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Abstract: This paper discusses the use of symbolic model checking technology
to verify the design of an embedded satellite software control system called atti-
tude and orbit control system (AOCS). This system is mission-critical because it
is responsible for maintaining the attitude of the satellite and for performing fault
detection, isolation, and recovery decisions of the satellite. An executable AOCS
implementation by Space Systems Finland has been provided to us in Ada source
code form. In order to use symbolic model checking methods, the Ada implemen-
tation of the system was modeled at a quite detailed implementation level using the
input language of the symbolic model checker NuSMV 2. We describe the mod-
eling techniques and abstractions used to alleviate the state explosion problem due
to handling of timers and the large number of system components controlled by
AOCS. The specification of the required system behavior was also provided to us
in a form of extended state machine diagrams with prioritized transitions. These
diagrams have been translated to a set of temporal logic properties, allowing the
piecewise checking of the system behavior one extended state machine transition at
a time. We also report on the scalability of symbolic model checking tools for the
case study at hand as well as discuss potential topics for future work.

Keywords: symbolic model checking, AOCS, NuSMV 2, verification, satellite soft-
ware

1 Introduction

Model checking [CGP99, BK08] is a technology where a formal model of a system’s behav-
ior is checked against its formal requirements often expressed in temporal logic. One of the
main approaches in model checking is symbolic model checking using binary decision diagrams
(BDDs) [BCM+92] that is especially suitable for hardware designs. Symbolic model checking
is also suitable for analyzing other systems with a high branching degree due to environment
non-determinism. Bounded model checking (BMC) [BCCZ99] was invented to scale symbolic
model checking to analyzing even larger systems, especially for finding bugs in hardware de-
signs with a large number of state bits. The basic idea in bounded model checking is to look
for counterexamples to the specified property that are shorter than a user specified maximum
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length called the bound. With this length restriction the search for counterexamples of bounded
length can be reduced into propositional satisfiability (SAT), and the search can be performed by
efficient SAT solvers, see e.g., [ES03].

The linear temporal logic (LTL) (see e.g., [BK08]) is a widely used temporal logic in model
checking. Bounded model checking for LTL was shown to be linearly encodable to propositional
satisfiability (SAT) in [HJL05, BHJ+06]. The same papers also describe a complete BMC al-
gorithm that is guaranteed to terminate either with a counterexample or by proving the property
holds but quite often requiring very high bounds in case the property holds. Both the incom-
plete and complete variants of this approach have been implemented in the NuSMV 2 model
checker [CCG+02, HJL05, BHJ+06], and are used in the experiments of this paper.

This paper discusses the use of symbolic model checking technology to verify the design of
an embedded satellite software control system called attitude and orbit control system (AOCS).
Our approach is based on modeling an implementation given inAda source code in the input
language of the NuSMV 2 model checker [CCG+02].

The AOCS system is mission-critical because it is responsible for maintaining the attitude of
the satellite, and for performing fault detection, isolation, and recovery decisions of the satellite.
An executable AOCS implementation by Space Systems Finlandhas been provided to us in Ada
source code form. In order to use symbolic model checking methods, the Ada implementation of
the system was modeled at a quite detailed implementation level using the input language of the
symbolic model checker NuSMV 2. We describe the modeling techniques and abstractions used
to alleviate the state space explosion problem due to handling of timers and the large number of
system components controlled by AOCS.

The specification of the required system behavior was also provided to us in a form of mode
transition diagrams, which basically are extended state machines with prioritized transitions.
These diagrams have been translated to a set of linear temporal logic (LTL) properties, allowing
the piecewise checking of the system behavior one extended state machine transition at a time.
We also report on the scalability of symbolic model checkingtools for the case study at hand as
well as discuss potential topics for future work.

We have also done earlier work on using model checking methods for verifying safety-critical
systems in the nuclear safety area [BFV+09a, BFV+09b, VPB+08]. Also in that context the
modeled systems are quite similar to the embedded mission-critical software considered here:
the systems have a relatively large number of timers, as wellas having to cope with a highly non-
deterministic environment that includes a number of faultycomponents that have to be recovered
from during the runtime of the system. In that domain, we havebeen using both NuSMV 2 as
well as the Uppaal model checker [BDL+06]. Our experience is that NuSMV 2 is usually per-
forming better for systems with a high branching degree (such as the AOCS system considered
here), while Uppaal is performing much better for systems having a complex timing behavior.
The main difference between the safety-critical and the mission-critical environments is that in
the mission-critical systems, bug hunting methods (e.g., incomplete BMC based methods) can
typically be seen as sufficient, while for safety-critical systems, the main focus is on complete
system verification (complete model checking, e.g., BDD-based LTL model checking).

The same AOCS system has been used as a case study in the DEPLOYproject, and mod-
eling the AOCS system using refinement methodology in Event-B can be found in [ITL+10a,
ITL+10b]. The concrete Event-B models described in these works can be found in [ILT10]. Our
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model is very detailed and directly based on the Ada code implementation. Our motivation has
been analyzing the correctness of the Ada implementation against its specifications, not to use
refinement methodology to derive correct implementations.Thus our approach does not require
significant changes in the software engineering methodology.

2 Attitude and Orbit Control System

The Attitude and Orbit Control System (AOCS) [Var10] is a generic component of satellite
onboard software. It is mainly used to determine and controlthe attitude of the spacecraft while
it is in orbit. Since there is disturbance from environment,if left uncontrolled, the spacecraft
will change its orientation. Because of this, its attitude needs to be monitored and adjusted
continuously. The information from various sensors provides the necessary input for the AOCS
computation. Based on this, the actuators are used to preserve or change the attitude or orbit of
the spacecraft.

In AOCS, different software functionalities are realized by corresponding managers. There
are four managers, AOCS manager, FDIR manager, Mode managerand Unit manager, which
are executed in sequence to fulfill various functionalities. The AOCS manager has as its main
responsibility to compute the attitude control algorithm.The FDIR manager (Fault Detection,
Isolation and Recovery) is executed every time when new monitor data becomes available. There
are three types of possible errors that are handled by the system: mode transition errors, attitude
errors and unit errors. The Mode manager is in charge of mode transitions. In this AOCS
implementation, there are six operational modes [Var10] listed below.

• Off. Normally, the spacecraft is in this mode after the system isbooted.

• Standby. The system stays in this mode until separation from the launcher is completed.

• Safe. When the system is in this mode, it indicates that a stable attitude is obtained and
the system endeavors to keep the coarse pointing control.

• Nominal. In this mode, the system is further trying to reach the fine pointing control.

• Preparation. The fine pointing control is reached and the unit Payload Instrument (PLI)
is getting ready for the science mission.

• Science. The PLI is ready to carry out tasks. The overall goal is to stay in this mode as
long as possible.

The normal mode transitions are shown in Figure1(a) as a state diagram. In Figure1(b), the
bold arrows demonstrate the handling of mode transition errors in AOCS by the FDIR manager.

The Unit manager is used to manage unit resources, which encompasses avoiding conflicts
in the usage of units and handling the units during their reconfiguration. There are in all seven
different units: Earth Sensor (ES), Sun Sensor (SS), GPS, Star Tracker (STR), Reaction Wheel
(RW), Thruster (THR) and Payload Instrument (PLI). The firstfour in this list are sensors, while
RW and THR are actuators. The last unit, Payload Instrument,is a scientific measurement unit.
In addition, there are two configurations, nominal and redundant, for each unit. Nominal unit
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(a) Normal mode transitions. (b) Mode transition error handling.

Figure 1: Possible mode transitions in AOCS.

configuration is the start setup where the unit begins its operation. All of the units also have a
redundant backup copy. The redundant unit is used when the nominal unit fails. Both the nominal
and redundant units have two possible configurations, on or off, in the available operational
modes.

3 Modeling and Verifying of AOCS

We modeled the previously described AOCS system in the inputlanguage of the NuSMV 2 model
checker [CCG+02], starting from an Ada implementation. The system model is checked against
a set of Linear Temporal Logic (LTL) properties that are generated from a specification given as
extended state machine diagrams with prioritized transitions. Below, Section3.1 describes the
general modeling of the system, and Section3.2 shows how the LTL properties are generated
from the specification.
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Figure 2: Modeling of the unit PLI.

3.1 Modeling the AOCS System

The current implementation of AOCS system is written in Ada,and the system is modeled in
NuSMV 2 at a level of detail that closely follows the Ada source code. The main aspects of
modeling are described below.

3.1.1 Modeling the Units

There are in all seven units in the system as described in Section 2. Incorporating so many units
in a single model is likely to cause state explosion [Val96]. Our current solution to cope with
this problem is to construct a concrete model of only one unit, the PLI, and to introduce an
abstraction of other units. Specifically, as only theerror property of other units is mentioned
in the LTL formula to be checked, the abstraction omits the other aspects of the units. Thus,
the basic strategy is to introduce one Boolean variable representing theerror property of each
unit that non-deterministically obtains its truth value ateach time point modeling the fact that
any subset of other units can generate an error for the software to handle at any time. By these
means, the state space of the model is controlled to a reasonable size.

Figure2 shows the data structures for modeling the PLI unit in the NuSMV 2 language. The
moduleunits accommodates the concretely modeled units. As discussed above, the PLI is cur-
rently the only unit fully modeled, but new units could be added to the variable list in this module
as needed. The moduleunit t defines the basic properties of a unit. Here, the variableorig status
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(a) Source code sample snippet. (b) NuSMV 2 modeling code sample.

Figure 3: Modeling of a code snippet in NuSMV 2.

records the status of the use of the unit. The unit can be either free or locked. The variablestepis
used to record the number of steps it has used to make transition to a new operational state since
the transition is usually a multi-step process. One of the interesting properties isbr, which spec-
ifies the two configurations, nominal and redundant, represented as A and B in the model of the
unit. This property is further illustrated in modulebranches, which uses the modulebranch t
to fully define the properties of each configuration of the unit. The functions manipulating the
properties of units are modeled in detail as described in Section 3.1.2below.

3.1.2 Modeling Ada Code

The overall structure of the Ada code is an infinite loop in which the four managers, AOCS man-
ager, FDIR manager, Mode manager and Unit manager, are executed in sequence. All the actual
functions and procedures defined in the Ada source code implementation are modeled as state la-
bels in the NuSMV 2 model. The modeling of source code generally mimics the implementation.
At this point, the translation is not yet done automatically. The core of this manual modeling is
to treat each function entry point in the implementation as apotential program counter value and
encode each function invocation as a single time step of the model. A similar idea of constructing
models from program code is presented in [BCG+09] for C programs.

Figure3 presents an example on how the source code is manually mappedto a NuSMV 2
model. Figure3(a) is a part of the source code excerpted from the implementation with some
irrelevant code removed. The working procedure of this sample code is quite straightforward. In
procedureExecute Step, it checks whether the value of variableTrans.Targetis Standby. If this
condition holds, then it calls the procedureTo StandbyMode. The latter procedure first checks
the value of the variableTrans.Step. If the value of this variable is 0, then it will be increased
to 1. Figure3(b) is the corresponding model in NuSMV 2. It first defines the variables used in
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the procedures. Note that it has defined an additional variable label that does not appear in the
source code. Generally, this variable is used as a program counter to determine which procedure
or function is being executed at present. Thus,label has the two procedure names,execute step
andto standbymode, as its possible values. Next, these variables are initialized with initial val-
ues as shown by theinit clause. Lastly, thenext state transitions are defined for variableslabel
and trans.step. These transitions in the model are exactly as those implemented in the source
code. Variablelabel is used as an example to show how variable values are updated.In thecase
clause, it is first checked whether the current values oflabel and trans.targetareexecute step
andstandby, respectively. If this holds, the value oflabel is updated toto standbymode. Oth-
erwise, the value is unchanged. Note that the possible transitions of variabletrans.targetare not
presented here for the ease of explanation. Note also that the Ada code has no recursion which
makes modeling simpler, as there is no need to explicitly model the stack of the program.

3.1.3 Timer Abstraction

Besides abstracting entire units as described in Sect.3.1.1, we apply a form of data abstraction.
Most of the data structures in the implementation are modeled as they are, however, some of
them are abstracted in the model. For instance, there are several timers in AOCS. The timers
are mainly used to trigger certain events to occur and to record the timeouts of events in the Ada
code. In the implementation, timers are defined as an integertype. If these were directly modeled
as they are, then the modeling would become very expensive toanalyze using NuSMV 2 due to
state explosion. Therefore, we conduct an abstraction [CBKK94] of these timers that removes
unnecessary details with non-deterministic choice in a sound way: the abstract model has more
behaviors than the concrete one. If we are able to prove an LTLproperty for the abstract model,
it will also hold in the concrete one.

As a simple example, suppose there is a timer initialized with value 0. Under normal condi-
tions, this timer is incremented by 1 every time a periodic timer interrupt occurs. The timer is
reset to 0 when a reset command is issued. Assume that increasing the timer to 100 triggers a
special event. We create an abstraction of this timer as a state machine diagram shown in Fig-
ure 4(a). The value 100 of the timer is modeled as a separate state,while the values 0..99 and
101.. are collapsed into single abstract states, respectively. Especially note how non-determinism
is used in state ”0..99” when the increment operation occursto either stay in the same state or to
go to the state ”100”. Such a timer abstraction can, of course, result in spurious counterexamples.
However, in our case study, no spurious counterexamples areobserved.

The NuSMV 2 model code for this timer is shown in Figure4(b).

3.2 LTL Property Generation

The LTL properties that are used to check the constructed model are generated from the mode
transition diagrams in the requirements document. In general, four state diagrams, normal mode
transitions (Figure1(a)), mode transition error handling (Figure1(b)), attitude error handling
and unit error handling, are used for the generation of LTL properties. The generation procedure
of these LTL properties is automated from a tabular notation. The main steps are summarized
below. First, the extended state machine diagrams with prioritized transitions are transformed
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(a) Abstract states and transitions modeling the timer.
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(b) NuSMV 2 model code snippet for the abstract timer.

Figure 4: Abstraction of a timer.

manually to a tabular notation consisting of a priority listin which the possible mode transitions
of each state are prioritized according to the specific mode.Next, a Python script is written which
can read the priority list and generate the corresponding LTL properties from it.

Mode ”safe” is used below to demonstrate how its related LTL properties are automatically
generated from the mode transition diagrams. First, there are three types of possible errors that
can occur at a specific mode according to the previous description of the AOCS system. It
might be possible that two or more errors are occurring at thesame time. Thus, it is necessary
to prioritize the possible errors as well as the normal mode transition so that the property can
reflect the fact that the system is handling one type of mode transition at a time. According to the
nature of the AOCS system, the priorities of possible state transitions are inferred as follows. The
mode transition error will always have the highest priority. The priority of attitude error handling
follows it. Unit error handling in turn follows the attitudeerror handling. Finally, normal mode
transition has the lowest priority. In case of mode ”safe”, its state transition under the condition
mode transition error can be found from Figure1(b) while its related transition in the context of
normal mode transition is depicted in Figure1(a). Its mode transitions in case of attitude error
and unit error are extracted from the related state diagramsand shown in Figure5(a) and (b),
respectively. Note that in Figure5, the depicted mode transition diagrams are truncated in order
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(a) Attitude error in Safe. (b) Unit error in Safe.

Figure 5: Attitude and unit errors handling in Safe mode.

Table 1: Priority list of mode transitions for Safe mode.

Mode Priority Guard Target mode Atomic
safe 1 safeto nominalerror safe yes

2 attitudeerror off yes
3 unit error ES SSRW and redundancynot available off yes
4 coarsepointing reached nominal no

to only highlight the modes involved in the transitions. Thecorresponding priority list of mode
transitions can be constructed as shown in Table1. In the column ”Priority” of Table1, smaller
integer indicates a higher priority of the specific mode transition.

The LTL properties related to a specific state can be generated automatically from the priority
list composed in the former step. The core idea is to extract the information about current mode,
guard and target mode from the list. All guards belonging to transitions of higher priorities than
those of the current mode transition should be disallowed for a lower priority transition to be
enabled. According to these, the following LTL formula is constructed as the template for the
generation of all the properties.

G
((

(mode= CURRENTMODE)∧¬HIGHER PRIORITYGUARDS∧GUARD
)

→

X
(

(mode= CURRENTMODE)U ((mode= TARGETMODE) ∨

POSSIBLEHIGHER PRIORITYTRANSITION)
))

(1)

In the above formula, variablesCURRENTMODE, HIGHER PRIORITYGUARDS, GUARD
andTARGETMODE will be substituted by the concrete values extracted from the priority list.
The variablePOSSIBLEHIGHER PRIORITYTRANSITIONat the end of the template formula
is needed for correct translation of mode transitions that are multi-step processes instead of
atomic steps, as indicated in the column “Atomic” in Table1. When we ran an earlier version of
the experiments, we noticed an anomaly with some property that had an unexpected counterex-
ample. We managed to trace this counterexample back to a mismatch of the levels of atomicity
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between the mode transition diagrams and the Ada code implementation of the system. Namely,
in the Ada implementation some of the state transitions are not atomic, and a lower priority mode
transition needs to be aborted by the enabling of a higher priority transition “half-way through”
a multi-step mode transition from one mode to the next. Such amismatch between the specifica-
tion and the implementation level of atomicity can possiblylead to subtle interpretations of the
required behavior of the system, and our formal model checking was able to point such a case to
us. The addition ofPOSSIBLEHIGHER PRIORITYTRANSITIONenables correct handling of
aborted transitions.

As an example, the concrete LTL formulas generated from Table1 are listed as follows.

G
((

(mode= safe)∧ (modetrans error 6= none)
)

→

X
(

(mode= safe)U (mode= safe)
))

(2)

G
((

(mode= safe)∧ (modetrans error = none)∧ (attitude error 6= none)
)

→

X
(

(mode= safe)U (mode= off)
))

(3)

G
((

(mode= safe)∧ (modetrans error = none)∧ (attitude error = none) ∧

unit error
)

→

X
(

(mode= safe)U (mode= off)
))

(4)

G
((

(mode= safe)∧ (modetrans error = none)∧ (attitude error = none) ∧

¬unit error∧coarsepointing reached
)

→

X
(

(mode= safe)U ((mode= nominal)∨ (modetrans error 6= none) ∨

(attitude error 6= none)∨unit error)
))

(5)

Note that in formulas (3) and (4), the mode transition fromSafe to Off is atomic according
to the implementation. Thus, no additional higher prioritytransition needs to be added. By
contrast, in formula (5), the mode transition fromSafe to Nominal is a multi-step process in the
implementation. The possible higher priority transitions, therefore, must be considered for the
purpose of aborting handling.

It can be easily shown that these LTL formulas can be extendedto related CTL formulas
by simply adding the universal path quantifierA. Since CTL formulas are also checked in the
following experiments, formula (2) is used as an example to show how CTL formula (6) can be
obtained from the corresponding LTL formula.

AG
((

(mode= safe)∧ (modetrans error 6= none)
)

→

AXA
(

(mode= safe)U (mode= safe)
))

(6)

4 Experimental Results

The experiment is carried out in a computing cluster environment with some background load.
Each compute node in the cluster has two 6-core AMD Opteron 2345 CPUs and the memory
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is 32 GB (about 2.5 GB per core). The cluster has in all 112 compute nodes. We use NuSMV
2.5.2 to model and verify the AOCS system. The code of the AOCSsystem is about 2200 lines
of Ada while the NuSMV 2 model code is about 800 lines with onlythe unit PLI fully modeled.
The model has roughly 80 variables and 25 state labels. The model currently has in total 2124.483

states, out of which 84.5 million states are reachable.
BDD-based LTL model checking is used in NuSMV 2 to check whether the generated LTL

formulas hold or not. In addition, bounded model checking (BMC) is also used to find possible
counterexamples. BMC is based on the reduction of the bounded model checking problem to a
propositional satisfiability problem. NuSMV 2 internally invokes a propositional SAT solver to
search for an assignment that satisfies the generated problem. In this experiment setup, NuSMV 2
is compiled to link to MiniSat [ES03], a high performance and open-source SAT solver. Specifi-
cally, the incremental BMC algorithm (check ltlspec sbmc inc) [BHJ+06, ES03] is used
in NuSMV 2 to check the generated LTL specifications. Since NuSMV’s default BMC is in-
complete, we also tried to supply the command line option-c that performs the completeness
check [BHJ+06]. To obtain better performance results for BDD-based modelchecking, the
value of the environment variablepartition methodis configured asIwls95CPinstead of the de-
fault one. In general, this method is conjunctive partitioning with clusters generated and ordered
according to the heuristic introduced in [RAB+95].

In this experiment, there are 28 LTL properties generated from the mode transition diagrams
in the system according to the generation method previouslydescribed. In all the cases, the time
bound set to check each LTL property is configured to be 30 minutes. The purpose is to make
the checking time long enough so that it can go deeper into thestate space and find possible
counterexamples. CTL model checking is also carried out with the generated CTL properties as
demonstrated in Subsection3.2. In general, the CTL model checking can deliver almost the same
amount of conclusive results as LTL model checking does. Theused time, however, is about an
order of magnitude slower than that of LTL model checking. For the BMC part, a very large
integer is supplied as the bound, so that the check will only terminate when a timeout or memory
out is reached, or when a counterexample is found. The experimental results are summarized in
Table2. The 28 properties are listed as P1 to P28 in the table.

In Table2, the column ”BDDLTL” indicates the results using the NuSMV 2 BDD-based LTL
model checking algorithm.T indicates that the property holds whileF means that the prop-
erty does not hold. The number after the forward slash is the time used by the checking and
it is measured in seconds. T.O. means that the check exceeds the configured time bound. The
column ”BMC incomplete” represents the results using the incremental BMC algorithm while
its neighbor ”BMC complete” indicates the results using thesame command but with command
line option-c enabled so that it will perform the completeness check whichalso tries to prove the
property holds. M.O. indicates that the check exceeds the memory limit. For P4’, the numbers
after the forward slash in these two columns indicate the time to find counterexamples. The num-
ber in the parenthesis is the step at which timeout, memory out is reached or a counterexample is
found. For instance, the ”BMC incomplete” column of property P1 states that the check is timed
out at step 158. This means that there is no counterexample against P1 in 158 time steps. The
table, as a whole, shows that the BMC without completeness check can reach larger bounds than
its complete variant.
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Table 2: Results of model checking LTL properties with partition method as Iwls95CP.

Property BDD LTL BMC BMC
incomplete complete

P1 T/101.59 T.O.(158) M.O.(141)
P2 T/100.99 T.O.(434) M.O.(141)
P3 T/102.78 T.O.(158) T.O.(113)
P4 T/79.82 T.O.(119) T.O.(113)
P4’ F/125.70 F(61)/5.23 F(61)/22.28
P5 T/99.76 T.O.(434) M.O.(141)
P6 T/1133.09 T.O.(119) T.O.(113)
P7 T/1434.05 T.O.(119) T.O.(85)
P8 T.O. T.O.(119) T.O.(85)
P9 T/105.49 T.O.(434) T.O.(141)
P10 T.O. T.O.(119) T.O.(113)
P11 T.O. T.O.(119) T.O.(113)
P12 T/1205.76 T.O.(119) T.O.(113)
P13 T.O. T.O.(119) T.O.(113)
P14 T.O. T.O.(119) T.O.(113)

Property BDD LTL BMC BMC
incomplete complete

P15 T/121.10 T.O.(434) M.O.(141)
P16 T.O. T.O.(158) T.O.(141)
P17 T.O. T.O.(119) T.O.(113)
P18 T.O T.O.(119) T.O.(113)
P19 T.O. T.O.(119) T.O.(113)
P20 T.O. T.O.(119) T.O.(113)
P21 T.O. T.O.(119) T.O.(113)
P22 T/120.53 T.O.(434) M.O.(141)
P23 T.O. T.O.(158) T.O.(141)
P24 T.O. T.O.(119) T.O.(113)
P25 T.O. T.O.(119) T.O.(113)
P26 T.O. T.O.(119) T.O.(113)
P27 T.O. T.O.(119) T.O.(113)
P28 T/78.47 T.O.(198) T.O.(141)

Let us study in detail the property P4, which has the LTL representation

G
((

(mode= standby)∧ (modetrans error = none)∧ (attitude error = none) ∧

separationdone
)

→

X
(

(mode= standby)U ((mode= safe)∨ (modetrans error 6= none) ∨

(attitude error 6= none))
))

. (7)

The formula contains the conditionPOSSIBLEHIGHER PRIORITYTRANSITION, as discussed
in Section3.2above, to enable aborting the multi-step transition by a higher-priority transition.
A previous version of the property, denoted by P4’ in Table2, has the LTL representation

G
((

(mode= standby)∧ (modetrans error = none)∧ (attitude error = none) ∧

separationdone
)

→

X
(

(mode= standby)U (mode= safe)
))

(8)

and omits the possibility of aborting the transition. As seen from the table, using P4’ results in a
false negative model checking result.

5 Conclusions

The AOCS system is a typical instance of a mission-critical system with various mode tran-
sitions triggered by inputs from a highly non-deterministic environment, including recovering
from components faults. We have described how a symbolic model checker input language can
be used to model an implementation of the AOCS system given its implementation in Ada source
code. One of the key methods employed has been abstraction which can control the state space of
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the model to a reasonable size. We have described techniquesand abstractions used to alleviate
the state explosion problem due to handling of timers and thelarge number of system compo-
nents controlled by AOCS. The LTL properties used to check the model are generated based on
mode transition diagrams of the system and the generation procedure is automated from a tabular
notation.

Even after the abstractions, the AOCS system is currently too large to be fully automatically
verified using symbolic model checking methods. Instead of getting rid of the close one-to-one
correspondence of the Ada source code and the correspondingNuSMV 2 model, and thus making
the model state space more manageable, we have instead resorted to incomplete model checking
methods, bounded model checking in particular. This leavesus with challenging problems for the
symbolic model checker development work that we are also concurrently doing in other projects.

In the experiments, the BDD-based LTL model checking can deliver results to about half of
all the checked properties while for the other properties the approach times out. The incremental
BMC algorithm is mainly used for bug hunting but it does also show the non-existence of short
counterexamples to the remaining properties. A timed out BDD-based LTL model checking run,
however, does not provide any additional information of theproperty. Out of curiosity, we also
ran the complete BMC algorithm, which tries to also prove properties correct, not only look for
counterexamples. Similar to our previous experiences, thecomplete BMC algorithm is not able
to prove properties correct for models of significant size.

We were also able to collect some comments about the model checking results from Space
Systems Finland. In general, they think that using the BDD-based LTL model checking to prove
12 out of 28 properties in the experiment is acceptable from the industrial perspective. On
the other hand, since BMC always goes beyond 100 steps in the experiment, it would increase
their confidence if there would be a better explanation on what this means in the context of the
system. That is, the BMC part might be understood better if the BMC experimental results could
be quantified in some systematic way. For example, one could be looking at structural coverage
of the model in 100 time steps or looking at scenarios that canor cannot happen in this bound.
This opens up interesting topics for further study.

There are many additional topics for further work. Firstly,the modeling from Ada source code
to NuSMV 2 models is currently manual work. If this part was automated, a lot of optimizations
that are easy to do automatically would become available. The Ada code is sequential, and as
only the system mode changes are observed from the outside, many of the internal states could
potentially be automatically removed by an optimizing “model compiler”. However, doing such
optimizations manually is currently too time consuming andrisky (it is easy to make modeling
errors when “hand optimizing the model”).

On the BMC side, the parallel and distributed BMC engine of [WNH09] could be used to
go deeper into the system state space by exploiting multiplemulti-core computers running on a
single BMC instance in parallel. While the properties we check are not strictly safety properties
(some of the counterexamples could be infinite loops where e.g., the mode does not change
at all), they still have some counterexamples that can be represented by finite paths (e.g., the
mode entered next is a wrong one). For these latter “safety” counterexamples, the approach
of [LHJ10] can be used, which is tailored to more efficiently finding thesafety counterexamples
of PSL (superset of LTL) properties using BDD-based engines.
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ysis of a Stepwise Shutdown Logic. VTT Working Papers 115, VTT Technical
Research Centre of Finland, Espoo, 2009.
http://www.vtt.fi/inf/pdf/workingpapers/2009/W115.pdf

[BHJ+06] A. Biere, K. Heljanko, T. Junttila, T. Latvala, V. Schuppan. Linear Encodings
of Bounded LTL Model Checking.Logical Methods in Computer Science2(5:5),
2006.

[BK08] C. Baier, J.-P. Katoen.Principles of Model Checking. The MIT Press, 2008.

[CBKK94] P. J. Clarke, D. Babich, T. M. King, B. M. G. Kibria. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems16:1512–1542,
1994.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, A. Tacchella. NuSMV Version 2: An OpenSource Toolfor Symbolic
Model Checking. InCAV’2002. LNCS 2404, pp. 359–364. Springer, 2002.

[CGP99] E. M. Clarke, O. Grumberg, D. A. Peled.Model Checking. The MIT Press, 1999.

Proc. AVoCS 2011 14 / 15

http://www.vtt.fi/inf/pdf/workingpapers/2009/W115.pdf


ECEASST
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