
well-trained expert user, and reactive aspects, typicalradvice user.

In this paper we consider human behaviour in performingyelar activities as fairly auto-
matic. This is the context in which typical cognitive errarsalysed in previous research, such
as post-completion errors, are most likely to occur. Auttienlaehaviour is, however, by no
means purely reactive; it actually develops throughoutdensive training process and features
a high-level form of consciousness. Furthermore, in mammasions, deliberate and conscious
low-level actions are still required and attention takestad. When attention is activated by
the failure of expectations that the user has developedgrexperience and training, cognitive
errors may result and emerge in the form of inappropriatieite responses.

Formal methods have seldom been used to analyse attenti@@ianisms. Recently Su,
Bowman, Barnard and Wybl&BBWO09 have used process algebraic modelling to explore the
temporal attentional limitation of human operators andehthen presented arguments about
how this affects their ability to interact with computer ®rmas. However, their work focuses on
stimulus rich environments in which attention is continsiguactivated. In our work, instead,
we consider attention as a sparsely activated mechanistns \wieryday routine activities.

2 Attention versus Automatic Behaviour

Attentioncan be defined as a selective processing activity that airfects on one aspect of
the environment while ignoring others. Modern researclsalactive attentiogoes back to the
early 1950s, when Colin Cherry analysed a phenomenon thedltesl cocktail party problem:
humans can selectively attend to one conversation amongenamber of conversations going
on around them@he53. The research question was to understand which kind ofrimétion
could be perceived from unattended conversations. Chemgleded that only low-level in-
formation, such as distinguishing a female voice from a nvalee, but no information about
meaning, not even the language in which the conversatioariged out, could be extracted from
an unattended conversation. Although this conclusiontessin the first information processing
model of attention, thearly selection moddBro58], subsequent studies showed that attention
is most frequently elicited by unattended stimuli that heasme meaningful relation to what we
are consciously doinggwWe6(Q and that, therefore, there is some meaningful analysisaf-u
tended informationTre6d. In some cases, a full analysis of meaning could even peetiesl
selection process, as is explaineddtg selection theorieD63] and partly confirmed through
experiments{lac6(.

Automatic behaviouor automaticitycan be defined as a fast processing activity that does not
require attention to occur. In some cases responses majgberad by stimuli of which we
are not yet conscious, or of which we were previously consclout we are no longeBpro4].

For example in theéStroop effegtin which the task is to name the colours in which words are
presented, when shown a colour word (e.g. “red”) presentedniincongruent colour (e.g.
“blue™), the participant is actually more likely to read therd rather than saying the colour in
which it is presentedgtr35. Here, there is no conscious way to intervene on the auifoityat
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process (inconscious automaticityunless we brake the rule of the experiments by defocussing
our eyes. However, in most cases automaticity developsdiolg extended consistent practise or
exposition to aregular patter8 577aSS77h. For example, automaticity is essential in driving a
car and, in such a context, it develops throughout a leaqmiogess: during the learning process
the driver has to make a conscious effort to use gear, iraigagtc. in the right way and would
not be able to do this while talking or listening to the radidnce automaticity in driving is
acquired, the driver is aware of the high-level tasks thaicarried out, such as driving to office,
turning to the right and waiting at a traffic light, but is netare about low-level details such as
changing geatr, using the indicator and the colour of théiardht, amber or red, while stopping

at a traffic light €onscious automatici}y

Among several theories that attempt to explain attenti@hearomaticity, in this paper we con-
sider Norman and Shallice Modd§584. According to this model, the majority of responses
are under fairly automatic control. They are triggered byiremmental cues that contact specific
schemata, which define the routine activities associatdéial avgiven task. For example, while
driving, the noise from the engine is a cue that contactsahersa for using the gear and triggers
the driver to change gear: there is no conscious decisiohanging gear, and later no recollec-
tion of this specific action. Norman and Shallice proposertention schedulingiechanism to
solve a clash between two enabled routine activities. Famgse, while driving and approach-
ing a traffic light that turns to amber, we might either stogpeed up through the crossing. In
order to select the correct action, the mechanism to solsekish needs to assess which action
is more effective in achieving the goal of the current tast. &ample, if the driver is late and
perceives driving through the crossing as safe, then spgegi may be the chosen action.

In general, behaviour is not simply a set of automatic rauéativities, but in many occasions
deliberate and conscious actions are required. For exarapiieiver normally used to drive
on the right side of the road, as in continental Europe, whiriisng in UK or Ireland and is
approaching a roundabout, cannot use the automatic sctatdi¢tates to look to the left and
turn to the right. This schema is now inappropriate becaadictdrives on the left rather than on
the right. Norman and Shallice propos&apervisory Activating Systgf8AS), which becomes
active whenever none of the routine selection schematapgmariate. Typical situations that
activate the SAS, and associated examples related to thegitask, are listed as follows:

required decision as it is the case when road signs are in conflict;
expectation failure which can be assessed as

hazard as it is the case for an unexpected sound from the engine;

novelty as it is the case for driving a car different from the usual onthe above men-
tioned situation of driving on the left rather than on thétijg

curiosity for something we see, which may urge us to consciously slavndo better see what
is happening;

temptation such as the sight of a stall selling some food we are cravingvioich may urge us
to consciously stop to purchase it;

anger which may be caused by another driver honking to ask for sfzaoeertake.
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In this paper we focus on user’s expectations. ThereforewilVéncorporate in our model de-
liberate and conscious behaviour that results from thesassnt of either a hazard or a novelty.
This assessment is in most cases based on previous exjgerieac example, experience tell
us that unexpected sounds from the engine are symptoms dfamieal problems. However, if
there is no previous experience, as in the case of drivinthfofirst time on the left, our mental
model of the task will help. For example our mental model affit circulation allows us to
work out that when traffic drives on the left, we need to givey waathe right and turn to the left
at a roundabout.

3 Formal Framework

The notation that we use throughout the paper is based upareldmotation for describing
Communicating Sequential Processes (CERRBY. We will use the followingCSP operators

prefix a—Db
defines the sequentialisation of two eveatndb;

external choice PO Q
defines a choice between two possible ordering of actionsyetly the choice is driven
by an external process;

parallel composition P|[.]|Q
forces the synchronisation of those actions in.ge{called synchronisation set) that are
offered by both processes, while allowing all other actitmsccur independently;

interleaving P|||Q
is a special case of parallel composition with empty syneisation set:

Pll[Q=PI[0][Q.

The sort of a process is the set of events that the process fieaylwoughout its evolution. In
the following we also use representations for a multipleicdto

O P(e) =P(e1)d P(e) O ... OP(en)
Oizj P(e) = P(e1) 0 P(ez) O ... OP(ej-1)0 P(ej,1) 0 ... OR,

Oeco P(e) =P(e))d P(e) O ... OP(&)

whereg fori=1,...,nandeare events?(g) processes containing everteind? = {ey, e, ..., &},
with k < n.

3.1 Automaticity Rules

In this section we illustrate how to formalise Norman andI8tes routine activity schemata.
We define a schema through antomaticity ruleconsisting of aguarding conditionand an
action Possible guarding conditions are: knowledge about theentistatus of the interaction,
perception of a stimulus, intrinsic or extrinsic motivatjgudgment of a situation, etc.
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3.1.1 Closure

An important phenomenon that occurs in automatic behavwsatiosure[ DFAB98]. When some
part of an ongoing task has been completed there is a tendeffiash out short-term memory
to be ready to start a new task. This may cause the removaldhart-term memory of some
important subtasks that are still not completed and reauibime form of failure of the main
task, usually calleghost-completion errarUndesired closure most commonly occurs when the
main goal of the task is achieved before completing somediabg tasks. A classical example
is provided by an Automatic Teller Machine (ATM) that delisecash before returning the card.
Since the user’'s main goal is to get cash, once the cash ictadl the short-term memory
is flushed and the user may leave the interaction forgettiesgcard in the ATM. That is why
modern ATMs return the card before delivering cash.

Closure has been formally modeled in previous work usindheligorder Logic (HOL) CBOdQ.
In our approach, in order to model closure, we distinguish kimds of actions as follows.

goal action whose execution directly results in the achievement of & goa

task action whose execution does not directly result in the achieverokatgoal.

Goal actions activate a closure process, whereas taskiac@not. This is modeled in CSP as
follows:

GoalAction(cond,, action;, closurg) =
cond — GoalAction
O start — (leave— GoalAction
O closuree — leave— GoalAction
[J cond, — action; — closurg — leave— GoalAction)

TaskAction(cond , action;) =
cond — TaskAction
O start — (leave— TaskAction
Ok closure — leave— TaskAction
[0 cond — action; — O closurg, — leave— TaskAction)

with general processe&palAction andTaskAction) and categories of events (conditicztnd,
actionsaction and closureslosure) are in bold.

EachGoalAction or TaskAction process defines orautomaticity rule Action start is used
to mark the interaction start and actibeaveto mark the user leaving the interaction. After
starting the interaction, the user is free to leave the awat@yn anytime, that is, either without
performing any action or after performing any action. Foraalgaction defined by process
GoalAction and triggered by evemond,, theclosurg event occurs only after thection; event,
whereas any otheglosure, event, withk # i, may occur anytime and is independent of the
occurrence ofction; event. For a task action defined by proc&askAction and triggered by
eventcond, anyclosure, event may occur anytime and is independent of the occurrefite
action; event. Thus, while composing in parallel proces&emlAction and TaskAction and
forcing their synchronisation on alosure, events as follows

GoalAction(cond , action;, closurg) |[Uk{closure} || TaskAction(cond, action;)
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such synchronisation may only occurs aftexcéiony event.

3.1.2 Contention Scheduling

If we consider the automaticity rule that controls a drigepehaviour while approaching an
amber light, which exhibits a case of contention schedulisgwe pointed out in Sectidh) the
driver has two possible responses: (1) stop at the traftid;[{@) speed up through the crossing.
Response (1) is the safer. However, as mentioned in Segtidrthe driver is in a hurry and
perceives that driving through the crossing is safe, thepamse (2) will be chosen. Lstopbe
the event that models response (1) gothroughbe the event that models response (2).

Let safebe the event that models the perception of the driver thatggtiirough the amber
light is safe andunsafeits complementary event. L&iurry be the event that models driver's
hurry andnohurry the event that models driver’'s absence of hurry. A possilde @odel of the
driver behaviour while approaching an amber light is asfed.

AmberLight = hurry — (safe— gothrough— AmberLight
[0 unsafe— stop— AmberLigh}
0 nohurry— stop— AmberLight

Processe§oalAction or TaskAction defined in Sectior8.1.1consider only one single guard-
ing condition. However, we have seen in the example abouectrdention scheduling usually
requires several nested conditions to establish prieritiecontention resolution. Therefore, we
define a parametri€ontention process as follows:

Contention(Proc, Proc, cond;, Proc;, cond , Proc;) = Proc =
cond, — Proc;(Prock) O cond — Prog; (Procy)

whereProc is a name assigned to tlmntention process whildProcy is a name process used in
the recursion that occurs within tioc; andProc; processes. In general, there will be several
nestings ofcontentionprocesses with the toplevel havilRgoc = Prock and defining the auto-
maticity rule. Therefore the example above can be expre$sedgh a nesting ofontention
processes as follows:

Contention(AmberLight AmberLight hurry, InaHurry,nohurry,NotInaHurry) =
AmberLight=
hurry — Contention(InaHurry, AmberLight
safe TaskAction(AmberLightambergothrough),
unsafeTaskAction(AmberLightamberstop))
[0 nohurry — TaskAction(AmberLightamberstop)

Note that this required to extend toalAction and TaskAction processes by including as ar-
gument a name for the process to be used in the recursion@assol

GoalAction(Proc, cond;, action;, closurg) =
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cond — Proc
O start — (leave— Proc
Oy closurge — leave— Proc
[J cond, — action; — closurg — leave— Proc)

TaskAction(Proc, cond, action;) =
cond — Proc
O start — (leave— Proc
Ok closure, — leave— Proc
[0 cond — action; — [ closurg, — leave— Proc)

Finally, to show how recursion works within nest€bntention processes, we expand the
Contention-based definition of procegsmberLightabove as follows:

Contention(AmberLight AmberLight hurry, InaHurry, nohurry,NotInaHurry)
= AmberLight
= hurry — InaHurry [J nohurry— NotlnaHurry

where

InaHurry
= safe— TaskAction(AmberLightambergothrough
O unsafe— TaskAction(AmberLightamberstop)
= safe— amber— gothrough— AmberLight
(0 unsafe— amber— stop— AmberLight

NotlnaHurry
= TaskAction(AmberLightamberstop)
= amber— stop— AmberLight

Since including process names as arguments oCiratention, GoalAction and TaskAction
processes, although needed for formal rigour, decreasembdity, in the rest of the paper
we will use simplified notatiof€ontention(cond, Proc;,cond;, Prog;) rather than full notation
Contention(Proc, Proc,,cond;, Proc;, cond , Proc; ) as well as the shorter notation for processes
GoalAction andTaskAction defined in Sectior3.1.1

3.1.3 Composition of Automaticity Rules

In this section we show how to use the CSP parallel compaositicombine automaticity rules.
There are two tricky issues to take into account while conmgpautomaticity rules:

1. identify the correct synchronisation set;
2. deal with rules that incorporate contention scheduling.

Obvious members of the synchronisation set @dosurg events. Moreover, an event may
occur both as a condition in an automaticity rule and as aoragt another automaticity rule.
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Such an event needs to be included in the synchronisationfsbe parallel composition of
these two automaticity rules. If an event occurs as a camditi two automaticity rules then
there should be no synchronisation on such event, sincereaiththe two automaticity rules
may be non-deterministically triggered by this conditidihan event occurs as an action in two
automaticity rules then there should be no synchronisatiosuch event, since the two rules are
triggered by distinct conditions.

The presence of multiple (possibly nested) conditions éndbntention scheduling requires
the definition of a recursive function that extracts from ldngers of nestings all conditions on
which synchronisation may be needed.

Let Action; denote eitheGoalAction(cond, action;, closure ) or TaskAction(cond;, action;).
We can build a se# of triples each consisting of one automaticity réletion; j, one set of ac-
tions <7 ; and one set of conditioris;; as follows

e Action;; = Action;, <% ; = {action; }, 4 ; = {cond }
ifi>0

e Action;j = Contention(cond, Action i, 1 (1), COndk, Action .4 ; ),
A= A 1x-1U D,
¢ij = {cond;,condk } U%i,1k-1UGk+1j,
ifO<i<k<].
The parallel composition of automaticity ruléstomaticityRules = AutomaticityRules,, is
built
1. by selecting a tripléAction, <7, %) € % and defining

(a) AutomaticityRules; = Action
(b) A=

(c) 61=%

(d) %, =% — {(Action, o/, €)}

2. by iteratively selecting the other tripléaction, «7,%") € # and defining

(a) AutomaticityRules,, = AutomaticityRules,,_ |[. U (Ux{closurec}) ]| Action
where. = (#n-1NE)U (6m-1N )

(b) = dm1US

(C) Gm=Cm-1UE

(d) #m = %m-1—{(Action, o/, €)}

until Z, =0

3.2 Modelling the Supervisory Activating System

We have seen in Sectidhthat the Supervisory Activating System (SAS) becomes adtiien-
ever the routine selection of operations becomes inapiatepr In this paper we restrict our
analysis to the case ekpectation failure
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failed expectation action
Y

A
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Assessmenk » Response

Figure 1: General Architecture

The architecture of the SAS is depicted in Figliré\ction start is used to mark the beginning
of the interaction and actideaveto mark the user’s act of leaving the interaction.

The AutomaticityRules process consists of the parallel composition of @ealAction and
TaskAction processes defined in Secti8ri, synchronising on all actions describing closures,
and further synchronises on all conditions and actionshegbin the human-computer interac-
tion through the parallel composition with tEgvironment process.

TheEnvironment process defines the environment in which the interactionrs¢éncluding
not only computer interfaces and possibly electrical andharical components, but also sub-
jective and social contexts as well as personal, culturdigemeral perceptions and views. For
example, the fact that a driver is in a hurry is a subjectivetext while the fact that the driver
perceives driving through an amber light as safe is a pergameeption.

The Expectancyprocess consists of a multiple external choice

Expectancy = [J; Expectation(cond,expect)
where eaclExpectation(cond;, expect), fori =1,...,n, is defined as follows
Expectation(cond,expect) = cond — expect — Expectancy

with expect the event that characterises the user’s expectation detsirby conditioncond.

In our model we assume at most one expectation associateemétcondition. However, in
general, one condition may lead to distinct expectatiomecéssExpectation(cond;, expect)
could be generalised to the parallel composition ewardk of processes

Expectation(cond,,expeck) = cond — expeck — Expectancy
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but this additional complexity would hinder the illustsagipurpose of the model.

Let us defines” = Ui {expect}, the set of all expectations, ad#ts’ = {cond | expect € &},
the set of conditions which raise these expectations. Far ggecific instantiation of our model
we need to define the s&t% of all conditions that occur immediately after expectasioaach
condition either meeting or failing the corresponding exaton.

The SAS process synchronises with the condition expectatierpédct € &) offered by pro-
cesExpectancyand with all conditionsdond, € £%) that are offered by th&utomaticityRules
process and raise such expectations, and then offers a@bhantsxpress whether each expecta-
tion (expect) is met (nef) by conditioncond € €¢ or not (ailed;). Let.# denote the set of all
expectation failures for the specific instantiation of ouwsd®l. TheSAS process is defined as
follows.

O start — ExpectCheck

ExpectCheck= leave— SAS
; expect — Oeondezw cOnd — outcome— ExpectCheck

whereoutcome= metif the expectation is met amlitcomec .% otherwise.

Eventsoutcomee {met} U.# are offered by theSAS process to théAssessmenprocess,
which assesses for each expectation failiméed € .#) whether this is considered by the user
(perceptior,eq) @S a hazard or a novelty. This is modeled in CSP as follows.

Assessment met— [iajlede.s actiongjeq — Assessment
Utailede.# failed — actiongjeq — perception;yeq — Assessment

The user’s conscious and deliberate response is modele8ra€ follows.

Responséperception, action) = perception — actionperception — Response
0 actionperception — Response

Let & = {perception,eq | failed € .#} be the set of perceptions (hazard or novelty). We
define the set of interactiong as the set of conditions, and possibly their negations, atiore
that are also events of the sortEfivironment.

The overall interaction process is modeled in CSP as follows

Interaction = Environment |[.# ||
AutomaticityRules |[{start,leave U€ € ]|
SAS |[{leave ||
Responsé¢hazard, leave |[{actionneyerty} ]|
Responsénovelty, actionneyerry) |[6¢ U & ||
Expectancy |[{met} U.Z U Z]|
Assessment

whereactionnoverty is a specific action with which the user responds to the npyativelty).
We have assumed that the user’s response to a perceivedi lfazaard) is to leave the in-
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teraction (actiorieave. What this means depends on the specific interaction andditicenal
process may be requested to fully specify such response.

Furthermore, for simplicity we have considered only oneattyvand one hazard, but in gen-
eral a variety of novelties and hazards may occur duringasct®n. Therefore the parallel
composition may include severdesponserocesses, each associated with distinct novelty and
hazard events.

3.2.1 Driving Case Study: Model

Let us consider the task of driving to office, whose goal isatkghe car in the reserved bay in
the company car park. For simplicity, we model the entine &3 just the task of driving through
one traffic light between departure and arrival.

Using processegaskAction andGoalAction defined in Sectio.1.1and proces€ontention
defined in SectioB.1.2we can define procef®riveRuleghat incorporates all automaticity rules
for the driving task as follows.

DriveRules = (TaskAction(departlight) |[{arrived} ]|
TaskAction(greengothrough |[{arrived}]|
Contention(hurry, Contention(safe TaskAction(ambergothrough,
unsafeTaskAction(amberstop)),
nohurry, TaskAction(amberstop) |[{arrived}]|
TaskAction(red,stop |[{gothrougharrived} ||
GoalAction(gothrough free) |[{ free arrived} ||
GoalAction( free, park, arrived)

After the car departdepar) it approaches the traffic lightight), which can begreen amber
orred. The car may stop at the traffic lighatbp, or go through it gothrough), after or without
stopping. Once arrived at the car park, if the driver's peasgarking bay is freeftee), the
driver parks the cargark). The task is completed and closure is attairediyed).

We have only one expectation

DriveExpect= Expectation(gothroughexpectfreg

in which the driver expects to find the personal bay free atthigal at the company car park.
The associated condition gothroughbecause in our simplified model, going through the traffic
light is the action that immediately precedes the arrivdlhatcar park.

TheDriveSASprocess is modelled as follows

DriveSAS= free— DriveSAS] occupied— DriveSAS
0 start — DriveExpectCheck

DriveExpectCheck-= leave— DriveSAS
O expectfree— (free— met— DriveExpectCheck
O occupied— freefailed— DriveExpectCheck
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The set of expectations &prive = {€xpectfre¢ and the set of associated conditiong’# pyive =
{gothrough}. The set of conditions that occur after the unique expextai pectfreés ¢ ¢ prive =
{free occupied. If the personal bay is freef{e€) then the expectation is megxpectmet If
the personal bay is occupiedocupied then the expectation faildfee failed. The set of ex-
pectation failures is7pyive = { freefailed} and the set of perceptions i&pive = {novelty}

The assessment of expectation failures is defined as follows

DriveAssess- met— [J; action; — DriveAssess
O freefailed— otherfree— novelty — DriveAssess

Note that since our simple model does not include an expectétilure that is perceived as a
hazard,DriveAssessloes not offer aazard event. The expectation failure urges the driver
to look for another bay where to parktberfreg and, when this is found, the expectation is
assessed as a noveltyofelty) and the car parkedpérk). Therefore, the only response process
is Responsénovelty, park). Notice that we assume here that there is always a free jarkin
bay. To release this assumption would require two distimstelty events with two different
responses.

The environment part consists of the traffic light and theditions that allow the driver to
assess whether to drive through the amber light. Let us sepibat the driver perceives that it is
always unsafe to drive through an amber light and that thesdis in a hurry. The environment
is modelled as follows.

DriveEnv= DriveTrafficLight|||Hurry|||UnSafe

DriveTrafficLight = light — (GreenLightd AmberLightJ RedLighj
GreenLight= green— GreenLightJ change— AmberLight
AmberLight= amber— AmberLight[d change— RedLight
RedLight=red — RedLightJ change— GrenLight

Hurry = hurry — Hurry

UnSafe= unsafe— UnSafe

The set of interactions i = {light,greenamberred, hurry,nohurry, safeunsafé. There-
fore, the overall interaction process is modeled in CSP lisife

Drivelnteraction= DriveEnv |[ “prive |
DriveRules|[{start,|eave free occupied ||
DriveSAS|[{leave} ]|
Responsénovelty, park) |[{gothroughexpectfre¢]|
DriveExpect|[{met freefailed novelty}]|
DriveAssess

3.2.2 Automatic Teller Machine (ATM) Case Study: Model

We consider a simple ATM task in which the user is triggerethsert a carddardl) when the
interface shows (through a message on the display) thatdlohine is readyréady), is triggered
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to enter the pinginE) by the knowledge that the card has been insertadd(), is triggered to
collect the card¢ardC) when seeing the card outgrdO) and is triggered to collect the cash
(cashQ when seeing the cash owaashQ.

AT MsRules = TaskAction(readycardl) |[{cardl,cashgot ]|
TaskAction(cardl, pinE) |[{cashgot ||
TaskAction(cardO,cardC) |[{cashgot ||
GoalAction(cashQcashC cashgo}

Note that we have implicitly assumed that the user knowsttteatard is always inserted before
entering the pin, which is anyway the case for any ATM we haa@antered in our experience.

We can observe that user’s automatic behaviour does noy iamyl order between the actions
of collecting the card and collecting the cash; such ordelidgted by the specific ATM with
which the user interacts. In particular, we may considerfahewing ATMs.

ATM; = ready— cardl — pinE — cashO— cashC— cardO— cardC — AT M,
ATM, = ready— cardl — pinE — cardO— cardC — cashO— cashC— AT M,

These are two possible interaction environments. EnvieatrAT M; delivers the cash before
returning the card, where@d M, returns the card before delivering the card.

Depending on which kind of ATMAT M; or AT Mp, the user has experience with, we have
respectively either expectations

AT MsExpeagt= Expectation(pinE, expectcash ] Expectation(cashCexpectcard
or expectations
AT MsExpecet= Expectation(pinE, expectcard ] Expectation(cardC, expectcash

A user who has experience witkir My, which delivers cash before returning the card, expects
to have the cash delivered (expectatexpectcashimmediately after entering the pipiQE)
and expects to have the card returned (expectatiqrectcardl immediately after collecting the
cash ¢ashQ. Analogously, a user who has experience withib, which returns the card be-
fore delivering cash, expects to have the card returnede@aponexpectcardl immediately
after entering the pinginE) and expects to have the cash delivered (expectatigectcash
immediately after collecting the cardgrdC).

The AT MsSA®rocess is modelled as follows

AT MsSAS- cardO— AT MsSAS] cashO— AT MsSAS
O start — AT MsSExpectCheck

AT MsExpectCheck leave— AT MSSAS
[0 expectcard— (cardO— met— AT MsExpectCheck
[0 cashO— cashfailed— AT MsSE xpectChegk
[0 expectcash- (cashO— met— AT MsExpectCheck
O cardO— cardfailed— AT MsExpectChegk
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The set of expectations &ty = {expectcardexpectcash The sets of associated conditions
are &€ arm1 = {pIiNE,cashG for ATM; and &€ atme = {PINE, cardC} for AT M,. The set of
conditions that occur after the two expectation®’is atm = {cashQcardO}. The expectations
are not met if cash is deliveredqshQ when card is expecteaXpectcardl and if card is de-
livered (cardO) when cash is expecte@Xpectcashwith resultant set of expectation failures
Zatm = {cardfailed cashfailed. The set of perceptions i&arm = {novelty, hazard}

The assessment of expectation failures is defined as follows

AT MsAssess: met— (cashC— AT MsAssess
O cardC— AT MsAssess

[0 cashfailed— cardC — hazard — AT MsAssess

O cardfailed— cashC— novelty — AT MsAssess

A user who is returned the card when expecting to be deliveasti ¢ashfailedJ may suspect
that there was some problem with the authentication proaedsperceive the hazard to have
the card confiscated if attempting to perform the transadigain. On the other hand, a user
who is delivered cash when expecting to be returned the cardf(ailed) perceives the situation
just as a novelty that does not activate any specific respofiserefore, the only response to
expectation failure occurs when a hazard has been assegbsedrsists of leaving the interaction
as expressed by proceResponséhazard,leave.

The set of interactions i = {readycardl, pinE,cashQcashCcardO,cardC}. Therefore,
we consider four overall interaction processes, ifgr= 1,2, which are modeled in CSP as
follows

AT Msinteractiofi, j) = ATM |[ ZaTm]]|
AT MsRuled[{start,leavecashQcardO} ||
ATMsSAS|{leave ||
Responsé¢hazard,leave |[£¢ atmjU {expectcardexpectcash||
AT MsExpect[{met cardfailed cashfailedhazard]|
Assessment

4 Model-Checking Analysis

From an analytical point of view our focus is to verify whatliee design of the interface and the
other environmental components addresses cognitive @spidauman behaviour such as closure
phenomena and user expectations that trigger the SAS t@wcattention. Although we have
seen in SectioB.1.2that our approach supports the modelling of contentioncidivey, we are
not dealing with this aspect in our analysis. In fact, theesssient process automatically used
to adjust routine behaviour to solve contention involveswnaspects related to culture, back-
ground and beliefs, which cannot be easily incorporatediiframework. Therefore, improving
environmental design to make contention scheduling mdeetafe and beneficial is beyond the
scope of this paper.

Model-checking technique[cP99 provide an effective analytical tool to exahustively ex-
plore the system state space and capture the behaviournteatyes from the combination of
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several system components. Closure, automatic behawgpgctancy and attention are phe-
nomena that represent distinct components of human cogritid action, and their combination
results in an apparently holistic ways of performing taskghis context model-checking can be
used to capture errors that emerge when environmentalrdeaigot deal with closure phenom-
ena, or when the outcome of the interaction between autormakiaviour and environment does
not meet human expectations. We use Linear Time Temporatl(b§TL) [ MP9]] to specify
system properties and then we use model-checking to verdiy properties on the CSP model.

4.1 Automatic Teller Machine (ATM) Case Study: Analysis

A formal specification of the ATM case study presented in iB8a@.2.2is as follows.

G(ready= (—cashQ% cardl) (1)
G(ready= (—cashQ% pinE) (2)
G(((cardl A (—ready) % pinE) = (—ready % cashQ Vv

(piNE A (—ready)% cardl) = (—ready)% cashQ (3)
G(cardl = (—ready)% cardO) 4)
G(cardO= (—ready % cardC) (5)
G(cashO=- (—ready)#% cashQ (6)

Formulae {) and @) specify respectively that inserting the card and entettiegpin are required
to withdraw cash. Formula3] specifies that cash can only be delivered if the card is tieder
and the correct pin entered. Formul&g énd @) specify that the ATM can be ready for another
transaction only if card and cash are collected.

If we check the conjunction of the above properties on thedgstems defined in Secti@n2.2
we find out that it holds only foAT Msinteractioii2,2). This is the case of an ATM returning the
card first and a user having experience with this kind of ATM fér AT MsInteractioi1,1) and
AT Mslinteractioiil,2), in which the ATM delivers cash first, a closure that flashes short-
term memory may occur after collecting the cash, that igrafthieving the goal of the task.
In this case the user may forget to collect the card and thergfropertys does not hold (post-
completion error). Finally, foAT Msinteractioni2, 1), the user is returned the card when expect-
ing to be delivered cash and may suspect that there was sableprwith the authentication
process. This is perceived as the hazard to have the cardcatefi, and the user is likely to
leave the interaction without collecting cash, thus vialgproperty6.

This case study has been implemented using the Concurreadsbéhch of the New Century
[CLSOQ. The code is available at:

http://www.iist.unu.edu/antonio/Research/Software/ CWB-NC/ATM/

5 Conclusion and Future Work

We have proposed a process algebraic framework for modealbgnitive activities, such as clo-
sure, contention scheduling and attention activatiort, dlbaur in automatic routine behaviour.
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Although these activities are essential to deal with litiotas of short-term memory, solve con-
tentions and respond to unexpected situations, they magecaagnitive errors in interactions
with inappropriate environments. The framework we progeggneral enough to be applied to
very different real-life context, such as driving a car arithdrawing cash at an ATM.

Our model-checking analysis is able to capture the emeegehsuch cognitive errors. Post-
completion errors, such as the violation of propértg Section4.1, may be often avoided by de-
signing the environment in such a way to ensure that all skkbtare completed before the goal is
achieved. This is the case AT M,, which models an ATM that returns the card before delivering
cash. This approach would always work in an ideal world wiadirenvironments are designed
according to the above criterion. However, in the real wbrdans have to frequently deal with
inappropriate environments, thus building up experietheg tay result adverse in interacting
with “correctly” designed environments. In the context loé tATM case study, although nowa-
days most ATMs work as modeled By M, there are still some developing countries where all
ATMs work as modelled bAT My. Thus we can imagine that a user from one of such countries
would have problems while visiting a country where all ATMenkw as modeled bAT M.

Our qualitative analysis supports the identification ofgpdial errors but does not give any
clue about their frequency. The development of a frameworkgtiantitative analysis is part
of our future work. We also envisage a more comprehensivadweork in which qualitative
analysis is used to identify potential cognitive errord thay be induced by a new environment
design, while quantitative analysis is used to predict thgdency, and thus the criticality, of
such errors.
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