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Abstract:

We present an approach to facilitate the design of provably correct concurrent sys-
tems by recasting recent work that uses discrete-event supervisor synthesis to auto-
matically generate concurrency control code in Promela and combine it with model
checking in Spin. This approach consists of the possibly repeated execution of three
steps: manual preparation, automatic synthesis, and semi-automatic analysis. Given
a concurrent Promela program C devoid of any concurrency control and an infor-
mal specification E;,, the preparation step is assumed to yield a formal specifica-
tion E of the allowed system behaviours and two versions of C: C, to identify the
specification-relevant events in C and enable supervisor synthesis, and C, , to intro-
duce “checkable redundancy” and used during the analysis step to locate bugs in:
the specification formalization E, the event markup in C,, or the implementation of
the synthesis. The result is supervised Promela code Cy,, that is more likely to be
correct with respect to E and E;,. The approach is illustrated with an example. A
prototype tool implementing the approach is described.

Keywords: Concurrency control, formal verification, control theory, discrete-event
systems, controller and supervisor synthesis.

1 Introduction

The poor integration between computer science and electrical engineering in academia has been
observed before. In [HSO7], Henzinger and Sifakis blame the “wall” between these two disci-
plines for keeping the “potential of embedded systems” at bay. Indeed, the potential for fruitful
interaction between them seems large. Consider, for instance, Discrete-Event Systems (DES)
control theory, a branch of control theory which is concerned with the Supervisory Control Prob-
lem (SCP), i.e., the automatic synthesis of a supervisor (controller) S that restricts the execution
of an unrestricted discrete-event system G (called “plant”) to enforce some specification £. DES
theory originated in the 1980s [RW87, RW89] and offers a large body of research on the SCP
which, for instance, considers different formalisms to represent S, G and E including finite state
automata (FSA), Petri nets, and the mu-calculus [CL08, ZS05]. Recent work has shown how
results and tools from DES theory can be used to alleviate the challenges of concurrent pro-
gramming. In [WLK 09, WCL™10], automatically generated supervisors are used to guarantee
deadlock-free execution of multi-threaded code, based on a structural analysis of a Petri-net rep-
resentation of the plant. In [DDROS], standard DES based on FSAs is employed to generate
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supervisors that enforce deadlock-freedom and safety properties (also expressed as FSAs) on
Java programs with static concurrency. In [ADRO09], this work is extended to dynamic concur-
rency which then requires the use of Petri nets.

We extend this line of work and suggest the integration of DES theory with model checking by
combining the constructive and generative aspects of DES theory with the analysis and bug de-
tection capabilities of Spin. We aim to facilitate the development of provably correct concurrent
systems by increasing the degree of automation. This paper makes the following contributions:
(1) The work in [DDROS] is recast in Promela. Given an unrestricted system C expressed in
Promela and a specification E expressed as a FSA, a supervised system Cy,, is automatically
generated and is guaranteed to satisfy £ and deadlock-freedom. Moreover, the supervisor com-
ponent in Cg,, is provably minimally restrictive (maximally permissive), i.e., any behaviour in C
but not in Cj,,, will violate E or deadlock-freedom. (2) Despite the theoretical guarantees, bugs
can still creep in not only in the various synthesis steps’ implementation, but also in the inputs
to the synthesis steps, all of which are, at least partially, manually created. We show how model
checking can be used to debug them. (3) We describe a prototype tool using Spin and show
how Spin’s support for shared-memory and message-passing concurrency can be leveraged to
generate supervisors supporting the two concurrency paradigms and to optimize the analysis of
the combined system. A detailed example illustrates the approach and the tool’s utilization.

This paper is structured as follows: Related work is reviewed in Section 2 and relevant back-
ground on DES theory is given in Section 3. Section 4 describes our approach and Section 5
illustrates it with an example. Section 6 describes our prototype tools and Section 7 concludes.

2 Related Work

Automatically generating parts of concurrent systems from specifications has been an active re-
search topic. We focus here on approaches that combine synthesis and formal analysis via model
checking. While the use of DES in software development and execution has been suggested be-
fore [RW90, RW92a, Laf88, TMH97, WKL07], generating control code for concurrent software
has received particular interest recently. The work of two authors of this paper on using DES
for generating concurrency control code has already been mentioned [DDRO8] where the JPF
model checker was used to validate the generated supervisor code, but not the manually created
inputs. Moreover, despite recent advances in software model checking, model-level analyses
are still more likely to be tractable rather than at code-level. Independently, Wang et al. have
used DES to obtain supervisors that guarantee deadlock-freedom [WLK"09, WCL*10] where
concurrent programs are represented as Petri nets and deadlock freedom is characterized by the
absence of reachable empty siphons. Our work in this paper (and [DDROS]) is based on FSAs
and supports general safety properties rather than just deadlock-freedom. Also, no support for
analysis of the generated artifacts is mentioned in [WLK ™09, WCL*10]. Timed DES is based on
timed automata; recently, UPPAAL-TIGA has been used for an industrial case study involving
climate control systems [BCD"07] where the synthesis and analysis capabilities of UPPAAL-
TIGA have been combined with Simulink and Real-TimeWorkshop to provide a complete tool
chain for synthesis, simulation, analysis and automatic generation of production code. The work
in [GPTO6] uses symbolic model checking for supervisor synthesis from specifications given
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in CTL specifications and a plant description given in NuSMV. The work in [ZS05] introduces
DES theory based on the mu-calculus and thus generalizes Ramadge and Wonham’s standard
DES theory. However, no tool supporting the generalization appears to be available.

There exists additional work that does not make explicit use of DES theory. For instance,
some work is aimed at facilitating software architecture component composition (e.g., [TI08,
BBCO05]). In [TIO8], Tivoli and Inverardi generate coordinators which enforce a given global
coordination policy [TIO8] where components are assumed to adhere to a coordinator-based ar-
chitectural style and message sequence charts are used for behavioural interface specification.
Correctness and maximal permissiveness (called completeness) are proved and the work has
been integrated with CHARMY, a tool for architectural analysis. Despite many differences in
technical details and terminology, the approach is similar to supervisor synthesis'. In the context
of concurrent programming, the approach presented by Deng et al. explicitly shares our interest
in supporting the combined use of synthesis and verification [DDHMO02]. It generates synchro-
nization statements for concurrent Java code from invariant specifications and the new code can
be fed into the Bandera model checker for analysis. Some related work appears in the literature
as environment (assumption) generation. For instance, in [GPBO05], the LTSA tool is used to
determine the weakest assumptions that the concurrent environment £ of a component C has to
satisfy such that the composition of C and E satisfies some specification B where E, C, and B are
given as FSAs. LSTA also supports model checking. Synthesis has also been used to achieve
fault-tolerance. In [AAE(04], a method is presented for the synthesis of fault-tolerant concurrent
programs from specifications expressed in the temporal logic CTL. However, no implementa-
tion allowing the integration with CTL model checkers such as nuSMV is mentioned. Finally,
in [ISTO7] and [1S08], CSP||B is used to control machines or processes via control “annotations”
which may represent states, next operations or control flow. A synthesis process is used to: verify
the annotations against the machine, manually produce a “Controller” and verify it against the
annotations, and finally refine if needed.

We conclude that while the integrated use of synthesis and formal verification has been sug-
gested before, our work differs from each of the existing approaches in at least one of the follow-
ing two aspects: it uses Spin, one of the most popular and powerful model checkers available;
it explicitly uses DES theory and thus allows the large body of existing results and tools to be
leveraged. Interestingly, the recent interest in autonomic and adaptive software has produced
proposals to design software directly informed by control theory [MPS08, Dah10]. However, so
far, controller synthesis does not appear to be part of this research agenda. In [Dah10], valida-
tion and verification of autonomic and adaptive systems are singled out as particularly important
research topics.

! In [TIO8, p. 206], it is claimed that supervisor synthesis based on DES requires explicit specification of the dead-
locking behaviours; this, however, is not the case.
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3 Background

3.1 DES Theory

In DES theory, systems are modelled by FSAs called plants. Transitions represent events that are
either controllable (can be enabled or disabled at will) or uncontrollable (may happen arbitrar-
ily). In a non-blocking model, all states are reachable (from the initial state) and co-reachable
(lead to a final state) which implies the absence of deadlocks and livelocks. A specification de-
scribing a plant’s desired behaviour can be modelled using specification FSAs and is called the
specification, or legal language. A specification E is controllable with respect to plant G if for
any series s of events in G and legal in E (s is in E’s prefix closure), there is no uncontrollable
event o that can then happen in G and that is illegal in E (so is not in E’s prefix closure).

Given a specification E and plant G, where E is not necessarily controllable with respect to
G, we want to get the least restrictive sub-specification (or largest sub-language) K C E such
that K is controllable with respect to G. If there is no such nonempty subset of E then K = 0.
If E is controllable with respect to G, then K = E. We call a recognizer S for K the supervisor
or the supremal controllable sub-language of E with respect to G, denoted supC(G,E) [CLO8].
The supervisor is also modelled with an FSA and will control G by enabling and disabling G’s
controllable events. When a plant G is controlled by a supervisor S, the resulting behaviour is
given by the intersection of the language accepted by G and the language accepted by S and is
captured by a FSA denoted as S/G.

Composing Specifications and Processes: The plant G and the specification £ may consist of
several parallel processes G; and sub-specifications E;, respectively. We assume that the sub-
specifications share all events (i.e., use the same set of events), which means that each node
in a sub-specification has a self-loop labelled with all the events that do not directly belong to
any sub-specification but belong to the processes. Processes, however, may not share all events.
We will combine processes and sub-specifications using an operation that forces the FSAs to
synchronize on shared (common) events, while allowing independent interleavings of the non-
shared events. We will call this operation synchronous product’.

Complexity and Tool Support: The supervisor supC(G, E) can be computed in time O(n>m?e)
where n and m are, respectively, the number of states in G and E and e is the total number of
events in G and E (Section 3.5.3 of [CL08]). The time complexity of the synchronous product
operation is O(mn) where n is the number of sub-FSAs provided and m the maximum number
of states in all these sub-FSAs. Several DES tools supporting supervisor synthesis are available
including IDES [IDE], TCT [TCT], and DESUMA [DES].

3.2 DES Theory for Generation of Concurrency Control Code

As described in Section 2, previous work has already observed that DES theory can be used
directly to control the execution of software with respect to certain specifications [DDROS,
WLK™09]. The area of application here has been concurrent programming where the supervisor
manages concurrent processes such that deadlock-freedom and the safety properties expressed
as FSAs are enforced — the generated supervisor inheriting the strong theoretical guarantees

Z Note that if two FSAs share all events, the synchronous product reduces to language intersection.
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offered by DES theory. The key idea is to view the concurrent system as the plant G and to
interpret concurrency- or specification-relevant operations in the code as controllable events. To
obtain the closed loop system S/G, the event markup in G is replaced by an interaction with
the supervisor in which a request by a process in G to execute an operation is only granted by
the supervisor if its execution cannot possibly lead to a deadlock or specification violation. The
approach requires the (manual or automated) identification of relevant events in the code and
then the transformation of the code and the specification into a format supported by current DES
tools. For instance, in [WCL " 10] concurrent C code is automatically converted into a Petri net
by extracting and combining the control flow graph of each of the threads and modelling execu-
tion via token flow. In [DDROS], a similar technique is used to convert Java threads into FSAs
which are then combined using the synchronous product operation.

4 Combining Supervisor Synthesis and Spin Analysis

A graphical overview of our approach to integrate supervisor synthesis and analysis is given
in Figure 1, which shows the flow of artifacts (solid arrows) between possibly nested activities
(boxes). Stick figures indicate activities requiring user interaction and the dashed arrow shows
control flow.

fix bugs in E, C,, and/or C, , and redo synthesis & analysis

1
1) Prepy, 2) Synthesis 3) Analysis !
. | Formal 1
orma Trans-| spec E , . !
Informéll specs {E} 4> fc:f‘gz (FsA) | supc [fail] (“fail” Inspection | Jokl N
spec E; i i = '
P in (FSA) tion T, Ce’E) i [=oK] :
% [success]l/ \ or 1
Trans-| Plant Model oy
Ce forma- > G Supervisor or checkl_ng — redo
(Promela) | |tonT,| Fsa) s W Spin o
Unsuper- (F\fA) Super- /F"k] g "
vised C vised Simulation
- ea —P> ; - . C
code C (Promela) Transformation T, code Csup w/ Spin % ECZ;FJP})
(Promela) A (Promela) '

I

“shm”
or “msg”

Figure 1: Overview of Approach to Integrate Synthesis and Spin Analysis

This approach recasts the preparation and synthesis steps for concurrency control code gen-
eration proposed in [DDROS] using Promela (instead of Java) as the implementation language.
Moreover, an additional artifact (C, ,) is introduced and the synthesis is followed by an analysis
step in which manual inspection, user-guided simulation, and model checking are used to iden-
tify bugs in any of the artifacts created during the manual preparation step. If bugs are found, the
preparation and the synthesis are redone. We describe each step in more detail.

1) Preparation: The informal specification Ej, is assumed to express a safety property identify-
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ing permissible sequences of events such as precedence constraints, mutual exclusion constraints
or capacity constraints. The unsupervised code C is a concurrent Promela program devoid of any
concurrency control. The user then (1) translates Ej, into a collection {E;} of FSAs, (2) marks
up specification-relevant events in C to create C,, and (3) adds assertions and possibly auxiliary
variables to C, to obtain C, ,. The transitions in £ should distinguish between controllable and
uncontrollable events. The assertions in C,, capture (aspects of) the informal specification Ej,
and offer “checkable redundancy”, which will be used in the analysis step to validate E against
E;,. For instance, a capacity constraint in Ej, may be checked by an assertion containing a
counter variable.

2) Synthesis: Consists of the supC operation, sandwiched between three transformations: 77 and
T, to prepare the inputs and 73 to process the output:

a) The formal specifications E; are combined into a single one by computing their syn-
chronous product E (transformation 77 in Figure 1).

b) The unsupervised code with event markup C, is translated into plant FSA G (transfor-
mation 73). Similar to [DDR08, WCL"10], G is obtained using compiler technology to
extract the control-flow graph of every process in C, and to build FSA-representations.
These FSAs are combined by computing their synchronous product.

¢) An off-the-shelf DES tool is used to perform the supC-operation on E and G.

d) If supC(G,E) = 0, the operation fails. Otherwise, the generated supervisor S is automat-
ically implemented in Promela and integrated in C,, to obtain the supervised code Cy,),
(transformation 73). Transformation 73 allows the generation of code that implements the
supervision using shared-memory (input “shm” in Figure 1) or message-passing (“msg”).

3) Analysis: The analysis process is described in Figure 2. If the supC-operation fails (line 3),

input: (‘fail’,E,C.) or Cy,p

1

2 output: ‘fail’, ‘redo’, or Cyp

3 if input==°‘fail ° then 9 SupCon operation failed
4 check that C, and E are correct wrt C and Ej; 9% Manual inspection
5 if bug found then % E and/or event markup in C, wrong
6 output ‘redo’ and stop; % Fix bug and redo synthesis
7 else output ‘fail’ and stop 9% Eiy, may be unenforceable on C;done
8 else

9 simulate Cyp in Spin; % Does Cy,p behave as expected? (semi-automatic step)
10 if Cyp has unexpected behaviour then

11 output ‘redo’ and stop; % Fix bug and redo synthesis
12 else

13 modelcheck Cyp in Spin; 9% Do assertions hold?
14 if violation found then %E or assertions in C, , must be wrong wrt Ej,
15 output ‘redo’ and stop; 9 Fix bug and redo synthesis
16 else

17 use Spin to determine minimal channel capacities {cap;};

18 output (Cyp,{cap;}) and stop. % Done

Figure 2: Pseudocode for Analysis Step in Figure 1 (indentation indicates nesting)

it may be because C, or E are incorrect. For instance, event markup in C, may be misplaced
or missing; £ may have incorrect transitions or may erroneously mark a controllable event as
uncontrollable. If manual inspection uncovers such an issue (line 4), the preparation and the
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synthesis are redone. Otherwise, C, and E are assumed to be correct (w.r.t. E;; and C) and
the process ends in a fail (because E is unenforceable on C) (line 7). If the supC-operation is
successful (i.e., supC(G,E) # 0), the supervised code Cy,, is simulated by the user (line 9); if
unexpected behaviour is encountered, the preparation and the synthesis are redone; otherwise,
Cqup 1s model checked (line 13). Assertion violations indicate that either E or the assertions
are incorrect and a new iteration is initiated (line 15). If no violations are found, Spin is used to
determine the smallest channel capacities {cap; } necessary to implement Cy, p» and the supervised
code Cy,), is output with {cap;}.

4.1 Theoretical Guarantees

Strong guarantees can be given for the result of the supC operation at the heart of our approach.
The combination of G and § satisfies E and is deadlock-free. Moreover, S is guaranteed to be
maximally permissive. Unfortunately, these strong guarantees do not carry over to the artifacts
produced from supC(G,E) using our approach. For instance, if our approach stops with output
“fail”, it is possible that a supervisor for C and Ej, exists, because the manual inspection over-
looked that, e.g., E does not correctly capture Ej,. In addition, if the approach stops with output
Cyup, it is still possible that Cy,, violates E;,, because, e.g., the added assertions are not suitable
to detect that E actually does not capture E;, correctly. The manual steps involved make this
situation unavoidable. Moreover, since E;, is given only informally, it is difficult to establish the-
oretical guarantees with respect to E;,,. Nonetheless, our experience suggests that the approach
is still useful. During our case studies it repeatedly helped us identify inputs with unexpected,
non-seeded bugs to the synthesis step. A few of these cases will be illustrated in the next section.

Also, in our experiments, we routinely found that the shared-variable implementation of the
supervised code had substantially fewer states than the message-passing implementation. This
suggested that the generation of the message-passing version, if necessary at all, be postponed
until the very end of the prepare-synthesize-analyse cycle.

5 Working Example: Transfer-Line

We have applied our approach on several examples and used the IDES DES tool [IDE] to com-
pute the synchronous product and supC operations. Our working example was taken from [Won11].
A widget processing transfer-line (shown in Figure 3) consists of two production machines M1
and M2 and one test unit 7U. The three machines form a production line and are connected
via two widget buffers B1 and B2. M1 may be requested to start production of one widget at a
time and deliver it to B1 in an unpreventable way after a arbitrary time. Similarly, M2 may be
requested to pick-up one widget from B1 and then deliver it to B2. Finally, TU can pick up one
widget from B2, test it and then either uncontrollably return it to B1 on failure or deliver it away.
Figure 4 lists the corresponding unsupervised Promela code. Code doing actual work is ab-
stracted out with comments and the widget test in 7’U is replaced by a non-deterministic choice.
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capacity capacity
0-3 0-1 test

passed
Bl B2

1

test failed

Figure 3: Transfer-Line Example

active proctype MI() {

do :: true —>
/] Idle active proctype TU() {
// Create new widget do :: true —>
// Deliver widget to Bl /] Idle

od; } /" Pick up widget from B2

active proctype M2() { /] Test widget

do :: true —> if
/1 Idle i1 true —> // Passed: deliver away
// Pick up widget from Bl :: true —> // Failed: return to Bl
// Process widget fi;
/! Deliver widget to B2 od; }

od; }

Figure 4: Unsupervised Promela Code C

5.1 Step 1: Preparation

Addition of Event Markup and Assertions: Since the event names chosen for the event markup
in C, will also be used for the construction of {E;}, we start by identifying the relevant events in C
and assertions suitable for checking aspects of E;,. The resulting code C, , is shown in Figure 5.
C. is like C, , except that the assertions are removed. Three controllable events (M1 MakeWidget,
M2PickUpWidget, and TUPickUpWidget) and six uncontrollable events (M1WidgetDelivered,
M?2WidgetPickedUp, M2WidgetDelivered, TUWidgetPickedUp, TUWidgetPassed, and TUWid-
getFailed) have been identified. Event M1 MakeWidget indicates that M1 is ready to produce a
new widget, similarly for M2PickUpWidget with M2 from B1 as well as for TUPickUpWidget
with TU from B2. Completed widget deliveries are signalled using M1WidgetDelivered and
M2WidgetDelivered and TU signals a failed widget returned to B1 with TUWidgetFailed.

Assertions warrant the capacity constraints via auxiliary variables (B1 and B2) that store the
number of widgets in each buffer and model widget deliveries and pick-ups. Although not essen-
tial, the action of picking up widgets was made non-instantaneous to admit more concurrency.
Formal Specifications E; and Ep,: Two specifications are produced capturing how the number
of elements in each of the buffer changes in response to certain events (Figure 6). Plain arrows
represent uncontrollable events.

5.2 Step 2: Synthesis

Build £ (Transformation 77): The synchronous product of Ep; and Ep, was generated and
contains 8§ states and 58 transitions. It is not shown here due to space limitations.

Generate Plant G (Transformation 7,): Plant FSAs (Figure 7) were automatically generated
from the control flow graphs of the processes in C, , using standard parsing technology. Dashed
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short Bl = 0, B2 = 0;
active proctype MI() {
do :: true —>
/1 Idle
/1 relevant controllable event: MIMakeWidget
/1 Create new widget

atomic{assert (Bl < 3); Bl++;} // Deliver widget to Bl
/! relevant uncontrollable event: MIWidgetDelivered

od; }

active proctype M2() {

do :: true —>
/1 1dle
// relevant controllable event: M2PickUpWidget
atomic{assert (Bl > 0); Bl——; /! Pick up widget from Bl

// relevant uncontrollable event: M2WidgetPickedUp
// Process widget

atomic{assert(B2 < 1); B2++;} /! Deliver widget to B2
// relevant uncontrollable event: M2WidgetDelivered
od; }
active proctype TU() {
do :: true —>
/1 ldle

// relevant controllable event: TUPickUpWidget
atomic{assert(B2 > 0); B2——;} // Pick up widget from B2
/! relevant uncontrollable event: TUWidgetPickedUp
/1 Test widget
if :: true —> // Passed: deliver away

// relevant uncontrollable event: TUWidgetPassed

: true —> // Failed: return widget to BI

atomic{assert (Bl < 3); Bl++;}

// relevant uncontrollable event: TUWidgetFailed
fi; od; }

Figure 5: Unsupervised Code C, , with Event Markup and Assertions

mM2WidgetPickedUp M1WidgetDelivered, TUWidgetFailed

M2WidgetFickedUp M1WidgetDelivered, TUWidgetFailed

M1WidgetDelivered, TUWidgetFailed TuWidgetPickedUp M2WidgetDelivered

(2) Epy (b) Epy

M2WidgetPickedUp

Figure 6: Formal Specifications Ep; and Ep, (self-loops with events M1MakeWidget,
M?2PickU pWidget, TU PickU pWidget and TUWidget Passed at each node omitted)

arrows represent controllable events. The synchronous product of M1, M2 and TU was then
generated and contains 18 states and 60 transitions. It is not shown here due to space limitations.
Generate Supervisor S: The supervisor for plant G and specification £ was generated with
supC. It contains 41 states and 94 transitions. Due to space limitations it is not shown here.

Generate Supervised Code C;,, (Transformation 73): We created a conversion script that im-
plements FSAs generated by the DES tool used, and inserts concurrency control code in the
original Promela code for each relevant event markup. Our script generates two distinct solu-
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_ dgetPickeduUp
ayetPickedUp

TUPIckUg
M1MakeWidget

. M2WidgetDelivered
M1WidgetDelivered g

TUWidgetFailed
(a) FSA for M1 (b) FSA for M2 (c) FSA for TU

Figure 7: FSAs for M1, M2 and TU

tions: one that implements the communication between the processes and the supervisor using
shared variables and another one that uses message passing.

Shared Variable Solution: For each controllable event e, a global boolean variable _e indicates
whether e is currently enabled. Communicating the occurrence of an event to the supervisor is
achieved using global variable _Event. When _Event = -1, all the events currently enabled are
allowed to occur. One such event e, (with n € N) is selected non-deterministically (in Spin) and
its corresponding process signals its triggering by setting _Event to n. The supervisor indicates
that it has noted and processed the occurrence of event e, by resetting _Event back to -1.

During transformation 73, for both controllable and uncontrollable events, every occurrence
in the Promela source code of

// relevant (un)controllable event: Eventn

is replaced by

// relevant (un)controllable event: Eventn
atomic {((_Event < 0) & _Eventn) —> _Event = n;}

Figure 8 shows the abridged generated supervisor. The first 1 £ statement enables and disables
all events according to the current state of the supervisor FSA. Once an event is triggered by
one of the processes via global variable _Event, the second if statement realizes the corre-
sponding transition. Note that processes can possibly block at uncontrollable events. This may
be counter-intuitive, but it is required to ensure that the supervisor can process all event occur-
rences. However, the process will never block for long as DES guarantees that the supervisor will
enable all uncontrollable events that can possibly occur after a controllable one, and therefore
that it will (eventually) process any uncontrollable event to occur after a controllable one.

Message Passing Solution: Two channels are used to connect the processes with the supervisor.

Channel _EventReady is used by processes to signal the readiness of controllable events and to

indicate the occurrence of uncontrollable events. Channel _EventGo is used by the supervisor

to trigger a controllable event (selected non-deterministically in Spin if more than one is ready).
During transformation 73, every occurrence in the Promela source code of

// relevant (un)controllable event: Eventn
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short _Event = 0; // Global mutexes
bool _Eventl = false, _Event2 = false, _Event3 = false, ...;
active proctype _Supervisor() { // Supervisor process
atomic { short state = 0; // Current (and firstly initial) state
do // Main loop
oo if // Enable and disable all events
i (0 == state) —> _Eventl = true; _Event2 = false; ...;
(1 == state) —> _Eventl = false; _Event2 = true; ...;
(2 == state) —> _Eventl = true; _Event2 = true; ...;
// More cases here
fi;
—> _Event = —1; _Event > —1; // Wait for an event from one of the processes
if // Transition to next state
((0 == state) && (1 == _Event)) —> state = 1;
((0 == state) && (2 == _Event)) —> state = 2;
((1 == state) && (1 == _Event)) —> state = 3;
// More cases here
fi; od; } }

Figure 8: Generated Supervisor Using Shared Variables

is replaced for controllable events by

// relevant controllable event: Eventn
atomic{assert(nfull (_EventReady )); _EventReady ! n; _EventGo ?? n;}

and for uncontrollable events by
/! relevant uncontrollable event: Eventn
atomic{assert(nfull (_EventReady )); _EventReady ! n;}

Figure 9 shows the abridged generated supervisor. Both channels are initially set to maximum
capacity as deadlock-freedom may be lost if either channel overflows. To detect this, every
send to either channel is prefixed with an “assert (nfull ())”. Both minimal capacities
are determined through repeated analyses with decreasing capacities. Each event e received on
_EventReady causes array position eventReady [e] to be incremented so to in effect wait
on all events concurrently for a relevant event r. If event r is controllable, then r is sent back
on _EventGo to allow the corresponding process blocked on “_EventGo ?7? r” to proceed.
The second 1if statement realizes the FSA transitions. Contrary to the shared variable solution,
no process ever blocks on any uncontrollable event.

5.3 Step 3: Analysis

The analysis is used to find bugs in the formal specifications ({E;}), the event markup (C,), or
the implementation of the transformations 75 or T33. Simulation allowed us to locate a bug in the
creation of the FSAs for the Promela processes in transformation 7>. The FSAs for M2 and TU
did not have M2WidgetPickedUp and TUWidgetPickedUp transitions, respectively. This omis-
sion allowed M1 to put a fourth widget into B1 causing it to overflow. Verification allowed us to
locate an event markup that was incorrectly placed. More precisely, event M1 WidgetDelivered
was accidentally put before B1++ which allowed M2 to attempt to pick up a widget from an
empty B1 causing the assertion B1 > 0 in M2 to be violated.

3 Since transformation 7j just takes the synchronous product of the specifications and is assumed to be implemented
using a DES tool, it is substantially simpler and is unlikely to contain bugs.
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chan _EventReady = [255] of { byte }; /1 Global channels
chan _EventGo = [255] of { byte };
active proctype _Supervisor() { // Supervisor process
atomic { byte eventReady[10], event; // Event buffer and variable
do // Main loop

if // Find an event relevant to current state else buffer next event

(0 == state) —> do
;. (eventReady[1] > 0) —> assert(nfull (_EventGo)); _EventGo ! 1;
event = 1; break; // Controllable
(eventReady[2] > 0) —> event = 2; break; // Uncontrollable
:: else —> _EventReady ? event; eventReady[event]++; od;
(1 == state) —> do
:: (eventReady[3] > 0) — event = 3; break; // Uncontrollable
else — _EventReady ? event; eventReady[event]++; od;
// More cases here
fi;
—> eventReady[event]——;
if // Transition to next state
((0 == state) && (1 == event)) —> state = 1;
((0 == state) && (2 == event)) —> state = 2;
// More cases here
fi; od; } }

Figure 9: Supervisor Using Message Passing

5.4 Performance Results

We also applied our method to the Dining Philosophers problem and the Cigarette Smokers Prob-
lem [Pat71]. We obtained the verification results listed in Table 1, with ispin.tcl and Spin
Version 6.0.1%. We verified our three examples both with shared variables and message passing.
In all cases, the following options were selected: invalid endstates and assertion violations safety
checks, depth-first search, exhaustive storage mode, no compression or reduction. We also de-
termined the minimum channel capacities. Note that for our examples, message passing requires
at least 12 times more states and transitions than shared variables.

Minimum Time to
Channel Number | Compute
Depth Stored | Trans- | Atomic Capacity of supC
Program Reached | States itions Steps Ready, Go | Processes | in IDES
Transfer-line 4 sec.
Shared Variables 718 1240 3207 2552 N/A 4
Message Passing 3887 18868 | 47209 | 327715 7,2 4
Philosophers 1 sec.
Shared Variables 6022 10464 | 46033 21632 N/A 6
Message Passing 9999 157827 | 580416 | 1326625 7,2 6
Smokers 1 sec.
Shared Variables 194 608 1849 904 N/A 5
Message Passing 1996 10461 | 27543 82703 5,1 5

Table 1: Verification Results for the Three Examples

4 A 64 bit AMD Dual Core 2.4GHz CPU with 1.5GB of DDR2 RAM was used.
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6 Implementation

All our FSAs were drawn and created using a DES tool called IDES [IDE] developed by the
Discrete-Event Control Systems Lab at Queen’s University. Synchronous products and supC
were computed with IDES which saves its FSA files in a text XML format. Our prototype script
for implementing transformation 7, was written in Ruby and can parse most of Promela except
for the goto statement and the newly introduced for statement. It takes as input a Promela
text source file (C,) and generates plant FSAs readable by IDES. Our script for doing transfor-
mation 73 was also written in Ruby and uses the REXML XML processor. It takes as input a
Promela source file (containing C,,), an FSA XML text file generated by IDES (containing E)
and generates the supervised code (Cg,p).

7 Conclusion

We have presented an approach which integrates DES supervisor synthesis and model checking
to help facilitate the development of provably correct concurrent code. The approach recasts the
process described in [DDRO08] using Promela and it uses Spin for validation of the synthesis itself
and the inputs to this process. We have described a prototype implementing the approach which
supports shared memory and message passing concurrency and have shown how this choice
can be used to optimize the verification of the generated Promela code. We have illustrated the
approach with an example and provided some performance results.

Future work: There are many interesting avenues for future research. An immediate one is
investigating the use of modular [WR88] and decentralized DES theory [RW92b]. Modular
DES theory leverages the structure of the system and the specification to combat the explosion
of the state space during the synthesis, while decentralized DES allows decentralized control by
synthesizing a collection of supervisors. Ultimately, DES theory is concerned with the prevention
of undesirable sequences of events. As such, it should also be applicable to other problems in
software engineering. Adaptor synthesis (as in, e.g., [BBCO05]) and protocol synthesis for web
services (as in, e.g., [BIPT09]) are just two examples.

Finally, the development of a tool that seamlessly integrates DES theory as described here and
model checking would be interesting not only for research but also for educational purposes and
it would, in our opinion, represent a useful first step towards combining concepts from computer
science and electrical engineering curricula as advocated in [HSO7].
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