
Electronic Communications of the EASST
Volume 50 (2011)

Recent Advances in Multi-paradigm Modeling
(MPM 2011)

Verifying Access Control in Statecharts

Levi Lúcio, Qin Zhang, Vasco Sousa and Yves Le Traon

12 pages

Guest Editors: Vasco Amaral, Cécile Hardebolle, Hans Vangheluwe, László Lengyel, Peter
Bunus

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Verifying Access Control in Statecharts

Levi Lúcio∗, Qin Zhang, Vasco Sousa and Yves Le Traon

(levi.lucio,vasco.dasilva,yves.letraon)@uni.lu,
qin.zhang@unige.ch

Laboratory for Advanced Software Systems (LASSY), University of Luxembourg
Software Modeling and Verification Group (SMV), University of Geneva

Abstract: Access control is one of the main security mechanisms for software ap-
plications. It ensures that all accesses conform to a predefined access control policy.
It is important to check that the access control policy is well implemented in the sys-
tem. When following an MDD methodology it may be necessary to check this early
during the development lifecycle, namely when modeling the application. This pa-
per tackles the issue of verifying access control policies in statecharts. The approach
is based on the transformation of a statechart into an Algebraic Petri net to enable
checking access control policies and identifying potential inconsistencies with an
OrBAC set of access control policies. Our method allows locating the part of the
statechart that is causing the problem. The approach has been successfully applied
to a Library Management System. Based on our proposal a tool for performing the
transformation and localization of errors in the statechart has been implemented.

Keywords: Access Control Policies, UML Statecharts, Verification, Model Trans-
formation, Model Checking

1 Introduction

Access control is one the most important security mechanisms in existence. It guarantees that
system resources are accessed according to a previously specified policy. It is therefore of the
utmost importance to check that an access control policy is well implemented.

In a Model Driven Development (MDD) context [9], models can be exploited in order to
enable locating errors early during the development lifecycle. As UML models are the de facto
standard for modeling, this paper will focus on UML statecharts, which represent the dynamic
aspect the system and are the key for the understanding how the system will execute. In our
approach we consider statecharts embedding the logic of access control policies specified as a
set of OrBAC rules [7]. OrBAC rules define an access control policies as a tuples of five elements:
Organization, Role, Activity, View and Context. In order to verify such a statechart respects the
access control policies defined in the OrBAC rules, we propose a new approach that is based
on the usage of Algebraic Petri Nets (APNs) as a means to perform the verification of access
control rules. The process is straightforward: first, the statechart is automatically transformed
into an APN; then the access control policies are model checked as properties of the APN to find
any inconsistency or violation of the access control policies in APN; finally, if an issue is found,

∗ Levi Lúcio and Qin Zhang were sponsored by the FNR CORE project MOVERE, ref. C09/IS/02.

1 / 12 Volume 50 (2011)

mailto:(levi.lucio,vasco.dasilva,yves.letraon)@uni.lu
mailto:qin.zhang@unige.ch

Verifying Access Control in Statecharts

we locate in the statechart the transition that is causing that problem by using the information
present in the model checker’s counterexample.

The remainder of this paper is organized as follows: section 2 introduces the Library Manage-
ment System we use in the paper to illustrate our approach; section 3 presents the technicalities
of our approach; section 4 introduces the tool we have developed for our proposal; in section 5
we contextualize our results; finally section 6 concludes.

2 The Library Management System running Example

In this paper we will employ a running example of simple Library Management System (LMS)
to illustrate our proposal. As the object Book is the core component of the system, we will
build a UML statechart for the business logic of the Book which represents the whole LMS (see
Figure 1). Regarding security, the LMS has attached a set of access control policies defined
using OrBAC [7] (see Figure 1, bottom left corner). To secure the system, we embed these
access control policies1 in the system business logic by adding Role and Context conditions in
the state transition guards – since in the statechart the events are Activities (e.g. Order or Borrow
in Figure 1) while the View (resource) is always the object Book.

As shown in Figure 1, when a book is published, it can be ordered and archived by the sec-
retary of the library and then can be borrowed and returned by borrowers, including teachers
and students. When a book is already borrowed, other users may reserve it by being registered
in a reservation list. Reservers may also cancel their reservations. Access control policies are
embedded as the statechart’s transition guards in order to secure these business functions. For
example, the guard in the transition from state Published to state Ordered means the function “or-
der a book” can be only executed when the role is Secretary while the context is WorkingDays –
which satisfies the access control policy Permission(Secretary, Order, Book, WorkingDays).

3 Verifying Access Control Policies

In figure 2 we depict the technique we propose for verifying access control policies have been
well implemented in a statechart. We assume security experts have expressed a set of access
control policies (top box on the left) and that the functional behavior of the system was described
using statecharts (top box on the right). We also assume the access control policies have been
implemented in the statechart model by following the directives we have introduced in section 2.
The verification technique we propose is based on transforming the original statechart into an
APN and the access control policies into temporal properties (bottom box on the left) of that
APN (bottom box on the right). The purpose of these two transformations is to use an existing
model checker to automatically decide if no access control policy is violated by the dynamic
behavior of the secured statechart.

Since we are performing exogenous model transformations from access control policies into
temporal logic expressions and from statecharts to APN, we have to solve the classical problem

1 Since there is only one organization Library in our example, we omit the Organization element in each access
control policy.

Proc. MPM 2011 2 / 12

ECEASST

u : User;
rList : List(User); //reservation list
c : Context;
Borrower ⊆ User; // Borrower is a subclass of User, consisting of Teachers and Students

order[u=Secretary
& c=WorkingDays]

archive[u=Secretary
& c=WorkingDays]

start

Unavailable

borrow[u∈Borrower
& c=WorkingDays]
/registerBorrower(u);

return[u=getBorrower()
& c=WorkingDays]
/removeBorrower();

Available Borrowed

Reserved

reserve[u!=getBorrower()
& u not in rList
& c=WorkingDays]
/registerReserver(u, rList);

cancel[getBorrower=null
& u in rList
& size(rList)=1
& c=WorkingDays]
/removeReserver(u, rList);

cancel[getBorrower!=null
& u in rList
& size(rList)=1
& c=WorkingDays]
/removeReserver(u, rList);

borrow[getBorrower=null
& u=head(rList)
& size(rList)=1
& c=WorkingDays]
/removeReserver(u, rList);
registerBorrower(u);

Published

Ordered

return[u=getBorrower()
& c=WorkingDays]
/removeBorrower();

borrow[getBorrower=null
& u=head(rList)
& size(rList)>1
& c=WorkingDays]
/removeReserver(u, rList);
registerBorrower(u);

cancel[u in rList
& size(rList)>1
& c=WorkingDays]
/removeReserver(u, rList);

Access Control Policies:

Permission(Secretary, Order, Book, WorkingDays)
Permission(Secretary, Archive, Book, WorkingDays)
Permission(Borrower, Borrow, Book, WorkingDays)
Permission(Borrower, Return, Book, WorkingDays)
Permission(Borrower, Reserve, Book, WorkingDays)
Permission(Borrower, Cancel, Book, WorkingDays)

Missing: u∈Borrower

Figure 1: Secured UML statechart for the Book in the Library Management System

of semantic preservation for these model transformation. In particular, two main issues arise:
1) a model transformation that is semantics preserving needs to be built. This ensures the safe
derivation, without semantic gap, of an APN representation from a statechart. Model checking
counterexamples can then be interpreted in the statechart (arrow mapped into); 2) we need to
build a model transformation for converting access control policies into temporal properties of
the statechart obtained by the transformation described in 1) (arrow transformed into). In partic-
ular, given that the access control policies are implemented over the structure of the statechart,
this last transformation needs to take into consideration the mapping between the elements of the
statechart and the elements of the APN obtained using the transformation described in 2). The
following sections will address these issues.

3 / 12 Volume 50 (2011)

Verifying Access Control in Statecharts

Access
Control
Policies

Statechart

Safety
Properties

Algebraic
Petri Net

implements

satisfies
(automatic)

transformed into mapped into

Figure 2: Commutative Verification of Access Control Policies in Statecharts

3.1 Background Formalisms and Tools

UML offers a state-based formalism to graphically represent object or system behaviors. As
shown in Figure 1, which describes the behavior of an book object, a statechart is composed
of basic named states and transitions. States may include entry and exit actions, which can
change the value of extended state variables – these hold additional data enriching a statechart
state. For example, the variable rList maintaining a list of users having a reservation on the
books is one such extended state variables. Transitions model state changes in a system and
are guarded by conditions on event inputs and extended state variables. In the example, except
for rList, all the variables of the transitions are input variables. Transitions may also include
actions which should be executed if a guard holds and there is a state change. For instance, the
registerBorrower, removeBorrower, registerReserver or removeReserver operations on the user
list rList are executed as actions in several transitions. Statecharts also include the notion of
hierarchical nested states (composite states), where a state can be composed of substates – e.g.
the reserved and borrowed states are nested inside the unavailable state. This notion facilitates
grouping states that are part of a more abstract behavior and dealing with transitions that are
pertinent to that abstract behavior and thus shared by all the nested states.

On the other hand, APN is a formalism used for modeling, simulating and studying the prop-
erties of concurrent systems. They are based on the well known Place/Transition (P/T) Petri
Nets (PN) formalism where places hold resources – also known as tokens – and transitions are
linked to places by input and output arcs, which are weighted. A PN has a graphical concrete
syntax consisting of circles for places, boxes for transitions and arrows to connect the two. The
semantics of a P/T PN involves the sequential non-deterministic firing of enabled transitions in
the net – where firing a transition means consuming tokens from the set of places linked to the
input arcs of the transition and producing tokens into the set of places linked to the output arcs
of the transition. The algebraic data type (ADT) extension allows defining tokens as elements of

Proc. MPM 2011 4 / 12

ECEASST

sets (with associated operations) which are models of algebraic specifications. The arcs of APNs
can be annotated with weights defined by terms of the algebraic specification and the transitions
can be guarded by algebraic equations.

For automating access control policy verification we will use the AlPiNA model checker [3]
for APN. AlPiNA is able to decide on the satisfaction of invariant (also called safety) properties
of APNs. The invariants are expressed as conditions on the tokens contained by places in the
net at any state of the net’s semantics. Invariants are built using first order logic, the operations
defined in the algebraic specification and additional functions and predicates on the number of
tokens contained by places.

3.2 Transforming Secure Statechart into APN

In order to transform UML statechart models into APN models we have developed a set of trans-
formation rules. These rules cover the basic syntax of UML statecharts and are built to both
preserve the original statechart semantics in the APN resulting from the transformation and add
instrumentation artifacts for verification purposes. In the next points we will discuss the main
highlights of these model transformation rules. The complete text describing these rules in detail
can be found in [11].

Decomposition of nested states : Since the AlPiNA model checker does not directly support
hierarchical Petri nets, we need to decompose composite states in the UML statechart before
applying the model transformation. The decomposition rules consists of: 1) redirecting each
incoming transition pointing to a composite state or to one of that composite state’s inner states
to the composite state’s initial state and 2) replicating each outgoing transition starting from the
composite state as a transition starting from each of the inner states. We then add the entry ac-
tions of the composite state to each newly created incoming transition as its event action. We
also replicate the exit actions of the composite state to the newly created outgoing transitions. At
last we rename the inner initial state by adding the original composite state name, which makes
it distinguishable from the initial state of the whole statechart.
Transformation of data types : After the decomposition of the nested states, we define an
ADT for each type of event parameters or extended state variables in the UML statechart. In
these ADTs there should be sufficient generators to provide exhaustive input values such that
the concerned transitions in the APN may be model checked for all possible behaviors. These
interesting input values may be found in other sub packages of the object-oriented specification,
e.g. class diagrams or sequence diagrams. For each transition in the APN transformed from a
statechart transition, an exhaustive set of input values exercising access control variables in the
transition guard is provided in places created adjacently to the transition (see the elliptic places
in the APN in Figure 4). This allows exhaustively exercising access control conditions when
activities are simulated in the APN. Regarding method calls in event or state entry/exit actions
operating on the event parameters or extended state variables, we implement them by extending
the corresponding ADTs with operations having the necessary behavior. We also create in the
APN places with ADT tokens representing extended state variable values in order to simulate
the state machine’s memory (e.g. see the places “Borrower” and “ReserverList” in Figure 4).
Transformation of the model’s structure : After having a complete set of data definitions as

5 / 12 Volume 50 (2011)

Verifying Access Control in Statecharts

ADTs, the next step is to transform the UML statechart into an APN structure. This is achieved
as follows: 1) for each state in the decomposed statechart, including “Start” and “End” states, we
build an APN place with the same name; 2) for each event (state transition in the statechart) we
create a corresponding transition with the necessary input/output arcs. If there are entry (resp.
exit) actions an original state, we extract these actions from the statechart and transform them
into APN transitions inserted before (resp. after) the place resulting from transforming the state.

After having built the backbone of the APN structure, we enrich the created transitions with
the input (resp. output) arcs from (resp. to) the places created to hold extended state variable
data. If there are actions attached to the original event of one of such transitions, we need to call
those operations on the output arcs of this transition to produce a token with the correct data. An
example of such a call in Figure 4 is the operation “removeReserver($u, $rList)” on the output
arc from transition “Reserved borrow Reserved”. We complete the logic of the original events
by adding the original statechart guard conditions to generated APN transitions.

Traceability and instrumentation issues : If a counterexample is found during the model
checking of the produced APN we need to be able trace its origin in the statechart. In order to
allow traceability it is necessary that the mapping between the the original statechart structure
and the structure of the obtained APN is known. In what concerns statechart states, there is
a surjection between states and their transformed counterparts on the transformed model. The
same happens for statechart transitions. Note that given that events with the same name may
occur in different statechart transitions, both the transition name and the source and target states
are required to univocally identify a transition in a statechart.

Note that because AlPiNA implements reachability (the AG CTL temporal operator), instru-
mentation of the APN model resulting from the transformation becomes necessary in order to
simulate checking more complex temporal operators. For this purpose we use a special ADT
called indicator, which consists of three fields that are able to record actor, context and place
origin/destination information for each fired transition in the APN. The indicator token circu-
lates among the places of the APN that result from transforming the original statechart states.
When a transition corresponding to statechart activity fires, an indicator token is placed in the
output place of the transition. This serves two purposes: on the one hand the statechart state
transition semantics is simulated by updating the marking of the APN in a way state reflects stat-
echart state change; on the other hand information about under which access control context the
activity was executed is logged for verification purposes. The ADT definition for the indicator
type is shown in Figure 3 b).

3.3 Transforming Access Control Policies into APN Properties

In order to verify the access control policies on the statechart we will transform those policies
into temporal properties of the APN obtained by the transformation described in section 3.2. To
produce the required temporal formulas we reuse and adapt the technique presented in [11], built
to enable model checking access control policies in systems modeled as APN. The technique
is based on the premisses that 1) each system activity requiring access control is modeled as
an APN transition, and that 2) when fired, every transition modeling an activity outputs log
information including data about under which context and by whom the activity was executed.

Because in such an APN model all the accesses to activities are explicitly recorded in places

Proc. MPM 2011 6 / 12

ECEASST

a) ADT definition of re-defined event names b) ADT definition of indicator

Figure 3: ADT Definitions of Renewed Transition Names and Indicator

connected to the transitions that model them, we can verify the access control policies by check-
ing that every marking of model’s state space is such that it does not violate any access control
policy. In particular we are interested in checking either of the following:

1. for all recorded accesses to an activity, at least one of the activity’s permissions is met;

2. for all recorded accesses to an activity, none of the prohibitions for that activity is met.

In [10] the justification that verifying either points 1 or 2 is enough for our purposes is given.
In the following, we continue our reasoning by relying solely on permission verification. In
terms of temporal logic, point 1 can be written for a given activity act as:

AG
(
∀t ∈ act log : Permact

1 (t)∨ . . .∨Permact
n (t)

)
(1)

where t is a token in place act log containing log information about the firing conditions of the in-
coming transitions. Formulas Permact

1 (t) . . .Permact
n (t) are predicate logic formulas, one for each

permission for activity act. Each of those formulas checks the collected log tokens in act log for
a possible violations of an access control policy. Note that formulas Permact

1 (t) . . .Permact
n (t) are

disjunct. This is so because several permissions may exist for the same activity. Finally, the AG
temporal operator makes sure the formula holds for all reachable states of the APN. Notice that
in order to check all declared permissions for a statechart a formula such as formula (1) needs to
be built for any activity for which access control policies are declared.

In order to verify if a statechart implements the access control policies correctly, we will reuse
the technique presented above to produce temporal logic formulas for the APN obtained from
the transformation presented in section 3.2. Given the additional level of indirection between
the model we want to analyze (a statechart) and the artifact we have at our disposal (the APN
resulting from the transformation), we will adapt the technique such that:

1. the temporal formulas to verify an activity are generated for multiple log places, rather
than for only one. Indeed, an APN place will act as a log place for an activity when it
is the result of transforming an arrival state for a transition implementing this activity in

7 / 12 Volume 50 (2011)

Verifying Access Control in Statecharts

the statechart. Thus, when a statechart activity corresponds to several transitions in the
statechart – and thus indirectly several transitions in the resulting APN – we need to allow
several log places for the same activity;

2. the temporal logic formulas are produced such that an indicator token in a log place is
checked for a permission only if contains log information about the activity the permission
refers to. This is to cope with the fact that a place of the APN can serve as log place for
multiple activities (e.g. state available serves as log place for activities archive, return and
cancel).

As an example, the temporal formulas necessary to check there are no access control violations
to the borrow activity in the LMS example are the following:

AG
(
∀t ∈borrowed : getActivity(t) = borrow =>

(isBorrower(getUser(t)) = true & getContext(t) = WorkingDays)
)

(2)

AG
(
∀t ∈reserved : getActivity(t) = borrow =>

(isBorrower(getUser(t)) = true & getContext(t) = WorkingDays)
)

(3)

Note that, according to point 1) above both formulas (2) and (3) need to be generated to check
the borrow activity because both the borrowed and the reserved places resulting from the trans-
formation (see Figure 4) are log places for borrow. According to point 2) above, given that both
places borrowed and reserved are log places for other activities, the getActivity(t) = borrow
condition for the implication in both formulas (2) and (3) guarantees only indicator tokens re-
garding the borrow activity are checked for the borrow permissions. Finally, given there is only
one permission for activity borrow, only one formula (a conjunction of access conditions) exists
after the implication for formulas (2) and (3). Other eventual permissions for activity borrow
would be disjunct with the existing conditions as explained by formula 1.

3.4 Mapping the Verification Result Back

When model checking on the obtained APN a set of temporal formulas obtained using the tech-
nique described in section 3.2, two results can arise: 1) the formulas are satisfied and all per-
mission is respected; 2) a formula is not satisfied and a counterexample is found, meaning the
corresponding permission was violated.

In case a permission is violated, it is possible to extract from the offending log token in the
counterexample the firing conditions of the APN transition that led to its production. Moreover
the log token tracks the name of the original statechart transition and the names of both the
original source and destination states (see section 3.2). Thanks to the traceability mechanism ex-
plained in section 3.2 it is then straightforward to interpret the APN counterexample information
in the original statechart.

Proc. MPM 2011 8 / 12

ECEASST

borrow[u∈Borrower
& c=WorkingDays]
/registerBorrower(u);

Available Borrowed

Reserved

borrow[getBorrower=null
& u=head(rList)
& size(rList)=1
& c=WorkingDays]
/removeReserver(u, rList);
registerBorrower(u);

borrow[getBorrower=null
& u=head(rList)
& size(rList)>1
& c=WorkingDays]
/removeReserver(u, rList);
registerBorrower(u);

Statechart

APN

Figure 4: Excerpt of the full transformation of the LMS from Statechart to APN

9 / 12 Volume 50 (2011)

Verifying Access Control in Statecharts

Figure 5: Mockup interface of the access policy verification tool

4 Supporting Tool

In section 3 we have described a process for verifying that access control policies are enforced
by a statechart. In order to build a tool for this procedure such as sketched in Figure 2, we
need to automate three main steps: 1) the transformation of a statechart into an APN process
(vertical right arrow of Figure 2), 2) the transformation of access control policies into temporal
logic formulas (vertical left arrow of Figure 2), and 3) the verification of temporal logic formulas
(bottom horizontal arrow of Figure 2) process.

Step 1 has been fully implemented as a model transformation using the DSLTrans [1] transfor-
mation language. The complete model transformation description implemented in the DSLTrans
language can be observed in [11]. Step 2 is not yet fully automated. In particular, the trans-
formation of the access control policies into temporal logic formulas transformation needs to be
aware of the names of the APN places that are created from the statechart states – such that the
permissions are checked on the correct log places. Step 3 is implemented by the AlPiNA [3] tool
and is thus fully automated.

The implementation of these three steps opens the possibility to provide a ‘push-button’ tool.
Such a tool will, given a set of access control policies and a statechart, highlight in the statechart
the transition guard(s) that violate a particular access control rule. During this process, all the
verification machinery is transparent for the user, who only manipulates the statechart model.
We have built a mockup of such a tool and a screenshot of its interface can be seen in Figure 5.
Notice that the access control fault detected in figure 5 is due to the fact that someone other
than a borrower was able to accomplish a reserve activity. The fault is due to the missing guard

Proc. MPM 2011 10 / 12

ECEASST

‘u ∈ Borrower’ error described as an annotation in figure 1. From the fault description in the
tool the modeler is able to understand that a secretary (not visible in the figure due to lack of
space) was able to reserve a book, which is disallowed by the access control policy specification
in figure 1.

5 Discussion and Related Work

Several approaches have been developed to extend UML with security concerns [8, 4]. We
target a narrower part of UML by adapting a part of UML statecharts to embed access control
mechanisms. Our work considers that the access control policy is manually woven into the
functional model of the system, thus assuming that functional and security concerns are explicitly
linked at design time. Our vision is similar to the one of Ray et al. [6], but with a special
focus on dynamic behavioral models (statecharts) instead of static ones. This does not mean
that the underlying separation of PDP and PEP is necessarily broken at architectural level, but
we promote the creation of an integrated model of the system combining access control with
behavior. Such an integrated model may become productive in two possible exclusive ways: 1)
security-oriented MBT [2, 5] for generating test cases to execute on the system implementation;
2) generation of deployment code from the integrated statechart.

Concerning point 1), the objective of an integrated model is to offer a formal representation
that allows covering behaviors with the intent of testing access control. The test cases generated
from the integrated statechart describe the action/event sequences for exercising access control
mechanisms. Concerning point 2), the use of the integrated model would consist of developing a
code generator from the integrated statechart, allowing the generation of a secure implementation
of the functionalities described in the statechart.

In this paper we translate UML statecharts into APN models for formal verification. This
implies some assumptions on the type of statecharts used such that our method may be applied.
These assumptions are: policies are implemented in the statechart by adding user and context
conditions on the state transition guards; all accesses to a secured activity are either allowed or
denied for a given user type under a given context; data types for the statecharts are implemented
as Algebraic Data Types for ease of translation back and forth into the APN world2; in order
to allow automatic analysis all data types used in the statechart are bound to a finite amount of
values (e.g. in our LMS example lists of reservers are bounded to size 3).

Finally, given the closeness between the semantics of UML Statecharts and APNs, we do not
provide a formal proof of the preservation of the semantics of statecharts by the transformation.
Such a proof could be obtained by providing a formal semantics to UML Statecharts and proving
its equivalence with the semantics of the APNs obtained using the transformation in section 3.3.

6 Conclusion

In this paper we propose a technique for verifying a set of activities described in a statechart
are correctly secured regarding a set of access control policies. We assume the access control
2 Note that there is no loss of generality when, instead of using UML types, we use corresponding Algebraic Data
Types.

11 / 12 Volume 50 (2011)

Verifying Access Control in Statecharts

enforcement is achieved by reinforcing statechart transitions with access control conditions. The
approach is based on translating statecharts into APNs and OrBAC access control policies into
temporal logic properties. We then use a model checker for automating the verification proce-
dure. The results of the verification can be directly highlighted in the statechart. The strength
of our approach lies in the fact that the modeler is only required to provide the access control
policies and the statechart in their original format. The procedure and required instrumentation
for verifying access control can be automatically generated.

Bibliography

[1] B. Barroca, L. Lúcio, V. Amaral, R. Félix, and V. Sousa. Dsltrans: a turing incomplete
transformation language. In Proceedings of the 3rd SLE, SLE’10, pages 296–305. Springer-
Verlag, 2011.

[2] M. Blackburn, R. Busser, and A. Nauman. Model-based approach to security test automa-
tion. In International Software Quality Week, 2002.

[3] D. Buchs, S. Hostettler, A. Marechal, and M. Risoldi. Alpina: A symbolic model checker.
In Petri Nets, volume 6128 of Lecture Notes in Computer Science. Springer, 2010.

[4] J. Jürjens. Umlsec: Extending uml for secure systems development. In Proceedings of
the 5th International Conference on The Unified Modeling Language, UML ’02, pages
412–425. Springer-Verlag, 2002.

[5] T. Mouelhi, Y. L. Traon, and B. Baudry. Transforming and selecting functional test cases
for security policy testing. In Proceedings of the 2nd international conference on Software
Testing, Verification, and Validation (ICST), pages 171–180. IEEE Computer Society, 2009.

[6] I. Ray, R. France, N. Li, and G. Georg. An aspect-based approach to modeling access
control concerns. Information and Software Technology, 46:575–587, 2004.

[7] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-Based Access Control
Models. IEEE Computer, 29(2):38–47, 1996.

[8] D. B. Torsten Lodderstedt and J. Doser. Secureuml: A uml-based modeling language for
model-driven security. In Proceedings of the 5th International Conference on The Unified
Modeling Language, pages 426–441. Springer, 2002.

[9] A. Uhl. Model-driven development in the enterprise. IEEE Software, 25:46–49, 2008.

[10] Q. Zhang. Analysis of integrity of access control policies and security coverage of trans-
formed properties in apn. Technical Report TR-LASSY-11-09, http://hera.uni.lu/∼levi.
lucio/verifying access control statecharts/integrity coverage.pdf, 2011.

[11] Q. Zhang and V. Sousa. Practical model transformation from secured uml statechart
into algebraic petri net. Technical Report TR-LASSY-11-08, http://hera.uni.lu/∼levi.lucio/
verifying access control statecharts/transformation rules.pdf, 2011.

Proc. MPM 2011 12 / 12

http://hera.uni.lu/~levi.lucio/verifying_access_control_statecharts/integrity_coverage.pdf
http://hera.uni.lu/~levi.lucio/verifying_access_control_statecharts/integrity_coverage.pdf
http://hera.uni.lu/~levi.lucio/verifying_access_control_statecharts/transformation_rules.pdf
http://hera.uni.lu/~levi.lucio/verifying_access_control_statecharts/transformation_rules.pdf

	Introduction
	The Library Management System running Example
	Verifying Access Control Policies
	Background Formalisms and Tools
	Transforming Secure Statechart into APN
	Transforming Access Control Policies into APN Properties
	Mapping the Verification Result Back

	Supporting Tool
	Discussion and Related Work
	Conclusion

