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Abstract: When describing bidirectional model transformations in a declarative
(relational) way, the relation between structures in source and target models is spec-
ified. But not only structural correspondences between source and target models
need to be described. Another important aspect is the specification of the relation
between attribute values of elements in source and target models. However, most
existing approaches either do not allow such a relational kind of specification for
attributes or allow it only in a restricted way.

We consider the challenge of bridging the gap between a flexible declarative at-
tribute specification and its operationalization for the triple graph grammar (TGG)
specification technique as an important representative for describing bidirectional
model transformations in a relational way. First, we present a formal way to specify
attributes in TGG rules in a purely declarative (relational) way. Then, we give an
overview of characteristic barriers that bidirectional model transformation tool de-
velopers are confronted with when operationalizing relational attribute constraints
for different TGG application scenarios. Moreover, we present pragmatic solutions
to overcome the operationalization barriers for different TGG application scenarios
in our own TGG implementation.

Keywords: attributes, model transformation, triple graph grammars

1 Introduction

Model transformations are an important element of Model-Driven Engineering (MDE) [SK03]
and allow one to automate several aspects of software development. Therefore, it is crucial that
model transformations are correct and repeatable to support incremental development and main-
tenance of high quality software. Like programming languages, model transformation languages
require an unambiguous semantics as a reference to enable the verification of the outcome, con-
sidering the model transformation specification (cf. [GGL+06]), and to ensure that different
implementations result in the same outcome. In addition, an unambiguous formal semantics and

∗ This work was partially developed in the course of the project - Correct Model Transformations - Hasso Plattner
Institut, Universität Potsdam and was published on its behalf and funded by the Deutsche Forschungsgemeinschaft.
See http://www.hpi.uni-potsdam.de/giese/projekte/kormoran.html?L=1.
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clear understanding how the relational (declarative) specification is operationalized can help to
identify which optimizations are really the most appropriate ones.

We consider this challenge for the specific case of triple graph grammars (TGG) [Sch94,
SK08], which have a well understood formal semantics and are quite similar to other declarative
and relational approaches (c.f. [GK10]) for defining bidirectional model transformations such as
declarative QVT [Obj11, Ste10, Ste11]. Closing the gap between the formal semantics of TGGs
and its operationalization has been subject of several work already [SK08, KLKS10, GHL12,
HEGO10]. Different variants of conform and efficient operationalizations and implementations
for TGGs are presented. Conformance with the TGG semantics is shown by demonstrating
consistency – each transformation result of the operationalization must fit to the TGG semantics
– and completeness – all possible transformations for the TGG semantics are also covered by
the operationalization. However, this related work usually concentrates on how to derive such
operationalizations without taking care in detail of attribute handling. Since attributes play an
important role in today’s modeling languages, in this paper we concentrate on attribute handling
for relational specifications of model transformations for the special case of TGGs. Attribute
handling is of general interest in the context of model transformation languages allowing for
relational specification. Therefore, we assume that the way we propose attribute handling in this
paper for the TGG case, may help as a guideline to come to a more relational kind of attribute
handling in QVT Relational including a consistent operationalization, too.

First, we present a way of specifying attribute conditions for TGGs in a relational way by
adopting symbolic attribute handling [OL10]. In particular, it allows for specifying relations
between attribute values of the source and target models in a TGG rule making use of first-order
formulas over the corresponding attribute labels. An attribute label uniquely identifies a spe-
cific attribute in the left-hand side (LHS) or right-hand side (RHS) of the TGG rule. In order to
be able to implement this symbolic approach directly, the integration of a constraint solver into
the tool environment is supposed. However, such an integration is not always available or not
always appropriate because of reasons that we discuss in Section 4. Therefore, we present the
characteristic barriers that may occur in each TGG application scenario when trying to opera-
tionalize a relational kind of attribute specification into consistent attribute constraints that can be
checked before applying the corresponding operationalized TGG rule as well as into consistent
attribute computation instructions for created elements. These attribute constraints and attribute
computation instructions can then be evaluated and computed in regular TGG tools in a straight-
forward way (without having to rely on an integrated constraint solver). Moreover, we present
some pragmatic solutions (partially implemented already, or being implemented) to overcome
the operationalization barriers for different TGG application scenarios in our own TGG imple-
mentation. Finally note that the operationalization conditions for relational attribute formulas in
each TGG application scenario as proposed in this paper are designed to ensure the preservation
of consistency with the TGG. However they do not necessarily guarantee completeness in the
sense that not each potential consistent attribute assignment is being pursued.

The outline of this paper is as follows. Section 2 reintroduces TGGs with its application
scenarios (without attribute handling). Section 3 then introduces attribute formulas for TGG
rules using the symbolic graph transformation approach. The following sections describe the
barriers one has to overcome when operationalizing these attribute formulas for the different
TGG application scenarios: TGG execution (Section 4), TGG integration 5, and TGG forward
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Figure 1: Example metamodels

and backward model transformation 6. Finally, Section 7 discusses related work and in Section 8,
we summarize our work and describe how the development of this approach can be continued.

2 Triple Graph Grammars Revisited

As a running example we will use a model transformation1 from SDL block diagrams [ITU02] to
UML class diagrams. The metamodels of these languages are shown in Fig. 1. Block diagrams
are hierarchical structures, where a BlockDiagram contains SystemBlocks which in turn contain
Blocks and Processes. In the class diagram, a ClassDiagram contains all other elements. These
are Classes that can be connected to each other via Associations. All these elements can have a
name. There is also a correspondence metamodel. Its elements connect elements of the other two
metamodels. This way, the correspondence model stores traceability information, which allows
to find elements of one model that correspond to elements of the other model.

Triple graph grammars (TGG) describe how to relate source and target models of a model
transformation via so-called correspondences. In particular, a TGG consists of an axiom (the
grammar’s start graph) and several TGG rules over a source, correspondence and target domain.
The TGG for the transformation of block and class diagrams is shown in Fig. 22. We use a short
notation that combines the left-hand (LHS) and right-hand sides (RHS) of the graph transforma-
tion rule. Elements that belong to the LHS and RHS are black, elements that belong only to the
RHS (i.e. which are created by the rule) are green and marked with ”++”. TGG rules are divided
into three domains: The source model (left), target model (right), and the correspondence model
domain (middle). The axiom in Fig. 2 relates the root elements of the source and target models
with the axiom correspondence node3. Rule 1 creates a SystemBlock and a corresponding Class.
The BlockDiagram and ClassDiagram must already exist. Rule 2 creates a Block and a Pro-

1 This model transformation is a simplified version of a transformation used in the industrial case study on flexible
production control systems [SWGE04].
2 Note, that the types defined in Fig. 1 are abbreviated in Fig. 2.
3 These root elements serve as containers for all other model elements to ease processing of the models.
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Figure 2: Example TGG rules and axiom rule with relational attribute specification
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Figure 3: Operational forward rule rF
1 derived from rule r1

cess in the block diagram domain and connects them to the SystemBlock. In the class diagram
domain, a class is created and connected to the SystemBlock’s Class with an Association.

TGGs may have different application scenarios. The TGG itself can be used to build source
and target models connected by correspondences in parallel by executing the underlying gram-
mar. This means that TGG rules are applied successively to extend the axiom such that in the
resulting graph the source and target components (i.e. the source and target models) are consis-
tent with each other. This application scenario can be useful to automatically generate test cases
for a model transformation implementation derived from a TGG as described in [HLG+11].

In the more usual application scenario, either a source or target model already exists and a
model transformation system has to create the other one according to the given TGG. In fact,
TGGs cover three kinds of model transformation directions: Forward, backward, and correspon-
dence transformations. A forward (backward) transformation takes a source (target) model as
input and creates the correspondence and target (source) model. A correspondence4 transfor-
mation requires a source and target model and creates only the correspondence model. In order

4 The correspondence transformation is also known as mapping transformation or model integration.
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to derive, for example, a forward model transformation, operational rules have to be generated
from the TGG, which create target model elements for given source model elements, so that
both are consistent with each other. In particular, all elements in a TGG rule belonging to the
source domain that were previously created are added to the LHS of the rule. A forward rule
then specifies how source elements can be translated into target elements according to the TGG.
See Fig. 3 depicting the forward rule rF

1 derived from rule r1 of our running example TGG. The
transformation of attribute values is not shown here but will be explained in detail in Sec. 6. For
each of the aforementioned transformation directions, separate operational rules are derived. We
denote the forward rule of r by rF , the backward rule of r by rB (see Fig. 8) and the integration
rule of r by rI (see Fig. 7). In order to ensure consistency with the TGG it has to be ensured
that a given source model element is only transformed once by the corresponding operational
rules. This requires a bookkeeping mechanism, which keeps track of those elements that were
already transformed, and those that still have to be transformed. In [GHL12] we describe how
to come from the relational TGG description to a conform and efficient batch transformation
implementation covering one of these directions. Note that it is also possible to use the TGG to
perform synchronizations of source and target models [GH09, GW09], but this is not within the
main concern of this paper.

We have developed an implementation of TGGs based on Eclipse and the Eclipse Modeling
Framework. The system can perform model transformation and model synchronization as well
as automatically generate test cases for the model transformation as described above.5 It utilizes
several optimizations to increase performance of model transformations.

3 Relational Attribute Specification in TGGs

In this section, we present a way of specifying attribute conditions for TGGs in a relational
way by adopting symbolic attribute handling. Therefore, we start with a short and informal
introduction to symbolic graphs and graph transformation.

Symbolic graphs [OL10] can be seen as a specification of a class of attributed graphs (i.e. of
graphs including values from a given data algebra in their nodes or edges). In particular, in a
symbolic graph, values are replaced by variables and, moreover, a set of formulas, Φ, specifies
the values that the variables may take. Then, we may consider that a symbolic graph SG= 〈G,Φ〉
denotes the class of all graphs obtained by replacing the variables in the graph G by values that
satisfy Φ. For instance, the symbolic graph in Figure 4 specifies a class of attributed graphs,
including distances in the edges, that satisfy the well-known triangle inequality. A symbolic
graph thus can be seen as a specification of a class of attributed graphs, where variables in
the symbolic graph are attribute labels (usually denoted objectName.attributeName),
uniquely identifying the attribute of a particular node (or edge), together with a set of formulas
Φ over these variables constraining the respective attribute values.

In symbolic graph transformation we consider that the LHS and RHS of a rule r are symbolic
graphs, where the conditions ΦL,r on the LHS of r are included in the conditions Φr in the

5 It can be downloaded from our Eclipse update site http://www.mdelab.de/update-site
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Figure 4: A symbolic graph

right hand side of the rule r : 〈ΦL,r,L ↪→ R,Φr〉. This means that applying a symbolic rule to
a symbolic graph 〈G,ΦG〉 reduces or narrows the instances of the result. For instance, G may
include an integer variable x such that ΦG does not constrain its possible values. However, after
applying a given transformation, in the result graph 〈H,ΦH〉 we may have that ΦH includes the
formula x = 0, expressing that 0 is the only possible value of x. Concluding, ΦL,r is a formula
expressing how the attribute values in a graph to be transformed should be constrained, and Φr

expresses in addition how the attribute values of the result graph are to be constrained. Note that
only the manipulation of attributes is symbolic, the graph changes performed by a symbolic rule
are performed as usual in the double-pushout approach. For a more formal definition of symbolic
graph transformation we refer to [OL10].

When defining triple graph rules using symbolic graph transformation, attribute values in a
rule r are thus constrained in a declarative way by a set of formulas Φr expressing their relation
with other attribute values of elements in r. Following the symbolic approach [OL10], we assume
that Φr is a set of first-order formulas over a set Xr = {x1, . . . ,xn} of free variables, being attribute
labels of attributes in the LHS or RHS graph of the rule, and constants belonging to the respective
attribute domains. Each TGG rule r is thus equipped with a set of formulas Φr, and we say that
Φr is the so-called attribute formula6 of the TGG rule r. Note that we assume for each TGG
rule r that attribute values of preserved elements are not changed, since a grammar usually does
not change anything which has been created before. The attribute specification for TGGs in our
TGG implementation can be done by OCL7 constraints implementing the attribute formula of
each TGG rule.

Example 1 As shown in Fig. 2, each TGG rule contains an attribute formula. Note that in our
examples we use OCL syntax. The free variables in the axiom’s formula ΦA are the attribute
labels bd1.name and cd1.name. The formula states that both must be equal. The formula ΦR1 of
rule R1 states that the cl2.name is the concatenation of the names of sb2 and bd1 and in rule R2
the names of cl3 and as3 must be equal to the concatenation of the names of bl3 and pr3.

Not only the TGG language as relational specification technique is having its difficulties to
allow for defining attributes in a declarative way. The following example illustrates that the cur-
rent solution in QVT Relational[Obj11] for specifying attributes has a rather operational (instead
of declarative) flavor. Consequently, the way we propose attribute handling for TGGs in this

6 For simplicity, we say attribute formula, instead of attribute formulas, since a set of formulas can be joined to one
formula using the conjunction operator.
7 http://www.omg.org/spec/OCL/
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paper could help as a guideline to bridge similar gaps for attribute handling in other relational
specification techniques.

Example 2 In Fig. 5, a listing of a QVT Relational rule that we assume to correspond as close
as possible to the example TGG rule 1 (from Fig. 2) is shown. Lines 7, 11, and 16 correspond
to the attribute formula ΦR1. However, instead of expressing this relation directly, the free vari-
ables n1 and n2 have to be used to store the names of the BlockDiagram and the SystemBlock.
Furthermore, the statement in line 19 is required to ensure that n2 can be computed in both
transformation directions. The QVT standard specifies8 that all free variables have to be bound
in expressions of the form <object>.<property> = <variable> in the source domain, when, or
where clauses. In the forward direction, n2 can be bound in line 7 because sdl is the source do-
main in that case. For the backward direction, a statement how to calculate n2 must be specified
separately in the where clause. This way of specifying attribute conditions and assignments in
QVT Relational has a rather operational flavor.

1 t o p r e l a t i o n Sys t emBlock2Clas s
2 {
3 n1 : S t r i n g ;
4 n2 : S t r i n g ;
5
6 e n f o r c e domain s d l sys tem : b lockDiagram : : SystemBlock{
7 name = n2 ,
8 b lockDiagram = blockDiagram : b lockDiagram : : BlockDiagram {}} ;
9

10 e n f o r c e domain uml umlClass : c l a s s D i a g r a m : : C l a s s {
11 name = n1 + n2 ,
12 c l a s s D i a g r a m = c l a s s D i a g r a m : c l a s s D i a g r a m : : ClassDiagram {}} ;
13
14 when {
15 BlockDiagram2ClassDiagram ( blockDiagram , c l a s s D i a g r a m ) ;
16 blockDiagram . name = n1 ;}
17
18 where {
19 umlClass . name . s u b s t r i n g A f t e r ( n1 ) = n2 ;}
20 }

Figure 5: QVT Relational transformation rule corresponding to TGG rule 1

Concluding, TGGs can be used to specify model transformations in a declarative (relational)
way and symbolic graph transformation can be used to also specify the relation between attribute
values in a TGG rule r in a declarative (relational) way. However, when using TGGs in different
application scenarios such as forward/backward model transformation, model integration or also
TGG execution, attribute values need to be computed that are consistent with the TGG rule
formula Φr. A possible way to do this would be to integrate a constraint solver into the TGG
transformation tool able to directly interpret the symbolic approach. It would check at runtime
the consistency of attribute values for preserved elements and compute valid values for created
elements of the TGG operational rules according to the attribute formula Φr of the TGG rule r.

8 cf. Sec. 7.5 of [Obj11]
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In the next section, we describe why this is not always appropriate.

4 Attribute Computation for TGG Execution

A constraint solver may be a powerful tool to compute consistent attribute values at runtime.
However there are certain situations where a different solution may be more adequate. First
of all, depending on the kind of constraints considered, solving them may be undecidable or
unfeasible. However, this is not the only reason. Let us consider some examples to describe
some other problems. Suppose, as it happens in our running example, that the value of a target
attribute at is defined to be the concatenation of two source attributes as

1 and as
2. Then, in the case

of a forward transformation, we may consider that directly computing at as the concatenation of
as

1 and as
2 will be more efficient than using a solver for the same purpose. Conversely, in the

case of a backward transformation, we may consider it as reasonable to use a constraint solver
to generate all the possible values of as

1 and as
2 for a given value of at . However, in many

cases, it may be more reasonable to assume that the user would input, via input parameters, a
specific decomposition of at . A similar situation is the case of an information-adding model
transformation, where the user of the model transformation might need to set a specific attribute
of the target model to a concrete value because the specification does not include any constraints
on this attribute. In this case, a constraint solver could generate as possible solutions all the
values of the given data domain. Obviously, in this case, it will probably make more sense to
assume that the user will input that value. Concluding, because of different reasons it might
be more appropriate for a TGG tool not to use an integrated constraint solver at runtime, but
to revert to a more pragmatic approach based on specific instructions to check and compute the
attributes. In the following sections, we discuss for each application scenario how a desirable
operationalization of the attribute formula would look like and which gap needs to be bridged in
this case between the relational attribute formula and this operationalization.

In this section, in particular, we are concerned with the TGG execution scenario allowing for
automatic test case generation as shown in [HLG+11]. In this application scenario, we need to
be able to apply TGG rules non-deterministically9 to the axiom, have attribute conditions for
the TGG rule that can be checked before applying the rule, and set attribute values of created
elements using concrete attribute computation instructions that are consistent with the original
attribute formula of the TGG rule.

More formally, we need the following operationalization conditions: (1) for each attribute
label x j of some created element of a TGG rule r, there exists an attribute computation instruction
x j := t, where t is a term over constants, input parameters pk with 1≤ k ≤ m, or attribute labels
xi with 1 ≤ i ≤ n and i 6= j such that xi is a variable used as an attribute label of a preserved
element of the TGG rule r. Input parameters pk are free variables in t not used as attribute labels.
These computation instructions need to be consistent with the attribute formula Φr, i.e. each
term t, representing the attribute computation of attribute label x j of some created element in r
describes a valid solution for the attribute formula Φr of the TGG rule r. (2) When matching the
TGG rule r, the part ΦL,r of the attribute formula Φr of r constraining values of the LHS of the

9 Non-determinism arises since more than one rule might be applicable and there might be more than one match
available for the same rule.
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Figure 6: Example TGG rules and axiom rule with computation instructions and checks for
execution scenario

rule needs to be satisfied.

Example 3 Fig. 6 shows rules that can be used for the TGG execution scenario without the
integration of a constraint solver at runtime. The rules here have input parameters and attribute
computation instructions for each attribute of a created element. The attribute formulas do not
constrain the values of the LHS of the rule, therefore ΦL,r equals true and the operationaliza-
tion condition 2 is satisfied in any case. The attribute formula ΦA of the axiom is bd1.name =
cd1.name. When we execute the TGG like a grammar, both elements are created and no name
exists yet. Therefore, we introduce an input parameter p for the axiom rule. Accordingly, the
attribute computation instructions for the created elements are bd1.name := p and cd1.name :=
p. This is similar for rule R1 but the attribute computation instruction cl2.name := p + bd1.name
is slightly more complex because it not only contains the parameter p but also bd1.name. Note
that p + bd1.name is a term t over the input parameter p of rule R1 and over the attribute label
bd1.name belonging to a preserved element. Moreover, the attribute computation instructions
cl2.name := p + bd1.name and sb2.name := p are consistent with the corresponding attribute
formula sb2.name + bd1.name = cl2.name in Fig. 2 since they represent valid solutions for this
formula. As described in the future work section, deriving valid attribute computation instruc-
tions automatically is an open challenge. Rule R2 even needs two input parameters p1, p2 for
the names of bl3 and pr3, since then we can transform ΦR2: bl3.name + pr3.name = cl3.name =

9 / 16 Volume 49 (2012)



Attribute Handling for Bidirectional Model Transformations

as3.name into computation instructions for bl3.name,pr3.name,cl2.name, and as3.name over p1
and p2. In particular, the concatenation of both parameters is used as the name of cl3 and as3.

Our TGG implementation enables the TGG developer to input the above-described attribute
computation instructions (expressed in OCL) with input parameters (for the moment restricted
to type String) for the TGG execution scenario. Consistency of the attribute computation in-
structions (inserted by the developer) with the attribute formula Φr can be checked by the tool at
runtime after each rule application by evaluating Φr.

5 Attribute Computation for TGG Model Integration

In this section, in particular, we are concerned with the TGG model integration scenario. In
this application scenario, we need to be able to apply TGG integration rules (creating corre-
spondences) to a source model and target model in order to check if they are consistent with
each other with respect to the TGG. When applying a TGG integration rule derived from a TGG
specification rule (without the integration of a constraint solver at runtime), we need attribute
conditions for the integration rule that can be checked before applying the rule. However the
attribute formula Φr already is in this form, since correspondence nodes usually do not contain
any attributes. As a consequence, no attribute computation instructions need to be available for
created elements either.

More formally, we need the following operationalization condition: (1) When matching the
integration rule rI , the part ΦL,rI of the attribute formula Φr of r constraining values of the LHS
of the integration rule rI , needs to be satisfied. Assuming that correspondence elements do not
contain attributes and since all source and target elements of a TGG rule r belong to the LHS of
the integration rule rI , in particular Φr = ΦL,rI , and it is sufficient to check that Φr holds.

In the more rare case that correspondence elements contain attributes, we have an extra opera-
tionalization condition in order to ensure that correspondence elements are created with attribute
values consistent with the corresponding attribute formula in the TGG: For each attribute label x j

of some created correspondence element of an integration rule rI , there exists an attribute com-
putation instruction x j := t, where t is a term over constants, input parameters pk with 1≤ k≤m
or attribute labels xi with 1 ≤ i ≤ n and i 6= j such that xi is a variable used as an attribute label
of a preserved element of the integration rule rI . Input parameters pk are free variables in t not
used as attribute label. Each term t, representing the attribute computation of attribute label x j

of some created element in rI describes a valid solution for the attribute formula Φr of the TGG
rule r.

Example 4 The attribute formulas in Fig. 2 can be taken as they are in order to be checked
when applying the integration rule (see Fig. 7), since they constrain only attributes of the LHS
of the integration rule. For example, the attribute labels constrained by the attribute formula
ΦR1 of TGG rule R1 belong to the LHS of the corresponding integration rule R1I and, therefore,
ΦR1 = ΦL,R1I .

Our TGG implementation assumes that correspondence nodes do not possess attributes. There-
fore, when matching an integration rule rI , it is enough to check if Φr = ΦL,rI is fulfilled.

Proc. BX 2012 10 / 16
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Figure 7: Integration rule R1I

6 Attribute Computation for TGG Forward or Backward Model
Transformation

In this section, in particular, we are concerned with the TGG model transformation scenario (for-
ward or backward). In this application scenario, we need to be able to apply forward TGG rules
to a source model in order to obtain a consistent target model. When applying a TGG forward
rule derived from a TGG specification rule (without the integration of a constraint solver at run-
time), we need attribute conditions for the forward rule that can be checked before applying the
rule and set attribute values of created elements using concrete attribute computation instructions
that are consistent with the original attribute formula of the TGG rule.

More formally, we need the following operationalization conditions in the forward case: (1)
For each attribute label x j of some created element of a forward rule rF , there exists an attribute
computation instruction x j := t, where t is a term over constants, input parameters pk with 1 ≤
k ≤ m or attribute labels xi with 1≤ i≤ n and i 6= j such that xi is a variable used as an attribute
label of a preserved element of the forward rule rF . Input parameters pk are free variables in t
not used as attribute labels. Each term t, representing the attribute computation of attribute label
x j of some created element in rF describes a valid solution for the attribute formula Φr of the
TGG rule r. (2) When matching the forward rule rF , the part ΦL,rF of the attribute formula Φr of
r constraining values of the LHS of the forward rule rF needs to be satisfied.

Example 5 Fig. 8 shows rules, which can be used for the TGG backward model transforma-
tion scenario without the integration of a constraint solver at runtime. The attribute computation
in the axiom can be derived directly from the attribute formula. Additional constraints on at-
tribute values of LHS elements do not exist. In rule R1, the attribute formula ΦR1 is sb2.name +
bd1.name = cl2.name. Therefore, a valid computation instruction for the name of the created ele-
ment sb2 is the name of cl2 without the name of bd1, since sb2.name := cl2.name - bd1.name10

is a valid solution of ΦR1 and the term cl2.name - bd1.name consists of attribute labels of pre-
served elements. But the attribute formula ΦR1 also implies a non-trivial LHS attribute condition
ΦL,R1b : In a valid match, the name of cl2 must start with the name of bd1. As described in the
future work section, deriving these LHS conditions automatically is an open challenge. In rule
R2b, the names of bl3 and pr3 have to computed. The attribute formula of R2 specifies that the

10 For simplicity reasons, we introduced a string operation − that performs the described subtraction of strings. If
a corresponding BlockDiagram to the ClassDiagram under translation according to the TGG exists, then this partial
operation is also well-defined.
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bd1:BD cn1:BD2CD cd1:CD

bd1:BD cn1:BD2CD cd1:CD

++
++

++
++

sb2:SB cn2:SB2CL cl2:CL

++
++

++
++

++

sb2:SB cn2:SB2CL cl2:CL

bl3:BL

cn3:BL2CL

as3:AS

cl3:CL

source

target

++
++

++ ++

++

++

cn1:BD2CD cd1:CDbd1:BD

Axiom Rule (BlockDiagram to ClassDiagram)

Rule 1 (SystemBlock to Class)

Rule 2 (Block to Class and Association)

SA CA TA

SL1 CL1 TL1

SR1 CR1 TR1

SL2 CL2 TL2

SR2 CR2 TR2
pr3:PR

++

++

++

name := 
cd1.name

ΦL,Ab:
true

name := cl2.name 
- bd1.name

name := 
as3.name

name := ''

ΦL,R1b:
cl2.name.endsWith(bd1.name)

ΦL,R2b:
as3.name = cl3.name

Figure 8: Example TGG rules and axiom rule with computation instructions and checks for
backward direction

concatenation of both names is equal to the name of as3 and cl3, which implies for the LHS
attribute condition ΦL,R2b that as3.name = cl3.name. There are multiple possibilities to split the
attribute formula of R2 into valid attribute instructions for the created elements bl3 and pr3. In
Fig. 8, it was decided to take the complete name of as3 for the name of bl3 and set the name of
pr3 to the constant empty string. Other possibilities would be to do it the other way round and
set bl3 to the empty string or split the name of as3 in the middle. The example rules in Fig. 8 do
not contain any input parameters. In case of rule R2, an integer parameter could be introduced
that specifies the index, where the name of as3 must be split. But then we would have to handle
the case that the length of as3.name is less than this index.

Example 6 Suppose that the example TGG rules now work with a target metamodel, where
each Class does not only possess the attribute name, but also the attribute attr. The relational
attribute formula of each TGG rule over this new target metamodel does not change, since this
information is only available in the target model for the software engineer. Therefore, the value
of attribute attr is not constrained and the user of the forward model transformation could be
allowed to set the attribute to a concrete value. This means that cl2.attr := x with x an input
parameter for the attr domain would be a valid solution of the attribute formula of R1. The user
can choose to set the value of x after the transformation, information is thus added to the target
model and forgotten again when performing the backward transformation.
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Our TGG implementation enables the TGG developer to input the above-described attribute
computation instructions as well as LHS attribute conditions for the forward and backward di-
rection. Consistency of these instructions (inserted by the developer) and conditions with the
attribute formula Φr can be checked at runtime after each rule application by evaluating Φr.

Note that in many application scenarios, one expects the model transformation specification
to describe model transformations with functional behavior, i.e. a bijective mapping between
source and target models. In [HEGO10, GHL12] it is described how to check this statically
relying on critical pair analysis. Having also attribute formulas on the rules, they should be taken
into account and integrated into an extended critical pair analysis. This would involve constraint
solving of the attribute formulas in order to find out if multiple solutions (as sketched in Example
5) for a particular transformation direction exist. It is part of future work to describe this issue in
detail and investigate its relation to reversible programming languages [YAG08].

7 Related Work

Attribute handling for TGGs has been discussed already in [KW07], where the gap between a
relational specification of attributes in the form of constraints (similar to the symbolic approach
proposed in this paper) and the corresponding potentially inconsistent operationalization for dif-
ferent TGG application scenarios in the form of assignments has been identified. A detailed and
formal discussion of the barriers that need to be overcome to bridge this gap is not given, but
picked up in this paper. In order to keep the gap small, some tools allow only restricted attribute
constraints for which the consistent forward and backward operationalization into computation
instructions for attribute assignments is straightforward to realize. For example, in [GK10] so-
called attribute equality constraints are introduced that allow for specifying which source and
target element attributes should be equal. As future work, it is described that it would be de-
sirable to be able to integrate, for example, the Object Constraint Language (OCL) to express
attribute value constraints. Also in [SK08], it is mentioned that in terms of enhancing expressive-
ness of the TGG approach, the handling of complex attribute conditions should be available. In
[EEE+07] attributes for TGGs are supported and the running example makes the impression as if
relations between attribute values on the source and target side need to be specified using assign-
ments with common variables. However, there is no guideline about how to operationalize these
attribute expressions and which limitations thereby might hold in order to achieve consistency in
all TGG application scenarios.

It is also possible to circumnavigate the above described gap between relational attribute spec-
ification and its operationalization in the form of concrete attribute computation instructions and
attribute condition checks. In [CCGL10, GLO09], for example, OCL attribute conditions are
added to the TGG rules and their operationalization is avoided by the proposal to use a con-
straint solver which is integrated into the tool environment guessing the right attribute values
fulfilling the attribute conditions at runtime. The authors admit however that relying purely
on constraint solving at the operational level may present computational efficiency problems in
some cases. Note that [GLO09, OGLE09] proposes a more flexible kind of declarative (pattern-
based) specification for model transformations as TGGs, but analog issues occur when trying to
handle attribute specification and computation.
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Using TGGs to specify transformations between metamodels with big structural and/or se-
mantic differences can be quite problematic. This is a general problem of relational model trans-
formation approaches and not in the focus of this paper. Enhancing the expressiveness of TGGs
is subject to current research. For example, application conditions can be used to enhance expres-
siveness as described in [KLKS10, HEGO10]. Also [GK10] is concerned with expressiveness of
TGGs and compares them to the QVT standard [Obj11]. Note that adding new features to TGGs
enhancing their expressiveness makes the task of proving conformance more complex. With re-
spect to attribute handling, QVT Relational proposes some restrictions on attribute expressions
that should ensure operationalization of the model transformation specification. This specifica-
tion is quite restrictive and not purely declarative, meaning that concrete attribute computation
instructions need to be given for both transformation directions (see Example 2 for more details).
Consistency of both transformation directions with each other is not discussed.

8 Conclusion and Future Work

We presented an approach being able to specify bidirectional transformations with TGGs in a
declarative (relational) form also on the attribute level. Moreover, we described for each TGG
application scenario how the operational form of attribute computation should look like in order
to be able to perform test case generation, forward/backward model transformation and model in-
tegration without the integration of a constraint solver into the TGG tool environment at runtime.
This characterization clarifies the barriers that TGG implementation developers need to take
when operationalizing relational (declarative) attribute specifications. We sketched how our
own TGG implementation overcomes these barriers in a pragmatic way by allowing the TGG
developer to input computation instructions and LHS conditions for each application scenario as
well as by consistency checks at runtime.

Of course, it would be more appropriate for the TGG developer to simply input the relational
(declarative) attribute specification for the TGGs once, and not having to input left-hand side
rule attribute conditions and computation instructions for each application scenario. Investigat-
ing how to compute these automatically at design time is part of future work. An intermediate
step could be to require as input the left-hand side conditions and instructions from the TGG
developer, but check automatically at design time that they are consistent with the relational for-
mula. Alternatively, a more pragmatic solution for this problem would be to create and maintain
a library of relational attribute formulas for TGGs with their operationalizations in the form of
computation instructions and LHS rule attribute conditions for the different application scenar-
ios. TGG tools could then support a relational input of attribute specifications according to this
library. As mentioned earlier, the operationalization conditions proposed in this paper guarantee
merely the preservation of consistency with the TGG, but not completeness. It is part of future
work to investigate how to also cope in an appropriate way with different consistent attribute for-
mula operationalizations. It is part of future work to describe this issue in detail and investigate
its relation to reversible programming languages [YAG08] as well as to similar properties e.g.
for schema mappings in the database literature. Finally, it should be investigated in which TGG
application scenarios lazy evaluation of attributes [OL12] could be convenient.
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