Electronic Communications of the EASST
Volume 50 (2011)

Recent Advances in Multi-paradigm Modeling
(MPM 2011)

How to reach a usable DSL? Moving toward a Systematic Evaluation
Ankica Barisi¢ , Vasco Amaral, Miguel Gouldo and Bruno Barroca

12 pages

Guest Editors: Vasco Amaral, Cécile Hardebolle, Hans Vangheluwe, Laszlé Lengyel, Peter
Bunus

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

How to reach a usable DSL? Moving toward a Systematic
Evaluation

Ankica Barisi¢ |, Vasco Amaral’, Miguel Gouldo ° and Bruno Barroca*
! barisic.ankica@gmail.com
2 vasco.amaral @di.fct.unl.pt
3 miguel.goulao@di.fct.unl.pt
4 bruno.barroca@di.fct.unl.pt
CITI, Departamento de Informética, Faculdade de Ciéncias e Tecnologia
Universidade Nova de Lisboa
Campus de Caparica, 2829-516 Caparica, Portugal

Abstract: Domain-Specific Languages (DSLs) are claimed to increase productiv-
ity, while reducing the required maintenance and programming expertise. In this
context, DSL usability by domain experts is a key factor for its successful adoption.

Evidence that support those improvement claims is mostly anecdotal. Our system-
atic literature review showed that a usability evaluation was often skipped, relaxed,
or at least omitted from papers reporting the development of DSLs. The few excep-
tions mostly take place at the end of the development process where fixing problems
identified is too expensive.

We argue that a systematic approach based on User Interface experimental validation
techniques should be used to assess the impact of the new DSLs. The rationale is
that assessing important and specially tailored usability attributes for DSLs early
in language construction will ultimately foster a higher productivity of the DSL
users. This paper, besides discussing the quality criteria, proposes a development
and evaluation process that can be used to achieve usable DSLs in a better way.

Keywords: Domain-Specific Languages Evaluation, Quality in Use, Software Lan-
guages Engineering

1 Introduction

Domain-Specific Languages (DSLs) and Models (DSMs) are used to raise the level of abstrac-
tion, while at the same time narrowing down the design space [GRT04]. This shift of developers’
focus to using abstractions that are part of the real domain world, rather than general purpose ab-
stractions closer to the computation domain world, is said to bring important productivity gains
when compared to software development using general purpose languages (GPLs) [KTOO0]. As
developers no longer need to make error-prone mappings from domain concepts to computa-
tion concepts, they can understand, validate, and modify the produced software, by adapting
the domain-specific specifications [DK98]. This approach relies on the existence of appropriate
DSLs, which have to be built for each particular domain. Building such languages is usually a
key challenge for software language engineers.

1/12 Volume 50 (2011)

mailto:barisic.ankica@gmail.com
mailto:vasco.amaral@di.fct.unl.pt
mailto:miguel.goulao@di.fct.unl.pt
mailto:bruno.barroca@di.fct.unl.pt

How to reach a usable DSL? Ea

Software Languages Engineering (SLE) is becoming a mature and systematic activity, build-
ing upon the collective experience of a growing community, and the increasing availability of
supporting tools [Kle09]. A typical SLE process starts with the Domain Engineering phase, in
order to elicit the domain concepts. The following step is to design the language, capturing the
referred concepts and their relationships. Then, the language is implemented, typically using
workbench tools, and documented. A development process goes on to the testing, deployment,
evolution, recovery, and retirement of languages. However streamlined the process is becom-
ing, it still presents a serious gap in what should be a crucial phase: evaluation, which includes
acceptance testing.

If DSLs are meant to close that gap, between the Domain Experts and the Solution computation-
platforms, then, from this perspective, they can be regarded as similar to Human/Computer
(H/C) Interaction. The interaction should favor an increase in efficiency of people performing
their duties without this having to cause extra organizational costs, inconveniences, dangers and
dissatisfaction for the user, undesirable impacts on the context of use and/or the environment,
long periods of learning, assistance and maintenance [Cat00]. Following this line of thought,
most of the requirements concerning evaluation of User Interface (UI) are actually associated
with a qualitative software characteristic called Usability; which is defined by quality standards
in terms of achieving the Quality in Use [ISO04].

A good DSL is hard to build because, as noted by Mernik ef al. [MHSO05], it requires both
domain knowledge and language development expertise, and few people have both. We should
assert claims like that 'the newly designed language brings efficiency to the process’, or that
it is usable and effective’, with an unbiased evaluation process. The closer we get to fill the
gap between domain experts and the solution platforms, the closer we are to increase the user’s
productivity.

This paper is organized as follows. Section 2 provides an evaluation approach and background
definitions. Section 3 presents usability evaluation in general. Section 4 gives us an overview
on how usability evaluation of programming languages is done. Section 5 discusses what DSL
evaluation process should look like. Finally, Section 6 concludes.

2 Background

We will now include some essential definitions that we will use through the remainder of the
paper, namely on the descriptions of existing methodologies for usability evaluation.

2.1 Domain-Specific Language Definition

Intuitively, a language is a means for communication between peers. For instance, two persons
can communicate with each other by exchanging sentences. These sentences are composed by
signs in a particular order. According to the context of a conversation, these sentences can
have different interpretations. If the context is not clear, we call these different interpretations
ambiguous.

In our particular research we are interested essentially in the communication between humans
and computers. Hence, we will only consider languages that are used as communication in-

Proc. MPM 2011 2/12

Eg ECEASST

terfaces between humans and machines — i.e. Uls. Therefore human-human languages (e.g.
natural languages) and machine-machine languages (e.g. communication protocols) are not rele-
vant for the purposes of the work described in this paper. Examples of user interfaces range from
compilers to command-shell and graphical applications. In each of those examples we can de-
duce the (H/C) language that is being used to perform that communication: in compilers we may
have a programming language; in a graphical application we may have an application specific
language, and so on. Moreover, we argue that any user interface is a realization of a language.
A language is a theoretical object (a.k.a. model) that describes the allowed terms and how to
compose them into the sentences involved in a particular human-machine communication.

The Contexts of Use i.e. ’the users, tasks, equipment (hardware, software and materials),
and the physical and social environments in which a product is used’ [ISO04] is one of the
characteristics that we can use to evaluate its usability. In fact, we can use this characteristic to
pragmatically distinguish between different products: in our case different languages may have
different Contexts of Use. Moreover, if they have different Contexts of Use, then we can infer
that the users of those languages (the humans) most likely will have different knowledge sets,
each one with a minimum amount of ontological concepts [AK03] required in order to actually
be able to use each language.

If we say that Context of Use has some ontological purpose, then we can see it as a problem
to be solved in the language user’s mind. One example of this is the set of general purpose
languages (GPL) where each user has to know about programming concepts (variables, cycles,
clauses, component, events), plus the domain concepts from a given Context of Use. Moreover,
languages that reduce the use of computation domain concepts and focus on the domain concepts
of the contexts of use’s problem, are called domain-specific languages.

2.2 Usability definition

As previously mentioned, Usability is a key characteristic for evaluating the Quality of Uls,
and, since we defined H/C languages as Uls, in our perspective, we should also use it for eval-
uating the Quality of this kind of languages. The difference between usability and the other
software qualities is that to achieve it, one has to concentrate not on system features but specifi-
cally on user-system interaction characteristics. There are several interpretations of usability e.g.
[Bev09], [PB09], [Bev95]. However, if we look at the standards, such as ISO 9241-11 Usability
is defined as: ’the extent to which a product can be used by specified users to achieve speci-
fied goals with effectiveness, efficiency and satisfaction in a specified context of use’ [Bev(09].
Moreover ISO 9126 estimated this definition with the notion of 'Goal Quality’, that has to be
evaluated through the already mentioned Quality in Use that is perceived by the user during
actual utilization of a product in real Context of Use [ISO04].

Similarly to the other software qualities, usability evaluation cannot be simply added at the
end of the development process. Instead, it has to be included in the development process from
the beginning by taking into consideration internal and external quality attributes.

Internal quality is the ’fotality of characteristics of the software product from an internal
view’ that provides usability metrics that are used for predicting the extent to which the software
in question can be understood, learned, operated, attractive and compliant with usability regula-
tions and guidelines. Internal metrics can be applied to a non-executable software product during

3/12 Volume 50 (2011)

How to reach a usable DSL? Eﬁ

SOFTWARE PRODUCT
External and DURING THE DESIGNING
Internal ~ AND DEVELOPMENT

Quality

FunctionalityJ ‘ Reliability ‘ ‘ Operability ‘ ‘ Efficiency ‘ ‘Maintainability‘ ‘ Portability ’

~ VA " EFFECTOFTHE

S=__ INFLUENCE = SOFTWARE PRODUCT
IN THE REAL CONTEX
OF USE
’. Quallty in Use \
Usability J L Flexibility ‘ (Safety |
s Effectivess !
« Efficiency o Context ¢ Commercial damage

e Environmental harm

* Satisfaction conformity
Operator health and
- Likability * Context * s;’fer:y‘" ealth an
- Comfort extensibility « Public health and
- Trust ¢ Accessibility

safet
- Pleasure Y

Figure 1: Quality model for achieving Quality in Use based on ISO IEC CD 25010.3

designing and coding. Internal metrics provide users, evaluators, testers, and developers with the
benefit that they are able to evaluate software product quality and address quality issues early
before the software product becomes executable [I[SO04].

External quality is the ’fotality of characteristics of the software product from an external
view’ that provide us with metrics that use measures of a software product derived from mea-
sures of the behavior of the system of which it is a part, by testing, operating and observing the
executable software or system. Before acquiring or using a software product it should be evalu-
ated using metrics based on business objectives related to the use, exploitation and management
of the product in a real Context of Use. External metrics provide users, evaluators, testers, and
developers with the benefit that they are able to evaluate software product quality during testing
or operation [ISO04].

Evaluating Quality in Use validates software quality in specific user-task scenarios. Quality
in Use is the user’s view of the quality of a system containing software, and is measured in terms
of the result of using the software, rather than properties of the software itself. Achieving Quality
in Use is dependent on achieving the necessary External quality, which in turn is dependent on
achieving the necessary Internal quality. Measures are normally required at all three levels, as
meeting criteria for internal measures is not usually sufficient to ensure achievement of criteria
for external measures, and meeting criteria for external measures is not usually sufficient to
ensure achieving criteria for Quality in Use. The most complete Quality model for achieving
Usability was given by ISO IEC CD 25010.3 [PB09] in the terms of achieving Quality in Use as
presented in Fig. 1.

Achieving Quality in Use for different users means achieving different goals; for the end

Proc. MPM 2011 4/12

Eg ECEASST

user, quality in use is mainly a result of Functionality, Reliability, Operability and Efficiency;
for the person maintaining the software, quality in use is a result of Maintainability; for the
person porting the software, quality in use is a result of Portability. The new model for achieving
Quality in Use provides a framework for a more comprehensive approach to specifying usability
requirements and measuring usability with taking in account the stakeholder perspective.

To evaluate the achieved Quality in Use of DSLs in real context of use we find it most relevant
to evaluate the following attributes of Usability and Flexibility (Fig. 1):

o Lffectiveness should determine the accuracy and completion of the implementation of the
sentences,

e Lfficiency tells us what level of effectiveness is achieved at the expense of various re-
sources, such as mental and physical effort, time or financial cost, and is commonly mea-
sured in the sense of time spent to complete a sentence,

e Satisfaction captures freedom from inconveniences and positive attitude towards the use
of the language and

e Accessibility with an emphasys on learnability and memorability of the language terms.

We need to find suitable quantitative and qualitative measures that will be reliable to capture the
achieved goals. These attributes should contribute, in most cases, to the claimed productivity
improvements of DSLs and can be evaluated as in [BAGB11a].

3 Usability Evaluation

3.1 General approach to Usability evaluation

Nielsen and Molich proposed evaluating usability in four ways [NM90];

Formally by some analysis techniques. Evaluations using models and simulations can predict
measures such as time to complete a task or the difficulty of learning to use a product. Some
models have the potential advantage that they can be used without the need for any prototype to
be developed.

Automatically by a computerized procedure. This can be done by Automated checking of con-
formance to guidelines and standards or by Evaluation of data collected during system usage.
This kind of evaluation is possible when initial prototypes or initial versions of full implementa-
tion are available.

Empirically by experiments with test users. Evaluation with users is recommended at all
stages of development if possible, or at least in final stage of development. We can use: For-
mative methods that focus on understanding the user’s behavior, intentions and expectations in
order to understand any problems encountered, and typically employ a ’think-aloud’ protocol
or Summative methods that measure the product usability, and can be used to establish and test
user requirements. Testing may be based on the principles of standards and measure a range
of usability components. Each type of measure is usually regarded as a separate factor with a
relative importance that depends on the Context of Use. Iterative testing with small numbers of
participants is preferable, starting early in design and development process.

5/12 Volume 50 (2011)

How to reach a usable DSL? Eﬁ

Heuristically by simply looking at the product and passing judgment according to an own
opinion. It is usually considered as Evaluation conducted by expert and it can be used when
initial prototypes are available. Expert methods that do not use task scenarios are referred to as
reviews or inspections, while task-based evaluations are referred to as walkthroughs. Conducting
expert evaluation is recommended to identify as many usability issues as possible in order to
eliminate them before conducting user-based evaluations.

Empiric and Heuristic approaches have been used to assess the usability of DSLs [MPGBO00],
[KMB™196], [HPD09], [BAGB11a], [KMC11]. The lessons learned from those works can be use-
ful for establishing guidelines and devising tool support for DSL evaluation. These should then
be combined with formal and automatic approaches, in a proposal for a cost-effective approach
to usability assessment.

3.2 Software Engineering with Usability concerns

By allowing significant changes to correct deficiencies along the development process instead
of just evaluating at the end of it (when it might be too late), User Centered Design can reduce
development and support costs, increase sales, and reduce staff cost for employers. The essential
activities required to implement User Centered Design are described in ISO 13407 [Bev05]:

e Plan and manage the human centered design process

Understand and specify the context of use

Specify the stakeholder and organizational requirements

Produce design solutions

Evaluate designs against requirements

Usability has two complementary roles in design: as an attribute that must be designed into
the product, and as the highest level quality objective which should be the overall objective of
design. In the first phase it is important to study existing style guidelines, or standards for a par-
ticular type of system; interviewing current or potential users about their current system or tools
they are using to help them in accomplishing their tasks, its strengths and weaknesses, and their
expectations for a new or re-designed system; conducting Context of Use study of a particular
situation. All these contribute to an initial understanding what the system should do for the users
and how it should be designed. Initial design ideas can then be explored, considering alternative
designs and how they meet users’ needs. After developing potential designs it is time to build
the prototypes that should be obviously simple and unfinished, as that allows people involved in
evaluations to realize that it is acceptable to criticize them. In contrast, a prototype very close to
the final product is likely to inhibit evaluators from openly criticizing it, which might lead to a
loss of valuable feedback from those evaluators. It is important to explore particular design prob-
lems before considerable effort is put into full implementation and integration of components of
a system. A number of iterations of evaluation, designing and prototyping may be required be-
fore acceptable levels of Usability are reached. Once the design of various components of system

Proc. MPM 2011 6/12

Eg ECEASST

has reached acceptable levels, integration of components and final implementation of the inter-
active system may be required. Finally, once the system is released to users, an evaluation of
its use in real contexts may be highly beneficial [PB09]. This kind of iterative evaluation ap-
proach should be merged with DSL development cycle, so we can avoid unnecessary coasts of
developing inadequate DSLs for its end users.

4 Evaluation of Programming Languages

Usability of GPLs is mostly indirectly measured by the size of the community that uses GPL.
The rationale is that, if so many people are using this GPL, that says something about its usabil-
ity. But there are also other sorts of evaluations on GPLs, namely benchmarks, feature-based
comparisons and heuristic-based evaluations [Pre00]. Comparisons are done on different ver-
sions of the same language or on the different languages focusing on some characteristic that
indicate suitability of language to its intended Context of Use. There are also Heuristic-based
evaluations that provide guidelines for evaluating syntax of visual languages based on the studies
of cognitive effectiveness [Moo09].

When usability problems are only identified too late a common approach to mitigate them is
to build tool support that minimizes their effect on users’ productivity [BJRT10], [PFHS09].

There is an increasing awareness to the usability of languages, fostered by the competition of
language providers. Better usability is a competitive advantage, although evaluating it remains
challenging, because it is hard to interpret existing metrics in a fair, unbiased way, which resists
to external validity threats concerning the broad user groups, or internal ones - it is very easy to
end up comparing apples with oranges, when evaluating competing languages.

In general, the software industry does not invest much on the evaluation of the usability of
DSLs [GGA10]. It is unclear whether this results from an insufficient understanding of the SLE
process which, in our opinion, must include the evaluation of the DSLs. Language engineers
may perceive the investment in evaluation as an unnecessary cost and prefer to risk providing
a solution which has not been validated, w.r.t. its usability, by end users. With anecdotal re-
ports of 3-10 times productivity improvements, [KTOOL,[WL99],[Met07b], or “clearly boosted
development speeds” [Met07a] in industrial settings, why bother with validation?

The problem, of course, is that anecdotal reports on improvements lack external validity. Other
reports, such as [BJMHO2], present maintainability and extensibility improvements brought by
a combination of DSLs and Software Product Lines (SPL), but it is unclear which share of the
merit belongs to DSLs and which should be credited to SPLs. The usage of DSLs has been
favorably compared to the usage of templates in code generation, with respect to flexibility,
reliability and usability [KMB96]. Other work evaluates a visual language against a GPL for
which it is a front-end [MPGBO00]. Another success story can be found in [HPDO09], where a
survey conducted with users of a particular DSL clearly reports on noticeable improvements in
terms of reliability, development costs, and time-to-market. The usability of that particular DSL
and its toolset are among the most important success factors of DSL introduction in that context.
But are these improvements typical, or exceptional? The honest answer can only be one: we do
not know.

We conducted a systematic literature review to assess the extent to which DSLs are evaluated

7/12 Volume 50 (2011)

How to reach a usable DSL? Ea

and how they are evaluated [GGA10]. Our review analyzed 15 of the most important scientific
venues covering Software Languages Engineering, from 2001 to 2008. Out of over 640 papers
published in those venues, we finally selected 36 which reported either on the process developing
at least one DSL (33) or on experimental validation of DSLs (3). Only 3 of the inspected papers
reported on using quantitative data in their DSL evaluation, while 2 papers reported the usage
of qualitative data in DSL evaluation. 21 papers did not provide any information concerning
how evaluation was performed. Finally, 10 papers do not report any kind of evaluation of the
produced DSLs. Only 2 of the papers claim to have used industrial level validation, against
21 papers which report on toy examples. No details are available concerning the remaining 3
papers which may have performed some sort of evaluation. Only 3 papers report having used
industrial, or specialized subjects in their DSL evaluation, while this information is unknown
in the remaining cases where some sort of evaluation was conducted. Only 1 paper reports the
usage of specific usability techniques, borrowed from the evaluation of GPLs. 6 other papers
report on ad-hoc usability evaluation.

Overall, the level of DSL evaluation found in our survey can be considered low, and the details
on the few performed evaluations are clearly insufficient. For instance it is often the case where
information concerning who participated in the evaluation is missing. We do not know whether
the final users participated in the evaluation at all, in most situations. We were not able to find
compelling evidence supporting the improvement claims on DSL usage. Although this does
not necessarily mean no usability evaluation is being performed, it sends the wrong message to
practitioners who should be concerned with systematically evaluating the DSLs they produce. It
should be noted that this kind of evaluation, comparing the impact of different languages in the
software development process has some tradition, in the context of GPLs (e.g. [Pre00]) and their
impact on developer productivity. Why should this be different with DSLs?

5 Discussion on DSL Usability Evaluation proposal

In order to propose a process for performing Usability evaluation on DSLs, we first must ask
what are the main goals of a software language engineer when devise a new DSL. The main
design objectives for building a new DSL are:

e To build a comprehensive language that captures domain expressivity.
e To achieve compliance with existing standards in a given domain.
e To overcome previously identified problems in the domain.

As in other usability evaluation methodologies, Usability evaluation should be embedded in
the DSL development pocess itself, and considered from the beginning of its development to-
gether with User Centered Design activities from Section 3.2 as we propose in Fig. 2. According
to our proposal, Usability requirements should be identified during domain engineering phase
of DSL’s construction i.e. while eliciting domain concepts. A first step would be to understand
and specify the Context of Use of DSLs and which kind of user groups it should target by con-
structing User and Context model. In order to achieve that, the language engineer should engage
interviews or questionnaires with the DSL’s intended end users in order to capture information

Proc. MPM 2011 8/12

Eg ECEASST

Plan the
process

DOMAIN ENGINEERING

Elect domain concepts and
identify usability requirements
and meaning of attributes in
given context for user profiles

USER &
CONTEXT
MODEL

Conceptual
distance is
minimized

Specify context of use & user and
organizational requirements

DESIGN THE
LANGUAGE

Find which attributes are
meaningful for domain concepts LANGUAGE
FIND DISTANCE and relate them by their MODEL
identified dependency, find
metrics that will indicate it

IMPLEMENTATION
& TESTING

Calculate metrics and check
conformance with requirements, BETWEEN

create user or expert based MODELS
evaluations

Produce design solutions

Evaluate design against
requirements

Figure 2: Evaluation Process for DSLs’ Usability.

about their working environment and the products that are already used within the domain. It is
necessary to identify characteristics that the users find useful, frustrating or lacking while using
the existing approach to solve the problem, and group them in the usability requirements. Con-
necting usability requirements to conceptual dimensions we can identify what quality means in
a specific context of use for the end user.

In the language design phase, the language engineer should elect which quality attributes
from Fig. 1 are connected to the domain concepts according to requirements. For each domain
concept, he should identify or predict both its frequency and relevance within the domain, that
should be obtained from the precisely defined questionnaire. He can do it by assigning weights
between quality attributes and domain concepts according to their influence on final Usability
of the language [BAGB11b]. To produce pertinent usability metrics and tests from collected
information it is important to know which attributes will contribute to achieve Quality in Use .

During the implementation phase, the language engineer can benefit from the collected in-
formation by means of tools that measure Usability (w.r.t. the stated Usability requirements)
directly on the DSL prototype. Finally, in the festing phase, the language engineer should con-
duct (at least) a Heuristic-based Usability evaluation to validate the list of identified Usability
requirements. When the requirements are met, we should conduct a user-based evaluation, in a
real context of use, to assess the DSL’s usability, in practice. That is done by giving the users

9/12 Volume 50 (2011)

How to reach a usable DSL? Eﬁ

real problems to solve in order to cover the most important tasks identified in the domain. Data
about satisfaction and cognitive workload should also be evaluated subjectively through ques-
tionnaires. It is especially important in this phase to measure all the learnability issues, since
DSLs should be (in principle) easy to learn and remember. Of course, in order to certify that
we are creating a good DSL we should conduct a comparative analysis with previous products
that are already used in the domain and also were built to achieve the same goals. Examples
of the user based evaluations of DSLs, that presents examples of tasks and questions that are
constructed to measure achieved Quality in Use can be seen in [BAGB11a] and [KMC11].

The main idea is that we can measure the distance between the language model and the user-
context model during language development through defined Internal and External quality met-
rics that influence Usability. The smaller the conceptual distance, higher the level of achieved
Quality in Use.

6 Conclusions and Future Work

The software industry, in general, does not seem to invest much on the evaluation of DSLs.
However, since DSLs are built for a specific domain of use in order to close the gap between
domain experts and software engineers, we find that it is essential to evaluate their usability.

Usability is the main quality attribute while performing Ul evaluation. If we consider DSLs as
a kind of Uls, then we find that evaluating DSL’s Usability can bring a positive influence on their
users’ productivity. Moreover, unlike other software products, DSL’s Usability evaluation can
be an accurate activity, since precisely defined DSLs can target specific Contexts of Use, inside
a particular set of user profiles.

The main contribution of this paper is the proposal of an evaluation process for DSLs’ Us-
ability that is to be applied during DSLs’ life-cycle. With this evaluation process we are able to
evaluate Usability of a DSL in early stages of its development in order to predict its outcome w.r.t.
Usability and prevent user-interaction mistakes, hence achieving a usable DSL by construction.

As future work, we will instantiate our proposed DSL evaluation process in the construction
of new DSLs which will take into account the Usability aspect from the very beginning of their
development. From this instantiation, we expect to devise languages and tools that can effectively
and automatically measure the identified Usability factors early and during DSLs’ development.

Bibliography

[AKO03] C. Atkinson, T. Kiihne. Model-Driven Development: A Metamodeling Foundation.
IEEE Softw. 20:36—41, September 2003.
doi:10.1109/MS.2003.1231149
http://portal.acm.org/citation.cfm?id=942589.942704

[BAGB11a] A. Barisi¢, V. Amaral, M. Gouldo, B. Barroca. Quality in Use of Domain Specific
Language: a Case Study. Proceedings of the Workshop on Evaluation and Usability
of Programming Languages and Tools (PLATEAU 2011), held at Splash 2011,
October 2011.

Proc. MPM 2011 10/12

http://dx.doi.org/10.1109/MS.2003.1231149
http://portal.acm.org/citation.cfm?id=942589.942704

E

ECEASST

[BAGB11b]

[Bev95]

[Bev05]

[Bev09]

[BIMHO2]

[BJRT10]

[Cat00]

[DK98]

[GGA10]

[GRT04]

[HPDO09]

[K1e09]

[KMB196]

http://ecs.victoria.ac.nz/twiki/pub/Events/PLATEAU/Program/
plateau2011-barisic.pdf

A. Bariié, V. Amaral, M. Gouldo, B. Barroca. Quality in Use of DSLs: Current
Evaluation Methods. Proceedings of the 3rd INForum - Simposio de Informdtica
(INForum2011), September 2011.

N. Bevan. Measuring usability as quality of use. Software Quality Journal
4(2):115-130, 1995.

N. Bevan. Cost benefits framework and case studies. Cost-Justifying Usability: An
Update for the Internet Age. Morgan Kaufmann, 2005.

N. Bevan. Extending quality in use to provide a framework for usability measure-
ment. Human Centered Design, pp. 13-22, 2009.

D. Batory, C. Johnson, B. MacDonald, D. v. Heeder. Achieving extensibility
through product-lines and domain-specific languages: a case study. ACM Trans-
actions on Software Engineering and Methodology 11(2):191-214, 2002.

R. Bellamy, B. John, J. Richards, J. Thomas. Using CogTool to model program-
ming tasks. Evaluation and Usability of Programming Languages and Tools, p. 1,
2010.

T. Catarci. What happened when database researchers met usability. Information
Systems 25(3):177-212, 2000.

A. V. Deursen, P. Klint. Little Languages: Little Maintenance? Journal of Software
Maintenance: Research and Practice 10(2):75-92, 1998.

P. Gabriel, M. Gouldo, V. Amaral. Do Software Languages Engineers Evaluate
their Languages? Proceedings of the XIII Congreso Iberoamericano en” Software
Engineering”(CIbSE’2010), Universidad del Azuay, Cuenca, Ecuador, pp. 149—
162, April 2010.

J. Gray, M. Rossi, J.-P. Tolvanen. Preface. Journal of Visual Languages and Com-
puting, Elsevier 15:207-209, 2004.

F. Hermans, M. Pinzger, A. V. Deursen. Domain-Specific Languages in Practice:
A User Study on the Success Factors. In 12th International Conference on Model
Driven Engineering Languages and Systems. Volume 5795/2009, pp. 423-437.
Lecture Notes in Computer Science, Denver, Colorado, USA, 2009.

A. Kleppe. Software language engineering: creating domain-specific languages
using metamodels. Addison-Wesley, 2009.

R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis, D. P.
Oliva, T. Sheard, I. Smith, L. Walton. A Software Engineering Experiment in Soft-
ware Component Generation. In International Conference on Software Engineering
(ICSE’1996). Pp. 542-552. IEEE Computer Society, Berlin, Germany, 1996.

11/12

Volume 50 (2011)

http://ecs.victoria.ac.nz/twiki/pub/Events/PLATEAU/Program/plateau2011-barisic.pdf
http://ecs.victoria.ac.nz/twiki/pub/Events/PLATEAU/Program/plateau2011-barisic.pdf

How to reach a usable DSL? E"}

[KMC11] T. Kosar, M. Mernik, J. Carver. Program comprehension of domain-specific and
general-purpose languages: comparison using a family of experiments. Empirical
Software Engineering, pp. 1-29, 2011.
doi:10.1109/MS.2003.1231149

[KTO00] S. Kelly, J.-P. Tolvanen. Visual domain-specific modelling: benefits and experi-
ences of using metaCASE tools. In Bézivin and Ernst (eds.), International Work-
shop on Model Engineering, at ECOOP’2000. 2000.

[Met07a] MetaCase. EADS Case Study, http://www.metacase.com/papers/MetaEdit_in_EADS.pdf.
Technical report, MetaCase, 2007.

[Met07b] MetaCase. Nokia Case Study, http://www.metacase.com/papers/MetaEdit_in_Nokia.pdf.
Technical report, MetaCase, 2007.

[MHSO05] M. Mernik, J. Heering, A. M. Sloane. When and How to Develop Domain-Specific
Languages. ACM Computing Surveys 37(4):316-344, 2005.

[Moo09] D. Moody. The physics of notations: Toward a scientific basis for constructing vi-
sual notations in software engineering. IEEE Transactions on Software Engineer-
ing, pp. 756=779, 2009.

[MPGBO0O] N. Murray, N. Paton, C. Goble, J. Bryce. Kaleidoquery—a flow-based visual lan-
guage and its evaluation. Journal of Visual Languages & Computing 11(2):151-
189, 2000.

[NM90] J. Nielsen, R. Molich. Heuristic evaluation of user interfaces. Proceedings of the
SIGCHI conference on Human factors in computing systems: Empowering people,
pp. 249-256, 1990.

[ISO04] International Standard Organization. ISO/IEC 9126 Quality Standards. 2004.
http://www.iso.org/iso/

[PBO9] H. Petrie, N. Bevan. The evaluation of accessibility, usability and user experience.
The Universal Access Handbook, 2009.

[PFHS09] K. Phang, J. Foster, M. Hicks, V. Sazawal. Triaging Checklists: a Substitute for a
PhD in Static Analysis. Evaluation and Usability of Programming Languages and
Tools (PLATEAU) PLATEAU 2009, 2000.

[Pre00] L. Prechelt. An Empirical Comparison of Seven Programming Languages. I[EEE
Computer 33(10):23-29, 2000.

[WL99] D. M. Weiss, C. T. R. Lai. Software Product-Line Engineering: A Family-Based
Software Development Process. Addison Wesley Longman, Inc., 1999.

Proc. MPM 2011 12/12

http://dx.doi.org/10.1109/MS.2003.1231149
http://www.iso.org/iso/

	Introduction
	Background
	Domain-Specific Language Definition
	Usability definition

	Usability Evaluation
	General approach to Usability evaluation
	Software Engineering with Usability concerns

	Evaluation of Programming Languages
	Discussion on DSL Usability Evaluation proposal
	Conclusions and Future Work

