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Abstract: This paper discusses the use of symbolic model checkinghodmipy
to verify the design of an embedded satellite software cbrsystem called atti-
tude and orbit control system (AOCS). This system is missidtical because it
is responsible for maintaining the attitude of the sagelind for performing fault
detection, isolation, and recovery decisions of the staellAn executable AOCS
implementation by Space Systems Finland has been provides in Ada source
code form. In order to use symbolic model checking methdus Ada implemen-
tation of the system was modeled at a quite detailed impléatien level using the
input language of the symbolic model checker NuSMV 2. We ilesdhe mod-
eling techniques and abstractions used to alleviate the stplosion problem due
to handling of timers and the large number of system compsneontrolled by
AOCS. The specification of the required system behavior Wss @ovided to us
in a form of extended state machine diagrams with priotiransitions. These
diagrams have been translated to a set of temporal logicepieg, allowing the
piecewise checking of the system behavior one extendeslsiathine transition at
a time. We also report on the scalability of symbolic modedatting tools for the
case study at hand as well as discuss potential topics farefutork.

Keywords: symbolic model checking, AOCS, NuSMV 2, verification, skteekoft-
ware

1 Introduction

Model checking CGP99 BKO08] is a technology where a formal model of a system’s behav-
ior is checked against its formal requirements often exga@sn temporal logic. One of the
main approaches in model checking is symbolic model chgak&ing binary decision diagrams
(BDDs) [BCM192] that is especially suitable for hardware designs. Synshmibdel checking

is also suitable for analyzing other systems with a high ¢tharg degree due to environment
non-determinism. Bounded model checking (BMBYXCZ99 was invented to scale symbolic
model checking to analyzing even larger systems, espgd@ilfinding bugs in hardware de-
signs with a large number of state bits. The basic idea in #dedimodel checking is to look
for counterexamples to the specified property that are shtnan a user specified maximum
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length called the bound. With this length restriction tharsh for counterexamples of bounded
length can be reduced into propositional satisfiabilityTsAnd the search can be performed by
efficient SAT solvers, see e.g.EF03.

The linear temporal logic (LTL) (see e.gBIK0g]) is a widely used temporal logic in model
checking. Bounded model checking for LTL was shown to beglityeencodable to propositional
satisfiability (SAT) in HJLO5 BHJ"06]. The same papers also describe a complete BMC al-
gorithm that is guaranteed to terminate either with a caertample or by proving the property
holds but quite often requiring very high bounds in case ttoperty holds. Both the incom-
plete and complete variants of this approach have been imgpited in the NuSMV 2 model
checker CCG'02, HILO5 BHJ"06], and are used in the experiments of this paper.

This paper discusses the use of symbolic model checkingnodmipy to verify the design of
an embedded satellite software control system calledidéitnd orbit control system (AOCS).
Our approach is based on modeling an implementation giveékdansource code in the input
language of the NuSMV 2 model check€r@G"02].

The AOCS system is mission-critical because it is respda$dy maintaining the attitude of
the satellite, and for performing fault detection, isaatiand recovery decisions of the satellite.
An executable AOCS implementation by Space Systems Firilaadbeen provided to us in Ada
source code form. In order to use symbolic model checkindnaus, the Ada implementation of
the system was modeled at a quite detailed implementati@h dsing the input language of the
symbolic model checker NuSMV 2. We describe the modelingriepies and abstractions used
to alleviate the state space explosion problem due to hapdlitimers and the large number of
system components controlled by AOCS.

The specification of the required system behavior was alsaiged to us in a form of mode
transition diagrams, which basically are extended statehinas with prioritized transitions.
These diagrams have been translated to a set of linear tahipgic (LTL) properties, allowing
the piecewise checking of the system behavior one extertdézl rmachine transition at a time.
We also report on the scalability of symbolic model checkimgs for the case study at hand as
well as discuss potential topics for future work.

We have also done earlier work on using model checking metfadrerifying safety-critical
systems in the nuclear safety aré&F[/"09a BFVT09b, VPB'08]. Also in that context the
modeled systems are quite similar to the embedded missiticat software considered here:
the systems have a relatively large number of timers, asasdihving to cope with a highly non-
deterministic environment that includes a number of facétynponents that have to be recovered
from during the runtime of the system. In that domain, we Hasen using both NuUSMV 2 as
well as the Uppaal model checké3[DL " 06]. Our experience is that NuSMV 2 is usually per-
forming better for systems with a high branching degreensasthe AOCS system considered
here), while Uppaal is performing much better for systemsngaa complex timing behavior.
The main difference between the safety-critical and thesimiscritical environments is that in
the mission-critical systems, bug hunting methods (enggomplete BMC based methods) can
typically be seen as sufficient, while for safety-criticgb®ms, the main focus is on complete
system verification (complete model checking, e.g., BDBeloeL TL model checking).

The same AOCS system has been used as a case study in the DEPQjEX, and mod-
eling the AOCS system using refinement methodology in EBeoén be found inITL 103
ITL"10H. The concrete Event-B models described in these works edaund in [LT10]. Our
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model is very detailed and directly based on the Ada codeamphtation. Our motivation has

been analyzing the correctness of the Ada implementatiamsamits specifications, not to use
refinement methodology to derive correct implementatidrsis our approach does not require
significant changes in the software engineering methogolog

2 Attitude and Orbit Control System

The Attitude and Orbit Control System (AOCS)drl( is a generic component of satellite
onboard software. It is mainly used to determine and cotithttitude of the spacecraft while
it is in orbit. Since there is disturbance from environmehteft uncontrolled, the spacecraft
will change its orientation. Because of this, its attitudeeds to be monitored and adjusted
continuously. The information from various sensors presithe necessary input for the AOCS
computation. Based on this, the actuators are used to peesechange the attitude or orbit of
the spacecraft.

In AOCS, different software functionalities are realized dorresponding managers. There
are four managers, AOCS manager, FDIR manager, Mode maaadddnit manager, which
are executed in sequence to fulfill various functionaliti#®e AOCS manager has as its main
responsibility to compute the attitude control algorithithe FDIR manager (Fault Detection,
Isolation and Recovery) is executed every time when new todata becomes available. There
are three types of possible errors that are handled by thensysnode transition errors, attitude
errors and unit errors. The Mode manager is in charge of m@esitions. In this AOCS
implementation, there are six operational modés1( listed below.

o Off. Normally, the spacecraft is in this mode after the systeboted.
e Standby. The system stays in this mode until separation from theclaenis completed.

e Safe. When the system is in this mode, it indicates that a staliteide is obtained and
the system endeavors to keep the coarse pointing control.

e Nominal. In this mode, the system is further trying to reach the finatpw control.

e Preparation. The fine pointing control is reached and the unit Payloattungent (PLI)
is getting ready for the science mission.

e Science. The PLI is ready to carry out tasks. The overall goal is tg stahis mode as
long as possible.

The normal mode transitions are shown in Figlif@) as a state diagram. In Figutéb), the
bold arrows demonstrate the handling of mode transitioorgiin AOCS by the FDIR manager.

The Unit manager is used to manage unit resources, whichrgrasses avoiding conflicts
in the usage of units and handling the units during theirmégaration. There are in all seven
different units: Earth Sensor (ES), Sun Sensor (SS), GRS, Teicker (STR), Reaction Wheel
(RW), Thruster (THR) and Payload Instrument (PLI). The fiosir in this list are sensors, while
RW and THR are actuators. The last unit, Payload Instruni®atscientific measurement unit.
In addition, there are two configurations, nominal and reldumb, for each unit. Nominal unit
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(a) Normal mode transitions. (b) Mode transition error Higugd

Figure 1: Possible mode transitions in AOCS.

configuration is the start setup where the unit begins itsatjom. All of the units also have a
redundant backup copy. The redundant unitis used when th@abunit fails. Both the nominal
and redundant units have two possible configurations, orffpirothe available operational

modes.

3 Modeling and Verifying of AOCS

We modeled the previously described AOCS system in the iapguage of the NuSMV 2 model
checker CCG"02], starting from an Ada implementation. The system modehi&c&ed against

a set of Linear Temporal Logic (LTL) properties that are gatexl from a specification given as
extended state machine diagrams with prioritized traorsiti Below, Sectior3.1 describes the
general modeling of the system, and SectioAshows how the LTL properties are generated

from the specification.
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MODULE units
VAR
PLI : unit_t;

MODULE unit_t
VAR

br : branches;
cubrid : {A_branch, B_branch};
reconf ongoing : boolean;
orig_status : {free, locked};
target state : {none, pli_standby, pli_science};
step:0..4;

MODULE branches
VAR
A_branch : branch_t;
B_branch : branch t;

MODULE branch_t
VAR

state : {none, pli_standby, pli_science};
status : {free, locked};
target_state : {none, pli_standby, pli_science};
step:0..4;
timer : {0, 3, 11, 16, 101};
error : {none, timeout, loss_of accuracy, invalid_data, commanding_failure};
error_counter : boolean;

Figure 2: Modeling of the unit PLI.

3.1 Modeingthe AOCS System

The current implementation of AOCS system is written in Adiag the system is modeled in
NuSMV 2 at a level of detail that closely follows the Ada sau@de. The main aspects of
modeling are described below.

3.1.1 Modelingthe Units

There are in all seven units in the system as described inmo&e&ttincorporating so many units
in a single model is likely to cause state explosidalP6]. Our current solution to cope with
this problem is to construct a concrete model of only one, uh PLI, and to introduce an
abstraction of other units. Specifically, as only #reor property of other units is mentioned
in the LTL formula to be checked, the abstraction omits theptaspects of the units. Thus,
the basic strategy is to introduce one Boolean variableesgmting thesrror property of each
unit that non-deterministically obtains its truth valueeatch time point modeling the fact that
any subset of other units can generate an error for the s@aftiwehandle at any time. By these
means, the state space of the model is controlled to a rdalsasiae.

Figure2 shows the data structures for modeling the PLI unit in the MU language. The
moduleunits accommodates the concretely modeled units. As discussee aline PLI is cur-
rently the only unit fully modeled, but new units could be addo the variable list in this module
as needed. The modulit_t defines the basic properties of a unit. Here, the variatitg status
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Module main

VAR
label : {execute step, to_standbymode};
trans.target : {off, standby};
trans.step : 0 .. 1;

Procedure Execute Step is
begin
case Trans.Target is
when Standby =>
Transitions.To_standbyMode; ASSIGN
when ...
end case;
end Execute_Step;

init(label) := execute_step;
init(trans.target) := standby;
init(trans.step) := 0;

next(label) := case

Procedure To_StandbyMode is label = exceute._step &

begin . trans.target = standby: to_standbymode;
case Trans.Step is X :
o TRUE : label;
when 0 => esac:
Trans.Step := Trans.Step + 1; ?
when ... _7
end case: next(trans.step) := case

label = to_standbymode & trans.step=0: 1;
TRUE : trans.step;
esac;

end To_StandbyMode;

(a) Source code sample snippet. (b) NuSMV 2 modeling codglsam
Figure 3: Modeling of a code snippet in NUSMV 2.

records the status of the use of the unit. The unit can berdigmor locked. The variablgtepis
used to record the number of steps it has used to make tcamsita new operational state since
the transition is usually a multi-step process. One of ther@sting properties isr, which spec-
ifies the two configurations, nominal and redundant, repitesieas A and B in the model of the
unit. This property is further illustrated in moduteanches, which uses the moduleranch_t

to fully define the properties of each configuration of thet.uiihe functions manipulating the
properties of units are modeled in detail as described iti@Ge8.1.2below.

3.1.2 Modeling Ada Code

The overall structure of the Ada code is an infinite loop inatithe four managers, AOCS man-
ager, FDIR manager, Mode manager and Unit manager, aretegdowsequence. All the actual
functions and procedures defined in the Ada source code ingpitation are modeled as state la-
bels in the NuSMV 2 model. The modeling of source code gelyaramics the implementation.
At this point, the translation is not yet done automaticallipe core of this manual modeling is
to treat each function entry point in the implementation petential program counter value and
encode each function invocation as a single time step of tiaei A similar idea of constructing
models from program code is presentedBC[G 09 for C programs.

Figure 3 presents an example on how the source code is manually mapetluSMV 2
model. Figure3(a) is a part of the source code excerpted from the implertientavith some
irrelevant code removed. The working procedure of this dargde is quite straightforward. In
procedureExecute_Step, it checks whether the value of varialileans.Targeis Standby. If this
condition holds, then it calls the procedure_StandbyM ode. The latter procedure first checks
the value of the variabl@rans.Step If the value of this variable is 0, then it will be increased
to 1. Figure3(b) is the corresponding model in NuSMV 2. It first defines theables used in
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the procedures. Note that it has defined an additional Varlabel that does not appear in the
source code. Generally, this variable is used as a programtexoto determine which procedure
or function is being executed at present. THabel has the two procedure nameggecute_step
andto_standbymode, as its possible values. Next, these variables are izigdlivith initial val-
ues as shown by thiait clause. Lastly, th@ext state transitions are defined for variablaisel
andtrans.step These transitions in the model are exactly as those implteden the source
code. Variabldabelis used as an example to show how variable values are updatéu: case
clause, it is first checked whether the current valuekloél andtrans.targetare execute_step
andstandby, respectively. If this holds, the value label is updated tdo_standbymode. Oth-
erwise, the value is unchanged. Note that the possibleiti@rsof variabletrans.targetare not
presented here for the ease of explanation. Note also thadh code has no recursion which
makes modeling simpler, as there is no need to explicitlyehtite stack of the program.

3.1.3 Timer Abstraction

Besides abstracting entire units as described in Settl, we apply a form of data abstraction.
Most of the data structures in the implementation are madatthey are, however, some of
them are abstracted in the model. For instance, there aeeaddimers in AOCS. The timers
are mainly used to trigger certain events to occur and tardetb@ timeouts of events in the Ada
code. Inthe implementation, timers are defined as an intgger If these were directly modeled
as they are, then the modeling would become very expensaediyze using NuSMV 2 due to
state explosion. Therefore, we conduct an abstractiBK94] of these timers that removes
unnecessary details with non-deterministic choice in adauvay: the abstract model has more
behaviors than the concrete one. If we are able to prove arpkdperty for the abstract model,
it will also hold in the concrete one.

As a simple example, suppose there is a timer initializeth waélue 0. Under normal condi-
tions, this timer is incremented by 1 every time a periodieeti interrupt occurs. The timer is
reset to O when a reset command is issued. Assume that imgehe timer to 100 triggers a
special event. We create an abstraction of this timer aste stachine diagram shown in Fig-
ure4(a). The value 100 of the timer is modeled as a separate sthiie, the values 0..99 and
101.. are collapsed into single abstract states, respgctizspecially note how non-determinism
is used in state "0..99” when the increment operation ocituesther stay in the same state or to
go to the state "100”". Such atimer abstraction can, of couesailt in spurious counterexamples.
However, in our case study, no spurious counterexamplesbesarved.

The NuSMV 2 model code for this timer is shown in Figd(e).

3.2 LTL Property Generation

The LTL properties that are used to check the constructecehard generated from the mode
transition diagrams in the requirements document. In geéniur state diagrams, normal mode
transitions (Figurel(a)), mode transition error handling (Figuié€b)), attitude error handling

and unit error handling, are used for the generation of LTdpprties. The generation procedure
of these LTL properties is automated from a tabular notatibne main steps are summarized
below. First, the extended state machine diagrams withripizied transitions are transformed
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Reset/Increment
Increment

Increment

(a) Abstract states and transitions modeling the timer.

Module timer_xyz
VAR
timer : {0, 100, 101};

ASSIGN
init(timer) := 0,

next(timer) := case
reset_condition : 0;
timer =0 : {0, 100};
timer = 100 : 101;
TRUE : timer;
esac;

(b) NuSMV 2 model code snippet for the abstract timer.

Figure 4: Abstraction of a timer.

manually to a tabular notation consisting of a priority Iistvhich the possible mode transitions
of each state are prioritized according to the specific mbidst, a Python script is written which
can read the priority list and generate the correspondidggdrbperties from it.

Mode "safe” is used below to demonstrate how its related Lidpprties are automatically
generated from the mode transition diagrams. First, theréhaee types of possible errors that
can occur at a specific mode according to the previous dé¢iscripf the AOCS system. It
might be possible that two or more errors are occurring as#imee time. Thus, it is necessary
to prioritize the possible errors as well as the normal medesition so that the property can
reflect the fact that the system is handling one type of maiesition at a time. According to the
nature of the AOCS system, the priorities of possible statesttions are inferred as follows. The
mode transition error will always have the highest prioritie priority of attitude error handling
follows it. Unit error handling in turn follows the attitudaror handling. Finally, normal mode
transition has the lowest priority. In case of mode "safts’ state transition under the condition
mode transition error can be found from Figd(e) while its related transition in the context of
normal mode transition is depicted in Figut@). Its mode transitions in case of attitude error
and unit error are extracted from the related state diageamsshown in Figuré(a) and (b),
respectively. Note that in Figui® the depicted mode transition diagrams are truncated ierord
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Figure 5: Attitude and unit errors handling in Safe mode.

Table 1: Priority list of mode transitions for Safe mode.

Mode | Priority | Guard Target mode| Atomic

safe 1 safeto_nominalerror safe yes
2 attitudeerror off yes
3 unit.error ES SSRW and redundancyiot available off yes
4 coarsepointing reached nominal no

to only highlight the modes involved in the transitions. Toeresponding priority list of mode
transitions can be constructed as shown in Table the column "Priority” of Tablel, smaller
integer indicates a higher priority of the specific mode siton.

The LTL properties related to a specific state can be gerkaatiomatically from the priority
list composed in the former step. The core idea is to exthacirtformation about current mode,
guard and target mode from the list. All guards belongingdasitions of higher priorities than
those of the current mode transition should be disallowedaftower priority transition to be
enabled. According to these, the following LTL formula imstructed as the template for the
generation of all the properties.

G (((mode= CURRENTMODE) A ~HIGHER PRIORITYGUARDS\ GUARD) —
X ((mode= CURRENTMODE) U ((mode= TARGETMODE) v
POSSIBLEHIGHER PRIORITY.TRANSITION)) (1)

In the above formula, variablecSURRENTMODE, HIGHER PRIORITYGUARDS GUARD
and TARGETMODE will be substituted by the concrete values extracted froenpttiority list.
The variablePOSSIBLEHIGHER PRIORITY.TRANSITIONat the end of the template formula
is needed for correct translation of mode transitions thatraulti-step processes instead of
atomic steps, as indicated in the column “Atomic” in TabléVhen we ran an earlier version of
the experiments, we noticed an anomaly with some propeatyhtad an unexpected counterex-
ample. We managed to trace this counterexample back to aatukrof the levels of atomicity
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between the mode transition diagrams and the Ada code ingpition of the system. Namely,
in the Ada implementation some of the state transitions aratomic, and a lower priority mode
transition needs to be aborted by the enabling of a higherifyritransition “half-way through”
a multi-step mode transition from one mode to the next. Sunisenatch between the specifica-
tion and the implementation level of atomicity can possield to subtle interpretations of the
required behavior of the system, and our formal model clmgckias able to point such a case to
us. The addition oPOSSIBLEHIGHER PRIORITY.TRANSITIONenables correct handling of
aborted transitions.

As an example, the concrete LTL formulas generated fromeThhfe listed as follows.

G (((mode= safg A (modetrans.error # nong) —
X ((mode= safg U (mode= safe))) 2)

G (((mode= safg A (modetrans.error = none A (attitude error # none ) —
X ((mode= safg U (mode= off))) (3)

G (((mode= safg A (modetrans.error = none A (attitude error = nong A
unit_error) —
X ((mode= safg U (mode= off))) (4)

G (((mode= safg A (modetrans.error = nong A (attitude error = none A
—unit_error A coarsepointingreache() —
X ((mode= safg U ((mode= nomina) V (modetrans.error # nong v
(attitude error £ nong V unit_error))) (5)

Note that in formulas 3) and @), the mode transition fronsafe to Off is atomic according
to the implementation. Thus, no additional higher priotignsition needs to be added. By
contrast, in formula&), the mode transition fror8afe to Nominal is a multi-step process in the
implementation. The possible higher priority transitiotigerefore, must be considered for the
purpose of aborting handling.

It can be easily shown that these LTL formulas can be extemndadlated CTL formulas
by simply adding the universal path quantifier Since CTL formulas are also checked in the
following experiments, formula?) is used as an example to show how CTL formu@agan be
obtained from the corresponding LTL formula.

AG (((mode= safg A (modetrans.error  nong) —
AXA ((mode= safg U (mode= safg))) (6)
4 Experimental Results

The experiment is carried out in a computing cluster envirent with some background load.
Each compute node in the cluster has two 6-core AMD Opteretb Z3PUs and the memory
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is 32 GB (about 2.5 GB per core). The cluster has in all 112 egenpodes. We use NuSMV
2.5.2 to model and verify the AOCS system. The code of the AG@Em is about 2200 lines
of Ada while the NuSMV 2 model code is about 800 lines with aiig unit PLI fully modeled.
The model has roughly 80 variables and 25 state labels. Tidelsarrently has in total’24483
states, out of which 88 million states are reachable.

BDD-based LTL model checking is used in NuSMV 2 to check whethe generated LTL
formulas hold or not. In addition, bounded model checkiniy!® is also used to find possible
counterexamples. BMC is based on the reduction of the b@un&lel checking problem to a
propositional satisfiability problem. NuSMV 2 internallgviokes a propositional SAT solver to
search for an assignment that satisfies the generated proli¢his experiment setup, NuSMV 2
is compiled to link to MiniSatES03, a high performance and open-source SAT solver. Specifi-
cally, the incremental BMC algorithntcheck | t | spec_sbnt_i nc) [BHJ"06, ES03 is used
in NuSMV 2 to check the generated LTL specifications. Sinc&M\’s default BMC is in-
complete, we also tried to supply the command line optothat performs the completeness
check BHJ"06]. To obtain better performance results for BDD-based matielcking, the
value of the environment variabpartition_methodis configured aswls95CPinstead of the de-
fault one. In general, this method is conjunctive partitgnwith clusters generated and ordered
according to the heuristic introduced iRAB™95].

In this experiment, there are 28 LTL properties generateah fthe mode transition diagrams
in the system according to the generation method previalestgribed. In all the cases, the time
bound set to check each LTL property is configured to be 30 t@muThe purpose is to make
the checking time long enough so that it can go deeper intetidite space and find possible
counterexamples. CTL model checking is also carried out thié generated CTL properties as
demonstrated in Subsecti8r2. In general, the CTL model checking can deliver almost tinessa
amount of conclusive results as LTL model checking does. UBeel time, however, is about an
order of magnitude slower than that of LTL model checkingr f@ BMC part, a very large
integer is supplied as the bound, so that the check will @ripinate when a timeout or memory
out is reached, or when a counterexample is found. The erpatal results are summarized in
Table2. The 28 properties are listed as P1 to P28 in the table.

In Table2, the column "BDDLTL” indicates the results using the NuSMV 2 BDD-based LTL
model checking algorithm.T indicates that the property holds whifemeans that the prop-
erty does not hold. The number after the forward slash isithe used by the checking and
it is measured in seconds. T.O. means that the check exdeedsnfigured time bound. The
column "BMC incomplete” represents the results using tltieamental BMC algorithm while
its neighbor "BMC complete” indicates the results usingsheme command but with command
line option-c enabled so that it will perform the completeness check waish tries to prove the
property holds. M.O. indicates that the check exceeds thmanelimit. For P4’, the numbers
after the forward slash in these two columns indicate the tmfind counterexamples. The num-
ber in the parenthesis is the step at which timeout, memdris@aached or a counterexample is
found. For instance, the "BMC incomplete” column of propd?il states that the check is timed
out at step 158. This means that there is no counterexamplasadPl in 158 time steps. The
table, as a whole, shows that the BMC without completenesskotan reach larger bounds than
its complete variant.
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Table 2: Results of model checking LTL properties with igmii method as Iwls95CP.

Property | BDD_LTL BMC BMC Property | BDD_LTL BMC BMC

incomplete| complete incomplete| complete
P1 T/101.59 | T.0.(158) | M.O.(141) P15 T/121.10 | T.0.(434) | M.O.(141)
P2 T/100.99 | T.0.(434) | M.O.(141) P16 T.O. T.0.(158) | T.0.(141)
P3 T/102.78 | T.0.(158) | T.0.(113) P17 T.O. T.0.(119) | T.0.(113)
P4 T/79.82 | T.0.(119) | T.0.(113) P18 T.0 T.0.(119) | T.0.(113)
P4’ F/125.70 | F(61)/5.23 | F(61)/22.28 P19 T.O. T.0.(119) | T.0.(113)
P5 T/99.76 | T.0.(434) | M.O.(141) P20 T.O. T.0.(119) | T.0.(113)
P6 T/1133.09] T.0.(119) | T.0.(113) P21 T.O. T.0.(119) | T.0.(113)
P7 T/1434.05] T.0.(119) | T.O.(85) P22 T/120.53 | T.0.(434) | M.O.(141)
P8 T.O. T.0.(119) T.0.(85) P23 T.O. T.0.(158) | T.0.(141)
P9 T/105.49 | T.0.(434) | T.0.(141) P24 T.O. T.0.(119) | T.0.(113)
P10 T.O. T.0.(119) | T.0.(113) P25 T.O. T.0.(119) | T.0.(113)
P11 T.O. T.0.(119) | T.0.(113) P26 T.O. T.0.(119) | T.0.(113)
P12 | T/1205.76| T.0.(119) | T.O0.(113) P27 T.O. T.0.(119) | T.0.(113)
P13 T.O. T.0.(119) | T.0.(113) P28 T/78.47 | T.0.(198) | T.O.(141)
P14 T.O. T.0.(119) | T.0.(113)

Let us study in detail the property P4, which has the LTL repn¢ation

G (((mode= standby A (modetrans.error = none A (attitude error = nong A
separationdone) —

X ((mode= standby U ((mode= saf¢ \ (modetrans error # none Vv
(attitude-error # nong)) ).

The formula contains the conditid?tOSSIBLEHIGHER PRIORITY.TRANSITIONas discussed

(7)

in Section3.2 above, to enable aborting the multi-step transition by &énigpriority transition.
A previous version of the property, denoted by P4’ in Tahlbas the LTL representation

G (((mode= standby A (modetrans.error = none A (attitude error = nong A
separationdone) —

X ((mode= standby U (mode= safg)))

and omits the possibility of aborting the transition. Asrs&em the table, using P4’ results in a

false negative model checking result.

5 Conclusions

(8)

The AOCS system is a typical instance of a mission-critigasitesm with various mode tran-
sitions triggered by inputs from a highly non-determimistnvironment, including recovering
from components faults. We have described how a symbolicetraitbcker input language can
be used to model an implementation of the AOCS system gigeémftlementation in Ada source
code. One of the key methods employed has been abstractioh @an control the state space of
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the model to a reasonable size. We have described techragdesbstractions used to alleviate
the state explosion problem due to handling of timers andaige number of system compo-

nents controlled by AOCS. The LTL properties used to cheekntiodel are generated based on
mode transition diagrams of the system and the generataegure is automated from a tabular
notation.

Even after the abstractions, the AOCS system is currentlyame to be fully automatically
verified using symbolic model checking methods. Insteadettireg rid of the close one-to-one
correspondence of the Ada source code and the correspaddBiglV 2 model, and thus making
the model state space more manageable, we have insteagdesancomplete model checking
methods, bounded model checking in particular. This leasegith challenging problems for the
symbolic model checker development work that we are alsowoently doing in other projects.

In the experiments, the BDD-based LTL model checking caiveletesults to about half of
all the checked properties while for the other propertiesagpproach times out. The incremental
BMC algorithm is mainly used for bug hunting but it does alkow the non-existence of short
counterexamples to the remaining properties. A timed ouDBiased LTL model checking run,
however, does not provide any additional information of phaperty. Out of curiosity, we also
ran the complete BMC algorithm, which tries to also proveperties correct, not only look for
counterexamples. Similar to our previous experiencesgtgplete BMC algorithm is not able
to prove properties correct for models of significant size.

We were also able to collect some comments about the modekicigeresults from Space
Systems Finland. In general, they think that using the B2Bell LTL model checking to prove
12 out of 28 properties in the experiment is acceptable froenindustrial perspective. On
the other hand, since BMC always goes beyond 100 steps irxgeziment, it would increase
their confidence if there would be a better explanation ontwfiia means in the context of the
system. That is, the BMC part might be understood betteeiBMC experimental results could
be quantified in some systematic way. For example, one caulddking at structural coverage
of the model in 100 time steps or looking at scenarios thatorazannot happen in this bound.
This opens up interesting topics for further study.

There are many additional topics for further work. Firstiye modeling from Ada source code
to NuSMV 2 models is currently manual work. If this part wasomoated, a lot of optimizations
that are easy to do automatically would become available Atta code is sequential, and as
only the system mode changes are observed from the outsal®; of the internal states could
potentially be automatically removed by an optimizing “rebdompiler”. However, doing such
optimizations manually is currently too time consuming aistly (it is easy to make modeling
errors when “hand optimizing the model”).

On the BMC side, the parallel and distributed BMC engine WiNHO9] could be used to
go deeper into the system state space by exploiting multipiki-core computers running on a
single BMC instance in parallel. While the properties weakhare not strictly safety properties
(some of the counterexamples could be infinite loops whaye the mode does not change
at all), they still have some counterexamples that can beesepted by finite paths (e.g., the
mode entered next is a wrong one). For these latter “safayhierexamples, the approach
of [LHJ1( can be used, which is tailored to more efficiently finding ety counterexamples
of PSL (superset of LTL) properties using BDD-based engines
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