
Electronic Communications of the EASST
Volume 46 (2011)

Proceedings of the
11th International Workshop on

Automated Verification of Critical Systems
(AVoCS 2011)

A Survey on Event-B Decomposition

Thai Son Hoang and Alexei Iliasov and Renato A Silva and Wei Wei

15 pages

Guest Editors: Jens Bendisposto, Cliff Jones, Michael Leuschel, Alexander Romanovsky
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

A Survey on Event-B Decomposition

Thai Son Hoang1 and Alexei Iliasov2 and Renato A Silva3 and Wei Wei4

1 Department of Computer Science
ETH-Zürich

Email: htson@inf.ethz.ch
and

2 School of Computer Science
Newcastle University, UK

Email: Alexei.Iliasov@ncl.ac.uk
and

3 School of Electronics and Computer Science
University of Southampton, UK
Email: ras07r@ecs.soton.ac.uk

and
4 SAP Research Darmstadt

SAP AG
Email: wei01.wei@sap.com

Abstract: Model decomposition is a powerful tool to scale the design of large
and complex systems. It enables developers to separate components development
from the concerns of their integration and orchestration. Event-B is a refinement-
based formal method, equipped with three decomposition styles that come with solid
semantic foundations and strong tool support. This paper intends to give some useful
insights and modelling guidelines for using these decomposition styles, illustrated
by an actual development of a master data updating system.

Keywords: Decomposition, Event-B, Modeling, Guidelines, Formal Methods

1 Introduction

Modern software systems are becoming more complex everyday. This trend is going to continue
as industry witnesses unprecedented explosive demands for social and business connectivity.
This poses a huge challenge to system modelling for rigorous quality assurance, while scalability
becomes a great issue. Hence model structuring is paramount in mastering complexity of large
systems. Although there has never been a lack of theoretical research in this area, few modelling
platforms provide a sufficiently good level of tool support to evaluate structuring techniques
and their impact on industrial application of formal modelling. Moreover, there are no clear
guidelines for model designers which often impedes the application of formal verification to
large-scale designs.

Event-B [3] has established itself as a popular formal system development with broad in-
dustrial adoptions. Event-B was designed as a minimalistic formalism to form the core of the
Rodin platform [4]. A great range of features have been provided as extensions to the modelling
platform, covering almost all aspects of model-driven engineering such as requirement, simula-
tion, visualization, testing, formal verification, and code generation. The extension architecture

1 / 15 Volume 46 (2011)



A Survey on Event-B Decomposition

allows a modeller to enable only those features that are relevant for the domain of modelled
problem. This keeps the core features of the platform as simple as possible while not sacrificing
any functionalities.

The basic Event-B language supports model structuring by nothing more than the use of events
and refinement inside one model. However, it is highly impractical to construct a large scale for-
mal design as one monolithic model, which results in numerous problems with legibility, main-
tainability, team work, reuse, and so on. Notably, it also affects proof structuring: autonomous
provers are suffocated by a large number of hypotheses and thus anything that makes the context
of a proof smaller is extremely beneficial.

Model decomposition comes as a great potential to solve the above problem. Three different
decomposition styles exist for Event-B, all providing a guarantee of refinement monotonicity:
the model after decomposition is a correct refinement of the one before decomposition, provided
all obligated proofs are given. This allows a decomposed part of the model to be treated as an
independent artefact so that the modeller can concentrate on this part and does not have to worry
about the other parts. The tool supports for these techniques, realized as Rodin plugins, not
only provide assistance on how to decompose a model, but also generate explicit constraints and
relations between the decomposed model and the resulting sub-components.

Technically, decomposition is a special form of refinement by which a single abstract model
is refined by several concrete models and their aggregation. Like refinement, a properly planned
decomposition step results in very low proof cost. It requires, however, a good degree of fore-
sight. First, a model is difficult to decompose if the model does not possess a structure that
can be easily divided and mapped to independent components to be produced by decomposition.
Second, any careless design decision before decomposition may be difficult to correct afterward,
which often leads to complete rework on the development of each individual local component.
Therefore, a modeller can serve a better job when some guidelines are available so that the mod-
eller knows which decomposition style to choose from, and which design decisions need to be
taken care of at each stage.

In this paper we provide some insights and propose modelling guidelines for applying model
decomposition, drawn from our personal experiences and illustrated by a case study by an in-
dustrial user of Event-B. These guidelines are not supposed to give a one-for-all solution for
all decomposition attempts. We introduce stages in decomposition and point out which design
problems (that can be easily overlooked) need to be addressed in each step.

Outline. Sec. 2 briefly introduces Event-B and decomposition in general. Sec. 3 gives our
modelling guidelines. Different decomposition styles are detailed in Sec. 4 – Sec. 6 by showing
their applications on the modelling of a master data updating system. We compare the different
approaches in Sec. 7. Finally, we draw some conclusions in Sec. 8.

2 Background

2.1 Event-B

Event-B is a formal modelling method for developing correct-by-construction hardware and soft-
ware systems. An Event-B model is a state transition system where the state corresponds to a
set of variables v and transitions are represented by a collection of events evt. The most general

Proc. AVoCS 2011 2 / 15



ECEASST

Figure 1: The Process Model of Update Master Data

form of an event is: evt =̂ any t where G(t,v) then A(t,v) end , where t is a set of parame-
ters, G(t,v) is the enabling condition (called guard) and A(t,v) is an action changing the value
of v. An action comprises several assignments executing in parallel. Each assignment can have
one of the following forms: x := E(t,v), x :∈ S(t,v) or x :| P(t,v,x′), where x are some vari-
ables in v. The first form assigns value of expression E(t,v) to x. The second assignment form
non-deterministically assigns to x some element of set S(t,v). The third assignment form non-
deterministically assign to x some after value x′ satisfying the before-after predicate P(t,v,x′).
In the first and last assignment forms, x can be a vector of variables. The last assignment form is
also the most general one: other assignment forms can be equivalently represented using before-
after predicates. Essential to Event-B is the formulation of invariants I(v): safety conditions to
be preserved at all times.

To facilitate the construction of large-scale models, Event-B advocates the use of refinement:
the process of gradually adding details to a model. An Event-B development is a sequence
of models linked by refinement relations. It is said that a concrete model refines an abstract
one. Abstract variables v are linked to concrete variables w by a gluing invariant J(v,w). Any
behaviour of the concrete model must be simulated by some behaviour of the abstract model,
with respect to the gluing invariant J(v,w).

Rodin [4] is an industrial-strength toolset supporting Event-B. Rodin provides an integrated
modelling environment with a range of editors, modelling assistants, automatic generator of
verification conditions and a set of automated provers tasked to discharge verification conditions.

Example – A Master Data Updating System Fig. 1 shows a master data updating system
that we use as the case study of this paper. The system consists of a User process and a Server
process keeping some master data in sync. When User proposes a data change, it first updates its
local copy, and then sends a request message to Server and waits for the answer. Upon receiving

3 / 15 Volume 46 (2011)



A Survey on Event-B Decomposition

the request, Server checks the validity of the proposed change, and updates the master copy
only when the change is deemed valid. Then, Server sends to User a response containing either
an approval or a rejection. User has to roll back the change if a rejection is received. We are
interested in the global property that the local and master databases are always identical before
and after each data update procedure.

The Event-B model in Fig. 2 serves as the most abstract view of the above system. The
initial model is designed to have as few variables and events as sufficient to express the above
mentioned property (see invariant inv0 3). The model contains variables udb and sdb denoting
User and Server’s database respectively. The Boolean variable is denotes if the global system is
in synch. There are three events, namely u update, s update and u final. When the system is
in synch, u update changes the local database, which invalidates the insynch status. While the
system is out of synch, s update may occur to update the server database (either to be the same
as udb or unchanged). Finally, u final occurs to put the system back in synch by making the
local database to be identical as the server database. Note that s update may be skipped when
the system is out of synch. Although this cannot happen in the real system, we permit it in the
abstract model to simplify proofs, which does not affect the satisfaction of the global property in
consideration. This spurious behavior will be removed by refinement and decomposition in the
further developments.

variables: udb,sdb, is inv0 3 : is = T⇒udb = sdb

u update
when

is = T
then

is := F
udb :∈ DB

end

s update
when

is = F
then

sdb :∈ {sdb,udb}
end

u final
when

is = F
then

is := T
udb := sdb

end

Figure 2: The top abstract model of Update Master Data

2.2 Decomposition

The top-down style of development used in Event-B allows the introduction of new events and
data-refinement of variables during refinement steps. A consequence of this development style
is an increasing complexity of the refinement process when dealing with many events and state
variables. Decomposition addresses such difficulty by providing a mechanism for splitting a large
model into several sub-models (that can be further developed independently). Several decompo-
sition techniques have been proposed by extending the existing Event-B notation. This paper is
concerned with three existing approaches: shared-variable [2], shared-event [7] and modularisa-
tion [11], all of which are supported by Rodin plug-ins [13, 1]. These decomposition techniques
differ in that different model elements are shared among sub-components. For shared-variable
decomposition, a part of state information (variables) is shared among sub-components. Further
refinements then concentrate on how each component processes shared state information. For

Proc. AVoCS 2011 4 / 15



ECEASST

shared-event decomposition, a set of events are synchronised and shared by sub-components.
Hence, it is important to take care of the inputs/outputs of these synchronised events. Modulari-
sation defines a set of interfaces that are shared and accessed by different components. Interfaces
provide callable operations and promises that these operations can deliver. The implementation
of an operation should guarantee that the promises are fulfilled for any given circumstance.

Shared-variable decomposition is similar to rely/guarantee approach from Jones [12]: inter-
nal/external events is essentially an encoding of rely/guarantee conditions. It also corresponds to
concurrent action systems [5] where a solution for the interleaving semantics is proposed.

Shared-event decomposition allows separation of aspects by using synchronisation and com-
munication based on Butler’s work [6] combining Action System and CSP [10]. CSP value
passing channels correspond to events that communicate via shared parameters.

The separation of procedure declaration from implementation have a long history both in
computer programming and modelling. Modularisation closely relates to the treatment of pro-
cedures in Hoare logic [9, 8]: procedure calls are used as a metaphor to benefit from refinement
monotonicity. Consequently independent model aspects can be considered separately although
this should not be confused with modelling a procedure call as a construct of a programming
language.

3 Guidelines

The primary challenge of applying decomposition is to ensure that the structure of the original
model fits the requirements of the chosen decomposition style, leading to helpful sub-models
that can be developed separately with a tangible advantage in terms of proof efforts and overall
model scale. As with any top-down approach for system development using refinement, the
more abstract models are initially, the more useful the decomposition step will be. Here we do
not focus on directly justifying the use of a particular decomposition style. Instead we focus on
how to proceed when decomposing using one of the suggested decomposition styles.

We define a general top-down guideline for the three decomposition techniques based on the
following common template.

Stage 1 To model the system abstractly, expressing all the relevant global system properties.

Stage 2 To refine the abstract model to fit the structure expected by a given decomposition
technique.

Stage 3 To apply decomposition.

Stage 4 To develop the resulting sub-models independently.

Following this guideline, global properties are captured early in the model and guaranteed
to hold in the final models by combining refinement and decomposition. The development of
each decomposed part is done independently of the others. Consequently, we can have different
implementations for a decomposed model that is guaranteed to work with any implementation
of other decomposed models.

In the subsequent sections, we elaborate on the application of different decomposition tech-
niques using our proposed modelling guideline.

5 / 15 Volume 46 (2011)



A Survey on Event-B Decomposition

4 Shared-Variable Decomposition

Consider Fig. 3 where machine M has four events, e1 to e4, and three variables, v1 to v3. The
solid lines connect variables used by events. In Fig. 3, M is shared-variable decomposed and
events are partitioned into sub-components: e1 and e2 are allocated to machine M1; e3 and e4
are allocated to machine M2. Consequently, v1 belongs to M1 and v3 belongs to M2 (private
variables). Variable v2 is shared between M1 and M2. Furthermore, additional external events
are required to simulate how shared variables are handled in the other sub-component (e3 e is
added to M1 and e2 e to M2). Assuming that e2 has the general form

e2 =̂ any t where G(t,v1,v2) then v1,v2 :| P(t,v1,v2,v1′,v2′) end ,

the corresponding external event e2 e can be generated as follows.

e2 e =̂ any t,v1 where G(t,v1,v2) then v2 :| ∃v1′ ·P(t,v1,v2,v1′,v2′) end .

Intuitively, e2 e is a projection of e2 onto the state without variable v1.
There exist certain constraints about shared-variable decomposition during the development

of the resulting sub-components: they can be refined independently but shared variables and
external events must be present and cannot be refined. More information on shared-variable
decomposition in Event-B can be found in [2].

Figure 3: Shared-variable decomposition

4.1 Master Data Updating System

We describe in detail how to develop the example of update master data using shared-variable
decomposition. The model described in Section 2 represents our abstract model of Stage 1. We
continue with the subsequent stages of our modelling guideline.

Stage 2. Shared Channels Between Components. In this preparation stage, we introduce the
channels (the shared elements) acting in between User and Server. The channels are modelled
by two variables creq and cres, corresponding to the set of messages going through the request
and response channels respectively.

Memo SV1 In this preparation stage, variables going to be shared are introduced.

Proc. AVoCS 2011 6 / 15



ECEASST

Moreover, since in Stage 4 the shared variables and external events can be neither removed
nor refined, the shared elements introduced in this preparation stage must be concrete.

Memo SV2 The shared variables must be concrete.

Furthermore, we are going to split the variables and events into two groups, corresponding to
each site, preparing for the later decomposition step. An important design constraint here is that
User’s events can only reference the variables belonging to User and the shared channels, but not
the variables of Server. The same for Server’s events.

Memo SV3 Events belonging to each sub-component only reference its own vari-
ables and shared variables.

As a result, variable is must be refined away. We replace is by uis, the local in-synch flag,
with a gluing invariant uis = is, i.e. the global in synch is consistent with the User’s view. A
separated in-synch flag sis is introduced for Server. Moreover, in order to separate User and
Server completely, we introduce new variables for keeping some information belong to each
site. For User, variable udb old is added in order to keep the old value of User’s database for
undoing later if necessary. For Server, variable sc keeps the user’s change to the database on the
server site for updating Server’s database if the change is valid.

Despite of the details that we have to introduce in order to clearly separate the future sub-
components, we aim to keep the model at this stage fairly abstract. It should contain only
necessary information for maintaining the global properties and specifying the shared elements
between future sub-components. Other information, e.g. control/data flows within each sub-
component can/should be abstracted away.

Memo SV4 Unnecessary details irrelevant to decomposition should be abstracted
from the model in Stage 2.

For example, we assume for the moment that the update of the database and sending the request
message from User happens simultaneously. This is represented by event u update and req, a
refinement of the abstract event u update.

u update and req refines u update
any ch where

uis = T∧ ch ∈ CH
then

uis,udb,udb old,creq := F,upd(udb 7→ ch),udb,{ch}
end

In u update and req, the local database udb is updated to be upd(udb 7→ ch), the new value
obtained by applying changes ch; the old local database is saved in udb old; and the actual
change is send as a request to the server via channel creq. Note that u update and req satisfies
our Memo SV3, i.e. reference only variables belonging to User and the shared channel creq.

Other events in this model include: s receive req for Server to receive some request; s accept res
for Server to update its database and send a positive response; s reject res for Server to send a
negative response without updating its database; u receive res acc and u receive res rej for User
to receive some (positive/negative) response and act accordingly.

7 / 15 Volume 46 (2011)



A Survey on Event-B Decomposition

An important advantage during the model design in this stage is the use of the abstract model
from Stage 1. Consistency enforced by refinement guides our design in Stage 2, i.e. constraints
on the shared variables will be derived from the need to maintain the global properties introduced
in Stage 1 (typically in terms of invariants).

In our example, the following invariants are discovered during the process of discharging proof
obligations such as guard strengthening and invariant preservation of the model. They relate the
content of the channels and the internal status of User and Server. Invariants inv1 7 and inv1 8
relate Server’s database sdb with the User’s database (current udb or old udb old) depending on
the content of the channel cres. Invariants inv1 9 and inv1 10 state that User is out of synch if
there are some request or response messages.

inv1 7 : cres = {T}⇒ sdb = udb
inv1 8 : cres = {F}⇒ sdb = udb old
inv1 9 : creq 6=∅⇒uis = F
inv1 10 : cres 6=∅⇒uis = F

Stage 3. Decomposition Summary. This stage is semi-automatic: we provide the tool with
input on how the events are partitioned into different future sub-models. Intuitively, we separate
our events into two groups, corresponding to User and Server accordingly. The variables distri-
bution amongst these model are calculated according to the information about events distribution.
The summary of our decomposed models is as follows.

User Server
Internal events u update and req s receive req

u receive res acc s accept res
u receive res rej s reject res

Private variables udb,udb old,uis sdb,sc,sis
Shared variables creq,cres creq,cres

Stage 4. Developments of Sub-models. We present a summary of the additional refinement
steps for each model. Most invariants in the sub-models are technical and related to the sequen-
tialisation of the actions, reflecting the process flows in Figure 1.

User The control flow is introduced via means of a program counter upc to capture the actual
sequential steps inside the User process. Other internal variables of User are introduced
accordingly, i.e. User’s change uch and User’s stored response type ures.

Server Similarly, the control flow of Server is introduced via means of a program counter spc.
Internal variables of Server, such as the check result scr, are introduced.

5 Shared-Event Decomposition

In Fig. 4, M is shared-event decomposed into two parts: M1 and M2. Variables are partitioned
into the sub-components: v1 is placed in M1 and v2, v3 are placed in M2. Unlike the shared
variable approach, no variable sharing is allowed. Events using variables allocated to different
sub-components (e2 shares v1 and v2) must be split.

Proc. AVoCS 2011 8 / 15



ECEASST

Figure 4: Shared-event decomposition

Assuming that event e2 has the following form

e2
any t where

G1(t,v1)
G2(t,v2)

then
v1 :| P1(t,v1,v1′)
v2 :| P2(t,v2,v2′)

end

,

event e2 1 is defined as a partial version of e2 only referring to variable v1, i.e.

e2 1 =̂ any t,v1 where G(t,v1) then v1 :| P1(t,v1,v1′) end .

Event e2 2 is defined similarly but only refers to v2.

Memo SE1 The abstract model of shared-event decomposition is such that each
event updating non-private variables may be syntactically split into two events.

5.1 Master Data Updating System

Using the same initial model in Fig. 2, we describe the following stages in the application of a
shared event decomposition. The system is designed to be decomposed into components User
and Server synchronously communicating by value passing messages.

Stage 2. The Value Passing Protocol. The goal of this stage is to have a model where the
state variables are partitioned amongst the future sub-models. Typically, this stage involves
refinement of events to introduce the shared elements in the form of events’ parameters. Similar
to the shared-variable style, a good abstract model is pursued where only necessary information
related to the global properties and the shared elements are specified.

Memo SE2 Irrelevant details should be abstracted away from the model before de-
composition.

9 / 15 Volume 46 (2011)



A Survey on Event-B Decomposition

In this refinement, we prepare the decomposition by introducing synchronous channels and re-
spective value passing protocol. The content of the protocol is represented by shared parameters
(in the resulting sub-events). At this stage, the communication is abstract and occurs in a single
event.

Memo SE3 Shared elements are introduced by means of event parameters.

The global flag is is replaced by uis and sis for User and Server sync respectively. The gluing
invariants between uis, sis and is are given by inv1 1, inv1 2 and inv1 3: uis always matches is;
while a request is being processed, sis matches is; otherwise, the server is synchronised (sis=T).

variables: udb,sdb,uis,
u ch,u rq
sis,s st,s ch

inv1 1 uis = is
inv1 2 u rq = PRC⇒ sis = is
inv1 3 u rq 6= PRC⇒ sis = T

Some control variables are added: u ch corresponds to the User change; u rq holds the request
state on the User side where PRC corresponds to the processing state; s st corresponds to the
server state and s ch holds the change from the Server’s viewpoint. Refined event u update
models a modification that is stored in u ch before being sent to the server by the new event
rq. Event rq simultaneously sends the request from User and receives it in the server. Then the
request is stored in s ch and User (u rq := PRC) and Server (s st := VAL RQ) states are updated
. The server is considered out of sync once receives a request (sis := F).

u update refines u update
any ch where

ch ∈ CH
uis = T
u rq = IDLE

then
uis,u ch := F,ch

end

rq
any msg where

uis = F∧msg = u ch∧u rq = IDLE
s st = S IDLE

then
u rq := PRC
s ch,s st,sis := msg,VAL RQ,F

end

Note that event rq has been designed so that it can be syntactically split into parts concerning
only with variables of the User or Server (Memo SE1). The request validation can be deferred
until the decomposition because it is irrelevant to the considered global property. The server
is updated in the refined event s update for a valid request. Even when the request is deemed
invalid, a response is sent back by the new event rsp. This event syncs in the Server and updates
the User’s request. If the request is valid, u ch is applied locally; if the request is invalid, udb
remains the same. In either case, udb is back in sync with the server.

Several gluing invariants are discovered as a result of the generated proof obligations. inv1 4
state that while u rq is processed, User/Server changes match; if u rq is deemed invalid, sdb/udb
are identical (inv1 5); a valid request results in sdb matching with udb updated with u ch (inv1 6).

inv1 4 : uis = F∧u rq = PRC⇒ s ch = u ch
inv1 5 : u rq = INVLD⇒udb = sdb
inv1 6 : u rq = VLD⇒upd(udb 7→ u ch) = sdb

Our model is synchronous since the messages exchanged by User and Server are sent and re-
ceived simultaneously. Alternatively, we could also model asynchronous communication by
introducing a buffer between udb and sdb suggesting a three way decomposition.

Proc. AVoCS 2011 10 / 15



ECEASST

Stage 3. Decomposition Summary. Sub-models User and Server result from the allocation of
the original variables according to their use. The decomposition is summarised in the following
table:

User Server
Variables udb,u ch,uis,u rq sdb,s st,sis,s ch
Events u update,u final, rq, rsp s update, rq, rsp

Stage 4. Developments of Sub-models. The decomposition allows the separation of send-
ing/receiving a request by defining the request as parameter msg shared by User and Server
(similarly applied to the server’s response). The resulting sub-models can be refined indepen-
dently:

User A program counter is added defining the local states (update udb, send request, receive re-
sponse, commit/discard change). Two events refined the two possible outcomes: l commit
for valid modifications updating udb and l discard to discard the modification. An addi-
tional refinement could add a request queue removing the waiting between the server reply
and the next modification.

Server The server is refined by modelling the request validation with a new event s val.

6 Modularisation

In modularisation, interfaces are defined for sub-components such as the interface I in Fig. 5,
which contains interface variable iv and operations o1 and o2. Operations are specified by pairs
of pre/post-conditions. An interface is separated from its implementation IM that provides con-
crete behavior for each of the interface operations. An abstract machine of the integrated system
is modeled in M, which is refined by M1 where sub-component behavior is replaced with respec-
tive operation calls.

Figure 5: Decomposition via modularisation

In M, logical subunits must be identified so that they can be easily mapped to operation calls.
Respective variables in M are mapped to interface variables, and actions can be replaced by
interface operations. An interface must be carefully designed such that a minimal level of details
of the sub-component behavior is exposed.

11 / 15 Volume 46 (2011)



A Survey on Event-B Decomposition

Memo M1 A module interface should be as general (weak) as possible because of
re-usability.

Following the above principle, we should expect that sometimes an interface is too weak in
that the post-conditions of its operations are not strong enough to establish the soundness of the
caller machine.

Memo M2 In case of a too weak interface, we should strengthen operation post-
conditions using the undischarged proof obligations as guidance.

Machine M1 can be further refined. However, operation calls to o1 and o2 must stay intact.

Memo M3 Operation calls must be preserved in the chain of refinements except for
parameter refinement.

Unlike the two other decomposition approaches, modularisation offers a greater degree of
flexibility on how to construct a decomposed specification because of lower coherence among
sub-components. One consequence is that the modularisation approach applies to both top-down
and bottom-up designs, and even blurs the boundary. For top-down development, the guideline
in Sec. 3 can be used in modularisation approaches as well. In bottom-up development, sub-
component interface may already exist before a global integration scenario is designed. This is
useful for many industrial use cases in which service integrations and customizations are for-
mally analyzed.

6.1 Master Data Updating System

We take a different approach here that does not follow the guideline in Sec. 3. Even though
we will explain the approach in a top-down fashion, it resembles certain aspects of a bottom-
up development in that the design of sub-component interfaces is relatively independent of the
global integration, because the interfaces are standard communication interfaces that produce
and consume messages.

We start with an abstract machine that only specifies message flows and does not state the
global property. Interfaces are defined for the two processes and implemented by separate ma-
chines by adding local control and data flow information. A sufficient amount of implementation
details, such as local variables and properties, is carefully chosen and exposed in their interfaces
to enable the verification of the global property. Finally, the top abstract machine is refined by
adding details of operation calls and message buffers. The global property is then verified on a
final refinement.

Stage 1. Specifying Abstract Message Flows. The top abstract machine uses flags to indicate
whether a certain message has been sent or received. For example, if the flag req snt is T then
a request message has been sent. Several invariants describing the order of message events are
added for property verification later. As an example, inv6 specifies that a response message has
to be sent before it can be received. Message events are abstract at this level and simply set the
flags accordingly.

Proc. AVoCS 2011 12 / 15



ECEASST

variables: req snt,req rcv,res snt,res rcv
inv6 : res snt = F⇒ res rcv = F

send req =̂ when req snt = F∧ res rcv = F then req snt = T end

Stage 2. Process Interfaces. The interface of each process defines a set of message operations.
These operations do not consider how messages are transported, but merely specify the types of
messages that they provide or expect. For example, interface User provides messages to be sent
(get request), and take incoming messages fed to them for local consumption (put response). In
particular, get request produces a message equivalent to the local change (ch) proposed by the
user.

get request
pre

req snt = F∧ res rcv = F
return

msg
post

msg′ = ch
req snt′ = T

end

put response
any msg
pre

msg ∈ BOOL∧ req snt = T
res rcv = F

post
ures′ = msg
res rcv′ = T

end

Stage 3. Process Implementations. Concrete details of sub-components are added in im-
plementations, such as events that describe how control states and local variables are updated.
Message-related flags are no longer present, thus we provide a link between those flags and local
control states (u cs) as gluing invariants like the one below among others.

inv18 req snt = F⇔u cs ∈ {start,upd,req}

An interface implementation is essentially an Event-B refinement step. We need to prove that
the postcondition of any interface operation must be fulfilled by the corresponding events that
implement the operation. We also need to prove relative deadlock freedom that, whenever an
interface operation is enabled, some of its implementing events must be executable.

Stage 4. Final Global Machine. The top-level machine is refined at this level to contain
operation calls and actual message exchanging behavior. Each process has a buffer to store
incoming messages. When a message needs to be sent, the corresponding interface operation
of the sender process is called to retrieve the outgoing message, which is then added to the
corresponding buffer. When a message is to be received, the message is taken out of the buffer
and passed to the receiver process by calling the respective interface operation. In the following
code, the prefix user is used in interface variables and operations of the user module.

send req =̂ when user req snt = F∧user res rcv = F then buf s = buf s∪ {user get request} end

Stage 5. Property Verification. Unlike the other approaches, the global property is encoded
and proved at the final global machine. The proof is based on the symbolic values of the local
and master databases delivered as operation post-conditions in the process interfaces.

13 / 15 Volume 46 (2011)



A Survey on Event-B Decomposition

7 Discussions

All approaches decompose global machines into two components, one per process1. Shared-
variable and shared-event approaches start with similar abstractions, specifying a minimal set
of events reflecting how the local and remote databases are updated while preserving the global
property of interest. A series of refinements are introduced with appropriated chosen gluing
invariants and proofs of deadlock freedom and convergence. The two approaches are differ-
ent in that the shared-event version implements a synchronous message passing model. The
choice is mostly motivated by the fact that synchronised message passing events can be shared
by two processes. However, the system could be modelled in an asynchronous communication
by introducing a buffer sub-component. These two approaches ensure that the global properties
are preserved before decomposition. Afterwards each individual sub-component focus on their
specific properties. A system involving a shared object is favoured by a shared variable decom-
position where the shared object can be accessed by all the sub-components. On the other hand,
communicating system parts can be shared event decomposed possibly introducing a middleware
to allow an asynchronous approach.

In contrast to the other approaches, the modularisation version formulates and proves the
global property at the final stage, after the module interfaces are designed. This is possible
because the global machines and modules are loosely coupled, only linked by interfaces. An
advantage that immediately comes to mind is flexibility: changes to existing components and
inclusion of new components do not necessarily affect unchanged modules nor their proofs.
However, the largest challenge of modularisation is the design of appropriate interfaces as they
play a crucial role in linking multiple worlds while preserving the global property. During the
design of our model, we go through iterations of “trial and error” to find the appropriate amount
of information to be exposed in interfaces. As we learned from our experiences, a good practice
is to start with an initial interface containing a minimal amount of information and weak possible
post-conditions for operations. When these are insufficient to prove the global property, we can
gradually bring more information to the interface and strengthen post-conditions.

8 Conclusion

We have presented modelling guidelines for three decomposition techniques of Event-B, illus-
trated by a case study. Due to limited space, it was impossible to tell the complete story of the
case study development. We emphasise on the several design decisions that were taken dur-
ing the development of the examples, in order to successfully apply decomposition, resulting
in helpful sub-models for further independent elaboration. Together, the guidelines and these
design decisions act as a document of our experience in applying decomposition techniques.

Decomposition is a powerful technique to cope with the complexity of system development
but applying decomposition comes at a price: the cost of planning a development strategy that
fits a certain decomposition style. It turns out that mastering the technicalities related to es-
tablishing decomposition correctness and even an extensive tool support are still not enough to
systematically apply decomposition. Decomposition is rarely successful without prior planning

1 The models are available online at http://eprints.ecs.soton.ac.uk/22164/

Proc. AVoCS 2011 14 / 15

http://eprints.ecs.soton.ac.uk/22164/


ECEASST

and such development planning is not yet supported by an established methodology.
One fascinating topic for future research is to see how different decomposition techniques

complement each other in the same development. The diversity in decomposition approaches
may be exploited to make decomposition more flexible and simpler for an end user. We are also
planning to formalise the criteria of model decomposability and, if successful, mechanise them
in a tool. Such a tool, in principle, could give an immediate answer on which decomposition
technique, if any, would succeed for a given model.

Acknowledgment. This work has been supported by the EC FP7 Integrated Project Deploy, the
EPSRC grant TrAmS (EP/E035329/1) and Fundação Ciência e Tecnologia (FCT-Portugal).

Bibliography

[1] Modularisation plug-in for Event-B. http://wiki.event-
b.org/index.php/Modularisation Plug-in.

[2] J.-R. Abrial. Event model decomposition. Technical Report 626, ETH Zurich, May 2009.

[3] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge Univer-
sity Press, 2010.

[4] J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin. Rodin: an
open toolset for modelling and reasoning in Event-B. STTT, 12(6):447–466, 2010.

[5] R-J Back. Refinement Calculus II: Parallel and reactive programs. In Proc. of REX 89,
volume 430 of LNCS, pages 67–93. Springer, 1989.

[6] M. Butler. Stepwise refinement of communicating systems. Sci. of Comp. Prog., 27(2):139–
173, September 1996.

[7] M. Butler. Decomposition structures for Event-B. In IFM, volume 5423 of LNCS, pages
20–38. Springer, 2009.

[8] D. Gries. The Science of Programming. Springer, 1987.

[9] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In LNM, 188, pages
102–116. Springer, 1971.

[10] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[11] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic, and T. Lat-
vala. Supporting reuse in Event B development: Modularisation approach. In ASM, volume
5977 of LNCS, pages 174–188. Springer, 2010.

[12] C. B. Jones. Tentative steps toward a development method for interfering programs. ACM
Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[13] R. Silva, C. Pascal, T. S. Hoang, and M. Butler. Decomposition tool for Event-B. Software:
Practice and Experience, 41(2):199–208, February 2011.

15 / 15 Volume 46 (2011)


	Introduction
	Background
	Event-B
	Decomposition

	Guidelines
	Shared-Variable Decomposition
	Master Data Updating System

	Shared-Event Decomposition
	Master Data Updating System

	Modularisation
	Master Data Updating System

	Discussions
	Conclusion

