
Electronic Communications of the EASST
Volume 47 (2012)

Proceedings of the
11th International Workshop on Graph Transformation and

Visual Modeling Techniques
(GTVMT 2012)

Optimizing Model-Based Software Product Line Testing
with Graph Transformations

Anthony Anjorin, Sebastian Oster, Ivan Zorcic and Andy Schürr

14 pages

Guest Editors: Andrew Fish, Leen Lambers
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Optimizing Model-Based Software Product Line Testing
with Graph Transformations

Anthony Anjorin∗, Sebastian Oster, Ivan Zorcic and Andy Schürr

anjorin, oster, zorcic, schuerr@es.tu-darmstadt.de
Real-Time Systems Lab,

Technische Universität Darmstadt, Germany

Abstract:
Software Product Lines (SPLs) are increasing in relevance and importance as vari-
ous domains strive to cope with the challenges of supporting a high degree of vari-
ability in modern software systems. Especially the systematic testing of SPLs is non-
trivial as a high degree of variability implies a vast number of possible products. As
testing every valid product individually quickly becomes infeasible, heuristics are
often used to choose a representative subset of products to be tested. MoSo-PoLiTe
(Model-Based Software Product Line Testing) is a framework for SPL testing that
combines and applies combinatorial (in particular pairwise) and model-based testing
to SPL feature models.

In this paper, we (1) present MoSo-PoLiTe as a novel case study for graph transfor-
mations in general and Story Driven Modelling (SDM) in particular, (2) show why
we consider SDMs to be ideal for rapid prototyping optimization strategies in this
context, and (3) evaluate our implemented optimizations and quantify the realized
improvements for MoSo-PoLiTe.

Keywords: Software Product Line, Model-Driven Testing, Graph Transformations,
Story-Driven Modelling, Constraint Satisfaction Problem

1 Introduction

A Software Product Line (SPL) architecture provides a systematic means of producing different
applications from a common architecture family, reusing common features (units of function-
ality) in the process [PBL05]. The SPL paradigm, already applied successfully in various do-
mains, promises increased software quality, reduced development and maintenance costs, and a
decreased time-to-market [CN01].

Developing a feasible strategy for testing SPLs, which aim at reusing the same software com-
ponents in very different combinations and contexts, poses quite a challenge [McG01]. Classical
approaches can only be applied for testing individual products and this becomes quickly infeasi-
ble with respect to time and cost even for a moderate degree of variability [Eng10].

An established strategy is to determine a representative subset of products which are tested
in lieu of the complete product line. Determining an optimal subset of products with respect

∗ Supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School of
Computational Engineering at TU Darmstadt.

1 / 14 Volume 47 (2012)

mailto:anjorin, oster, zorcic, schuerr@es.tu-darmstadt.de

Optimizing Model-Based Software Product Line Testing with Graph Transformations

to a chosen test metric is, however, NP-hard as it can be mapped to the minimum cardinality
hitting set problem [Sch07]. Many approaches, thus, use some heuristics to guide the choice
[Sch07, POS+11, KBK11].

MoSo-PoLiTe (Model-Based Software Product Line Testing) [OMR10] is a framework for
SPL testing that combines and applies combinatorial testing and model-based testing to SPL
feature models [KCH+90]. Experience from various industrial cooperations shows that espe-
cially pairwise testing results in a reasonable subset of products, which can be feasibly tested.
Based on the results of applying MoSo-PoLiTe for real-world use-cases, the basic assumption
that most errors can be found by testing all valid pairwise combinations of features appears to
hold in practice [POS+11]. In the MoSo-PoLiTe approach, a feature model that describes the
variability in an SPL as a tree of interrelated features [KCH+90], is converted to a Constraint
Satisfaction Problem (CSP) via a series of transformation rules that flatten the feature tree appro-
priately. This flattening transformation has been proven to be semantic preserving [Ost11]. The
task of determining a subset of product configurations, which covers all valid pairwise combi-
nations of features, is thereby reduced to solving the CSP using well known approaches such as
forward checking with some extensions. Details concerning how the chosen subset of products
to be tested can be mapped to concrete test cases using a test model are discussed in [OZML11].

The flattening transformation that converts the feature model to a CSP is by no means unique
and can be varied and optimized for a concrete CSP solver. In this paper, we concentrate on
the optimization of this flattening transformation using graph transformations. An optimization
strategy is, for example, to create redundant constraints that do not change the semantics of the
CSP but lead to a reduction of the search space for valid combinations. This basically results
in a trade-off of memory (for redundant constraints and annotations in the flattened tree) for
efficiency (reducing the search space and preventing backtracking).

Our contribution is to (1) present a novel application of graph transformations in general
and Story Driven Modelling (SDM) in particular in the domain of SPL testing, (2) show that
SDMs are well suited for rapid prototyping the transformation and trying out various optimiza-
tion strategies, (3) measure and evaluate our implemented optimization strategies for the MoSo-
PoLiTe SPL testing framework.

The paper is structured as follows: In Sec. 2 we introduce a concrete running example and de-
fine the necessary concepts used in the rest of the paper. Section 3 discusses the transformation
rules that flatten a feature model to a CSP and explains how the chosen CSP solver works. In
Sec. 4 various optimization strategies are presented and we show how these ideas can be trans-
lated almost 1-to-1 in concise graph transformation rules. Section 5 presents our optimization
results, Sec. 6 discusses related approaches, and Sec. 7 concludes the paper.

2 Fundamentals

A feature f represents a system property that is relevant to some stake holder [CHE05]. Given
the set of all features F = { f1, f2, . . . , fn}, a Product Configuration PC ∈P(F) is a combination
of features that constitute the corresponding product. A Feature Model FM(F)⊆P(F) restricts
feature combinations to valid product configurations PC ∈ FM(F) thus defining the variability
in an SPL [KCH+90]. We employ a FODA-like FM [KCH+90] with mandatory, optional, or,

Proc. GTVMT 2012 2 / 14

ECEASST

and alternative features as well as binary excludes and requires cross-tree dependencies. Our
running example is a sample SPL from the automotive domain, a Body Comfort System (BCS)
[LOGS11]. Figure 1 depicts the feature model for the BCS SPL (left) and a valid product con-
figuration (right) in concrete syntax.

alarm
system

body comfort
system

human machine
interface

automatic
power window

manual power
window require

central locking
system

power
window

automatic
locking

remote
control key

status LED

security

exclude

LED central
locking system

LED power
window

LED alarm
system

LED exterior
mirror

require require

require

alarm
system

body comfort
system

human machine
interface

automatic
power window require

central locking
system

power
window

automatic
locking

status LED

security

LED central
locking system

LED alarm
system

mandatory optional alternative or

Figure 1: A feature model and a valid product configuration in concrete syntax.

A body comfort system consists of the mandatory features human machine interface and power
window and an optional feature security. The feature model also defines cross-tree dependencies,
e.g, the remote control key feature requires a central locking system and a manual power window
excludes the automatic locking feature. A feature model can be transformed to a set of conditions
in propositional logic over the features [CW07]. A valid product configuration is a set of features
that fulfills all conditions, or, in terms of the concrete syntax used in Fig. 1, a valid subtree that
satisfies all cross-tree dependencies.

As our graph transformation language Story Driven Modelling (SDM) [F+00] operates on
typed graphs (models) in abstract syntax, we need to represent feature models as graphs typed
according to a type graph (metamodel). In the following and in the rest of the paper, we shall use
the terms model and metamodel instead of typed graph and type graph, respectively. Our tool
eMoflon1 supports Ecore/EMF [ALPS11] and Fig. 2 depicts our metamodel for feature models
which is of course neither unique nor optimal, but has proven to be suitable for our needs.

Testing every valid product configuration of the BCS SPL individually is already quite chal-
lenging as this would involve testing 152 products. For real-world SPLs that are typically larger2,
individual product configuration testing is no longer feasible. The solution provided by the
MoSo-PoLiTe framework is to determine a representative subset of valid product configurations
PCUT ⊆ FM(F)3 according to a combinatorial criterion on FM(F) [OMR10]. For our running

1 www.moflon.org
2 Up to 270 features according to www.splot-research.org
3 UT stands for “Under Test”

3 / 14 Volume 47 (2012)

www.splot-research.org

Optimizing Model-Based Software Product Line Testing with Graph Transformations

example we could, for example, require that PCUT comprise all valid pairwise combinations
of features. For a small subset of the BCS feature model consisting of the three features secu-
rity, central locking system and remote control key, all valid pairwise combinations would be:
(security, central locking system), (security, ¬central locking system), (¬security, ¬central lock-
ing system), (security, remote control key), (security, ¬remote control key), (¬security, ¬remote
control key), (central locking system, remote control key), (central locking system, ¬remote con-
trol key) and (¬central locking system, ¬remote control key), where ¬f means the feature f is
not part of the product. All invalid pairwise combinations would be: (¬security, central locking
system), (¬security, remote control key) and (¬central locking system, remote control key).
Ecore Diagram FeatureModelLanguage

Constraint

Exclude

Require

Mandatory Optional

Feature

- id :EString

SingleDependency GroupDependency

OrAlternativ e

Dependency

- name :EString

FeatureModel

+target

1

+requireFrom

*

+childrenDependency

0..*

+parentFeature

1

+features

*

+excludes*

+source

1

+require

*

+parentDependency

1

0..1

+childFeature

1..*

+constraints

0..*

+fm

1

+root 1

1

0..1

+childFeature

1

Figure 2: A metamodel for feature models

Using graph transformations to implement the necessary steps is advantageous as feature mod-
els typically have numerous cross-tree dependencies and are, thus, complex graph-like struc-
tures. We argue and show with our case-study that graph transformations provide a declarative,
high-level means of manipulating such structures and increase not only productivity (via rapid
prototyping) but also readability and hence maintainability of the system.

3 MoSo-PoLiTe

The MoSo-PoLiTe framework for SPL testing combines combinatorial testing with model-based
testing methods and applies this to SPL feature models [OMR10]. In the following, we concen-
trate on the subtask of determining a representative subset of valid product configurations ac-
cording to a combinatorial criterion (e.g. pairwise). For a complete overview of MoSo-PoLiTe,
especially of the aspects related to model-based testing, we refer to [OMR10, OZML11]. Fig-
ure 3 gives a schematic representation of the most important steps involved in the subset selection
process.

Proc. GTVMT 2012 4 / 14

ECEASST

security automatic
locking

body comfort
system

body comfort
system

Flattening
Transformation

alarm
system

central locking
system

remote
control key

alarm
systemrequire

central locking
system

automatic
locking

remote
control key

security

security automatic
locking

body comfort
system

alarm
system

central locking
system

remote
control key

Optimization

Solver

List of
Pairs

Product
Configurations

Metamodel for feature model

conforms to

conforms to

conforms to

BCS feature
model

(subsystem)

Flattened feature model (CSP)

Flattened feature model with
redundant constraints (CSP)

central lock.

system
security

remote

control key
security

automatic

locking

alarm

system

remote

control key

security

security

security

remote

control key

automatic

locking

central lock.

system

automatic

locking

alarm

system

central lock.

system

security

in-place model
transformation

(SDM)
for flattening

in-place model
transformation

(SDM)
for optimization

1 2

1

2

Constraints

C2

R1

R2

C1

3

Ecore Diagram FeatureModelLanguage

Constraint

Exclude

Require

Mandatory Optional

Feature

- id :EString

SingleDependency GroupDependency

OrAlternativ e

Dependency

- name :EString

FeatureModel

+target

1

+requireFrom

*

+childrenDependency

0..*

+parentFeature

1

+features

*

+excludes*

+source

1

+require

*

+parentDependency

1

0..1

+childFeature

1..*

+constraints

0..*

+fm

1

+root 1

1

0..1

+childFeature

1

Figure 3: The MoSo-PoLiTe Framework

(1) Flattening Transformation: The BCS feature model is transformed in a first step to
a Constraint Satisfaction Problem (CSP = (P,V,C)), which consists of a set P of parameters,
a set V of values, and a set C of constraints. Constraints c ∈ C are of the form < p,R >
where p = (p1, p2, . . . , pn) is an n-tuple of parameters and R is an n-ary relation on V . A valid
product configuration PC is defined by a mapping v : P→ V that fulfills all constraints (i.e., for
c =< (p1, p2, . . . , pn),R >, (v(p1),v(p2), . . . ,v(pn)) ∈ R holds).

As SDMs work in-place4, they are especially suitable for endogenous5 model transformations
and we exploit this by interpreting a flattened form of the feature model as a CSP. Via a series of
transformations rules, a feature model can be flattened (Fig. 3::16) until it consists of a root and
two layers: the first layer represents the parameters of the CSP, while the leaves are the possible

4 The input model is transformed destructively into the output model.
5 Transformation between instances of the same metamodel.
6 We use Fig. n::m to refer to the annotation m in Figure n.

5 / 14 Volume 47 (2012)

Optimizing Model-Based Software Product Line Testing with Graph Transformations

values of the corresponding parameters. The constraints of the CSP correspond to the cross-tree
dependencies of the flattened feature model. Resulting parameters and values are shown for a
small subset of the BCS feature model in Figure 4.

security

body comfort
system

body comfort
system

¬security

p_security

Flattening
Transformation

central
locking
system

remote
control key

p_central
locking
system

¬central
locking
system

p_remote
control key

¬remote
control key

require
central locking

system

remote
control key

security

BCS feature model (subsystem) Flattened feature model (CSP)

Parameter Layer

Value Layer

Cross-Tree
Dependencies

Figure 4: Parameter and Value Layer for a BCS-Subset

Figure 5 depicts an excerpt of one of the 16 rules used for flattening. In the SDM notation,
the left-hand side and right-hand side of a transformation rule r = (L,R) are merged together in
a single specification. When the rule is applied to a match in a model, the elements in R\L and
L\R are created (denoted by the stereotype create) and deleted (destroy), respectively. All
other elements (L∩R) are retained and do not have a stereotype7. SDMs also have an imperative
part for specifying basic control flow, i.e., the order in which rules should be applied. This is
however synonymous to an action language with the usual imperative concepts (if/else, forEach)
and we shall focus more on the declarative model transformation rules.

ESDM Diagram rule child-optional

parentDependency: Dependency

parent: Feature

<<create>>

newOptDependency: Optional

grandParent: Feature

<<destroy>>

childDependencyOpt: Optionalchild: Feature

+childrenDependency

+parentFeature

+parentDependency
+childrenDependency

<<create>>

+parentFeature

<<create>>

+childFeature

<<create>>

+parentDependency

+childrenDependency

<<destroy>>

+parentFeature

<<destroy>>

+childFeature

<<destroy>>

+parentDependency

Figure 5: A transformation rule used for flattening the feature model.

7 This is also depicted using colours: black (retain), green (create), red (delete).

Proc. GTVMT 2012 6 / 14

ECEASST

In our opinion, the SDM specification consisting of flattening rules such as Fig. 5 is quite
clear and concise, and is ideal for implementing the required transformation. The rule depicted
in Fig. 5 matches a feature parent that has an optional child-feature child and flattens this
part of the feature tree by deleting the parent-child connection and pulling up child by
creating an optional dependency to grandParent, the parent feature of parent.

We refer to [Ost11] for a complete list of rules and the proof that the flattening transformation
is indeed semantic preserving (i.e., the equivalent of the feature model in first order logic is
retained).

(2) Optimization: In an optimization step (Fig. 3::2), the flattened feature model can be
annotated with extra information to improve the performance of the CSP solver. In our case,
optimization rules also implemented with SDMs (discussed in detail in Sec. 4) basically add
redundant constraints to the CSP that help the solver to avoid getting caught in a deadlock (partial
configuration that cannot be completed to become a valid configuration) and having to backtrack.

(3) Solver: In a final step, the optimized CSP is solved, i.e., product configurations that fulfill
all constraints are determined until all valid pairwise combinations of features have been covered.
For the scope of this paper, the solver is treated as a well-tested black-box that should not be
changed (Fig. 3::3).

The CSP solver applies the following strategy: (i) a list of all pairwise combinations of fea-
tures are derived from the flattened feature model, (ii) an initial pair is chosen according to a
greedy component8 and the solver attempts to extend it to a product configuration that fulfills
all constraints in the CSP, backtracking if necessary. If this fails then the initial pair was invalid
and is removed from the list of pairs to be covered. If this was successful, all other pairs that are
contained in the determined product configuration are marked as covered, (iii) this is repeated
until all pairs are covered.

The basic backtracking approach in step (ii) is complemented with a forward check9 that re-
duces the search space whenever a new parameter value is chosen by removing all parameter
values that contradict the current choice. As we shall present in the following section, this al-
ready quite effective forward checking technique can be further augmented by adding redundant
constraints (cross-tree dependencies) to the CSP.

4 Optimization Strategies

The basic idea of our optimization strategies is to annotate the flattened feature tree (the CSP)
by adding redundant constraints. The goal of this optimization is to (1) help filter out pairs of
features that are invalid, and (2) further improve the forward check of the solver so that wrong
decisions and consequent backtracking can be avoided. The following subsections present three
optimization strategies, implemented as graph transformations, with short proofs that the seman-
tic preservation of the entire flattening transformation is retained:

(1) Transitive Closure for Requirements: The first and most intuitive rule involves building
the transitive closure of all requirement constraints. As depicted in Fig. 6, a chain of two require-
ments induces a direct transitive requirement, which is created if it doesn’t exist already. These

8 Based on weights determined by the frequency of pairs.
9 We use the term forward check to indicate a look-ahead of one step.

7 / 14 Volume 47 (2012)

Optimizing Model-Based Software Product Line Testing with Graph Transformations

redundant requirement constraints simplify other rules, which can now assume the transitive clo-
sure, i.e., ∀val1,val2,val3 : (val1 requires val2)∧ (val2 requires val3)⇒ (val1 requires val3).

To show semantic preservation, the corresponding subtree with the extra transitive requirement
can be transformed into a set of expressions in first-order logic, which can be reformulated until
it is equivalent to the set of expressions of the subtree without the extra requirement. This is
trivial for transitive require constraints.

(2) Derived Excludes: The second optimization rule concerns deriving extra exclude con-
straints. As depicted in Fig. 7, if a certain value valq of a parameter q requires a value valp1 of
a further parameter p, an exclude constraint between valq and another value valp2 of p can be
derived if p 6= q∧ valq 6= valp1 6= valp2 and the exclude constraint does not already exist, i.e. the
parameter p can only be assigned one of its possible values, and valq restrains the choice to valp1
excluding all other options for p.

Please note that our transformation engine implicitly enforces injective matches, i.e., no two
object variables in the pattern can be mapped to the same model element. This means we do
not have to explicitly demand p 6= q∧ valq 6= valp1 6= valp2 in the pattern. Also note how NACs
(Negative Application Conditions) are depicted as negative elements that are cancelled such as
noRequire in Fig. 6 and noExclude in Fig. 7.
ESDM Diagram rule1 Story Diagram

val1: Feature

val2: Feature

val3: Feature

require1:

Require

require2:

Require

noRequire:

Require

<<create>>

newTransitivRequire:

Require

+requireFrom

+target

+require
+source

+requireFrom

+target

+require

<<create>>

+source

+require
+source

+requireFrom +target

+require

+source

+requireFrom

<<create>>

+target

Figure 6: Transitive requires

ESDM Diagram rule3 Story Diagram

requires:

Require

val_q: Feature

noExclude:

Exclude

val_p2: Featureval_p1: Feature

paramater_p:

Alternative

<<create>>
newExclude:

Exclude

+excludes

<<create>>

+features

+excludes

<<create>>

+features

+requireFrom

+target

+require

+source

+excludes

+features

+excludes

+features

+childFeature

+parentDependency

Figure 7: Derived excludes

As in the case of building the transitive closure for requirements, deriving excludes according
to Fig. 7 is also semantic preserving (⊕ represents an exclusive or):

(valq requires valp1)∧ (valq excludes valp2)∧ (valp1⊕ valp2) (1)

⇔ (valq⇒ valp1)∧ (¬valq∨¬valp2)∧ ((valp1∧¬valp2)∨ (¬valp1∧ valp2)) (2)

⇔ (¬valq∨ valp1)∧ (¬valq∨¬valp2)∧ (valp1∨ valp2)∧ (¬valp1∨¬valp2) (3)

⇔ (¬valq∧¬valp1∧ valp2)∨ (¬valq∧ valp1∧¬valp2)∨ (valp1∧¬valp2) (4)

⇔ (¬valq∨ valp1) ∧ (¬valp1∨¬valp2)∧ (valp1∨ valp2) (5)

⇔ (valq requires valp1) ∧ (valp1⊕ valp2) (6)

Proc. GTVMT 2012 8 / 14

ECEASST

(3) Propagated Excludes: A further rule depicted in Fig. 8 also adds redundant excludes.
If a value val1 requires another value val2 which excludes a further value val3, then val1 also
excludes val3. This rule is also semantic preserving as shown in the following:

(val1 requires val2)∧ (val2 excludes val3)∧ (val1 excludes val3) (7)

⇔ (¬val1∨ val2)∧ (¬val2∨¬val3)∧ (¬val1∨¬val3) (8)

⇔ (¬val1∧¬val2)∨ (¬val1∧¬val3)∨ (val2∧¬val3) (9)

⇔ (¬val1∨ val2)∧ (¬val2∨¬val3) (10)

⇔ (val1 requires val2)∧ (val2 excludes val3) (11)

After deriving the initial CSP via the flattening transformation, the rules (1), (2) and (3) are ap-
plied repeatedly in sequence until the total number of constraints of the CSP no longer increases.

ESDM Diagram rule2 Story Diagram

val1: Feature

val2: Feature

val3: Feature

requires:

Require

excludes:

Exclude

noExclude:

Exclude

<<create>>
newExclude:

Exclude

+excludes

<<create>>

+features

+excludes

<<create>>

+features

+excludes +features

+excludes

+features

+excludes

+features

+excludes
+features

+requireFrom

+target

+require+source

Figure 8: Transformation for propagating exclude constraints.

5 Evaluation

To evaluate our optimization, a series of measurements were performed on a standard PC with a
2.93 GHz Intel Core2 Duo CPU and 4 GB RAM. The underlying operating system and virtual
machine was Windows XP Professional SP3 and Java 1.7, respectively, and the amount of time
the CPU spent performing actions for the tests, i.e., user time, was measured. For all tests, a
feature model generator was implemented that can generate random feature models of a specified
size and with a given number of cross-tree dependencies. Figure 9 presents our results10 in 4
plots, which are explained in detail in the following.

Each test was repeated 10 times and measurements were averaged to compensate for fluctu-
ations and improve accuracy. Furthermore, 10 different sets of randomly generated cross-tree
10 A workspace with our implementation and all tests can be downloaded from www.moflon.org.

9 / 14 Volume 47 (2012)

www.moflon.org

Optimizing Model-Based Software Product Line Testing with Graph Transformations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0% 20% 40% 60% 80% 100%

R
u
n
ti
m

e
 (

m
s
)

% Require From a Total of 40 Initial Cross-Tree Dependencies

without optimization

with optimization

with optimization and time for executing optimization rules

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70

R
u
n
ti
m

e
 (

m
s
)

Initial Cross-Tree Dependencies

without optimization

with optimization

with optimization and time for executing optimization rules

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70

#
 P

ro
d
u
c
t

C
o
n
fi
g
u
ra

ti
o
n
s

Initial Cross-Tree Dependencies

without optimization

with optimization

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70

#
 D

e
te

c
te

d
 I

n
v
a
lid

 P
a
ir
s

Initial Cross-Tree Dependencies

without optimization

with optimization
d

ba

c

Figure 9: Effects of optimization strategies.

dependencies were used. All results are depicted with a 95% confidence interval in each data
point showing that concrete values may vary, but our results are not dependent on a specific
choice of constraints.

Although we were able to verify our results for feature models consisting of up to about 700
features with 10% initial cross-tree dependencies, we chose to use a feature model with 319
features to present our evaluation. This ensures that results can be compared to real feature
models available from www.splot-research.org, which range in size from about 9 to 290. With
feature models consisting of thousands of features our optimization becomes a bottleneck in
some cases and an appropriate strategy to restrain the rules as required is left to future work.

Plot (a): The runtime (y-axis) of the whole process is shown for a varying number of initial
cross-tree dependencies (x-axis) ranging from 0 to 70. The performance of the process with-
out our optimization (blue dotted line) is compared with the performance on the optimized CSP
(magenta dashed line) and with the total time (yellow solid line), which includes the time for
executing the optimization rules as well. Please note that 0 initial cross-tree dependencies means
that the feature model was used without initial cross-tree dependencies. As the flattening trans-
formation, however, always introduces extra dependencies to preserve semantics, the resulting
CSP, even for 0 initial cross-tree dependencies, still contains a considerable number of con-
straints derived from the tree structure of the feature model and from the flattening process. This
explains why there is a fairly constant 15% reduction in runtime across the x-axis.

As expected, the runtime for all cases increases steadily with the number of initial cross-
tree dependencies. These results show that our optimizations indeed improve performance and
that the actual time required to execute the optimization rules is negligible compared to the
improvement.

Proc. GTVMT 2012 10 / 14

www.splot-research.org

ECEASST

Plot (b): For the same configuration, the sets of generated product configurations are plotted
(y-axis) for the same x-axis as in Plot (a). Our optimization clearly leads to a 15–20% reduction
of the generated sets. This result is even more important than a reduction in runtime, as this is
the actual goal of the whole process.

Plot (c): The reason for the reduction in size of the generated sets of product configurations
lies in the improved detection of invalid pairs before the CSP is solved. We obtain best results by
filtering as many invalid pairs as possible using simple heuristics, which become more effective
with the redundant constraints introduced by the optimization. The number of invalid pairs that
could not be filtered and are later detected by the solver is plotted for the same x-axis as in Plot
(a) and Plot (b) showing a 10% reduction. Less invalid pairs improves the greedy component11

of the CSP solver as the used weights become more accurate, leading to a reduction in size of
the set of product configurations (Plot (b)).

Plot (d): Using the same feature model but with a constant number of 40 initial cross-tree
dependencies, runtime (y-axis) is plotted for a varying ratio of require constraints to exclude
constraints (x-axis). As two of our three optimization rules involve exclude constraints, the
reduction in runtime is higher for a larger number of exclude constraints (0% initial cross-tree
require dependencies) and reduces slightly as more exclude are replaced with require constraints
(100% initial cross-tree require dependencies). This is confirmed by our measurement results.

6 Related Work

We classify related work into two groups: alternative approaches to SPL testing in general, and
approaches that are similar to ours, but differ in how feature models are transformed to a CSP.

Alternative approaches to SPL testing: Approaches to SPL testing can be further cate-
gorized into three subgroups: contra-SPL philosophy, reuse techniques, and subset heuristics.
Contra-SPL philosophy approaches ignore the inherent reuse in SPLs and are only appropriate
for small SPLs [Sch07]. Reuse techniques aim to reduce the testing effort for SPLs by reusing
test artifacts (e.g., test cases and data) across products of an SPL. This is achieved by incremen-
tally testing products via regression testing techniques or by appropriately adapting domain tests
during product testing. Incremental SPL testing, as introduced in [Eng10], faces the challenges of
identifying a suitable product to start the process with and identifying what needs to be re-tested.
Approaches that adapt domain tests often employ model-based testing techniques for SPLs as
models can provide suitable mechanisms to describe variable test-relevant behaviour. We re-
fer to [OWES10] for an extensive comparison of model-based testing techniques. Approaches
that use subset heuristics aim at generating a representative subset of products according to a
coverage criterium such as combinatorial testing [OMR10, POS+11], or requirements coverage
[Sch07]. Although SAT solvers can also be used to solve the basic problem of identifying a
subset of products that satisfies a set of combinatorial constraints on features [POS+11], feature
models mainly employ binary constraints over parameters with non-binary domains for which
CSP solvers seem to be a natural choice [Ben04]. We have furthermore compared our concrete
implementation with a SAT approach and our solution proved to be superior in terms of efficiency
and the size of determined subsets [POS+11].

11 This determines which initial pair of features is used to start every new product configuration.

11 / 14 Volume 47 (2012)

Optimizing Model-Based Software Product Line Testing with Graph Transformations

Alternative feature model to CSP transformation: The authors of [WDS09] perform a
cartesian flattening to transform feature models into a knappsack problem which is solved and
used to generate representative subsets of products of the SPL. A major difference to our flatten-
ing approach is that they choose to prohibit an exponential explosion of all possible feature com-
binations via the transformation but lose semantic equivalence in the process. As an example,
cardinality/or groups are translated into XOR/alternative groups of a bounded size [WDS09].
We prefer to retain semantic equivalence between the original and the flattened feature model
and control the number of combinations via a coverage criterium that can range from pairwise
to n-wise as required. The flattening transformation is, in general, not unique and we also differ
from [WDS09] in the treatment of alternative groups beneath an alternative parent as depicted
in Fig. 10 for an abstract example taken from [WDS09].

K

N O

L

G G

K L N O ¬L

G

K LN LO

Cartesian Flattening MoSo-PoLiTe Flattening

Figure 10: Flattening approaches for an alternative parent with alternative children [POS+11]

In the cartesian flattening approach, the features N and O are merged with its parent feature L. If,
however, another feature X requires L, this binary constraint must be translated into X requires
(L,N xor L,O) which is a non-binary constraint. For this reason we use a different flattening
strategy as depicted in Fig. 10 that results in only binary constraints, which are handled better by
our subset extraction algorithm.

7 Conclusion

In this paper we presented a novel case study for graph transformations in the domain of SPL test-
ing. We have successfully employed SDMs not only for the involved flattening transformation
that transforms a feature model into a CSP, but also for an optimization process that adds redun-
dant constraints to improve the performance of our unchanged CSP solver. Our results show that
the optimization leads to a reduction in runtime and to an increase in quality (reduction in size)
of the generated sets of product configurations for pairwise testing. This novel case study for
the graph transformation community showcases the advantages of using graph transformations
including improved readability and maintainability of the transformation and optimization rules,
and the possibility of rapid prototyping further optimization rules.

As future work we plan to re-engineer the CSP solver using graph transformations. This
should not only improve the maintainability of the complete system but should also support the
investigation of further optimization rules that involve the current product configuration and must
be employed during the CSP resolution process by the solver. This would effectively extend the
current forward check to a larger look-ahead. It is, however, unclear if this will further improve
performance. A performance comparison with the current hand-written Java implementation
is also quite interesting and should indicate the tradeoff in efficiency, if any, of using graph
transformations.

Proc. GTVMT 2012 12 / 14

ECEASST

Last but not least, we shall continue scalability measurements on larger feature models. The
cost of performing the optimization rules increases for large feature models (thousands of fea-
tures) and leads to a bottleneck as a very large number of constraints is obtained in some cases.
Depending on the number of features, an appropriate handling must be implemented to decide
how to restrain the optimization rules.

Bibliography

[ALPS11] A. Anjorin, M. Lauder, S. Patzina, A. Schürr. eMoflon: Leveraging EMF and
Professional CASE Tools. In 3. Workshop Methodische Entwicklung von Model-
lierungswerkzeugen (MEMWe2011). LNI. GI, Bonn, 2011.

[Ben04] H. Bennaceur. A Comparison between SAT and CSP Techniques. Constraints
9(2):123–138, 2004.

[CHE05] K. Czarnecki, S. Helsen, U. Eisenecker. Staged Configuration Through Specializa-
tion and Multilevel Configuration of Feature Models. Software Process: Improve-
ment and Practice 10(2):143–169, 2005.

[CN01] P. Clements, L. Northrop. Software product lines: practices and patterns. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[CW07] K. Czarnecki, A. Wasowski. Feature Diagrams and Logics: There and Back Again.
In Proc. of the 11th Int. Conf. on Software Product Lines. Pp. 23–34. IEEE Computer
Society, 2007.

[Eng10] E. Engström. Regression Test Selection and Product Line System Testing. In Proc.
of the Third Int. Conf. on Software Testing, Verification and Validation. Pp. 512–515.
IEEE Computer Society, Washington, DC, USA, 2010.

[F+00] T. Fischer et al. Story Diagrams: A New Graph Rewrite Language Based on the
Unified Modeling Language and Java. In TAGT ’98 Selected Papers. LNCS 1764,
pp. 296–309. Springer, 2000.

[KBK11] C. H. P. Kim, D. S. Batory, S. Khurshid. Reducing Combinatorics in Testing Product
Lines. In Proc. of the 10th Int. Conf. on Aspect-Oriented Software Development.
Pp. 57–68. ACM, 2011.

[KCH+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical report, Carnegie-Mellon
University Software Engineering Institute, 1990.

[LOGS11] M. Lochau, S. Oster, U. Goltz, A. Schürr. Model-based Pairwise Testing for Feature
Interaction Coverage in Software Product Line Engineering. SQJ - Special issue on
Quality Engineering for SPLs, 2011.

13 / 14 Volume 47 (2012)

Optimizing Model-Based Software Product Line Testing with Graph Transformations

[McG01] J. D. McGregor. Testing a Software Product Line. Technical report CMU/SEI-2001-
TR-022, 2001.

[OMR10] S. Oster, F. Markert, P. Ritter. Automated Incremental Pairwise Testing of Software
Product Lines. In Proc. of the 14th Int. Software Product Line Conf. Pp. 196–210.
2010.

[Ost11] S. Oster. A Semantic Preserving Feature Model to CSP Transformation. Technical
report 11, Technische Universität Braunschweig, 2011.

[OWES10] S. Oster, A. Wübbeke, G. Engels, A. Schürr. Model-Based Software Product Lines
Testing Survey. In Zander et al. (eds.), Model-based Testing for Embedded Systems.
CRC Press/Taylor&Francis, 2010. to appear.

[OZML11] S. Oster, I. Zorcic, F. Markert, M. Lochau. MoSo-PoLiTe - Tool Support for Pair-
wise and Model-Based Software Product Line Testing. In Czarnecki and Eisenecker
(eds.), 5th Int. Workshop on Variability Modelling of Software-Intensive Systems.
Pp. 79–82. ACM Press, New York, 2011.

[PBL05] K. Pohl, G. Böckle, F. J. v. d. Linden. Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer-Verlag New York, Inc., USA, 2005.

[POS+11] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, Y. Traon. Pairwise Testing for
Software Product Lines: Comparison of Two Approaches. SQJ - Special issue on
Quality Engineering for SPLs, 2011.

[Sch07] K. Scheidemann. Verifying Families of System Configurations. PhD Thesis, TU
Munich 2007.

[WDS09] J. White, B. Dougherty, D. C. Schmidt. Selecting Highly Optimal Architectural
Feature Sets with Filtered Cartesian Flattening. Journal of Systems and Software
82(8):1268–1284, 2009.

Proc. GTVMT 2012 14 / 14

	Introduction
	Fundamentals
	MoSo-PoLiTe
	Optimization Strategies
	Evaluation
	Related Work
	Conclusion

