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Amir Hossein Ghamarian and Arend Rensink

Department of Computer Science, Universiteit Twente
{a.h.ghamarian, rensink } @cs.utwente.nl

Abstract: Graph transformation works under the whole world assumption. There-
fore, in realistic systems, both the individual graphs and the set of all such graphs
can grow very large. In reactive formalisms such as process algebra, on the other
hand, each system is split into smaller components which continually interact; the
interactions pass information such as names or locations between components. The
state spaces for the separate components are typically much smaller, and much effi-
ciency can be gained by analysing system behaviour on this level.

In this paper we present a framework for compositional graph transformation in-
spired by name-passing calculi, in which (knowledge about) subgraphs can be passed
between components. Essentially, we define graph-passing (reactive) component
rules and their composition into traditional (reductive) whole-world rules. This ex-
tends previous work in which a simpler form of composition was proposed. The
main result is a soundness and completeness result for the composition, showing that
the transformations induced by the component rules and their whole-world counter-
parts are equivalent.

Keywords: Graph transformation, Compositionality, Soundness and completeness

1 Introduction

Graph transformation has shown to be an expressive and powerful formalism for modelling many
kinds of systems, ranging from physical systems to network protocols. The direct correspon-
dence between the formalism and its visualization makes it appealing and intuitive. However,
one major drawback of graph transformation systems is that they require the whole system to be
modelled by a single component. This "whole-world" view is the consequence of graph trans-
formation’s reductive semantics, which involves finding rule matches in the current model (host
graph) and making local changes without any interaction with the external world. In contrast,
reactive formalisms such as process algebra enjoy compositionality: submodels can be analyzed
individually and produce partial results, which can then be composed to produce the final result.

1.1 Problem statement.

Fig. 1 is a typical process algebraic view: it depicts schematically how a global system is com-
posed from a number of local components (C; and C;), which communicate with each other over
shared channels (A; and Ay), and also communicate with the outside world, either in multi-party
communication by exposing their shared channel Ay, or via private channels A; and A, unknown
to the other component.
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Note that there are actually two separate notions involved: firstly, components communicate,
or synchronise, over a set of shared entities (channels in the case of process algebra, subgraphs in
the case of graph transformation); secondly, entities have a limited scope and can be hidden from
other components or from the environment. In process algebra, the first is covered by parallel
composition and the second by hiding.

In the setting of graph transformation, components are specified by rule systems in combina-
tion with a start graph. In particular, we would have a rule system describing the global system of
Fig. 1; the transformations and ensuing graphs describe the dynamic global behaviour of the sys-
tem. This behaviour is captured by recursively applying enabled rules on the host graph, which
leads to a labelled transitions system (LTS) with transformation rules as its labels. Consequently,
this LTS lends itself to all the classic analysis techniques enabled on the labelled transition sys-
tems [MPWO92].

We now ask ourselves the following question:

Given a decomposition of the global start graph G into start graphs G; (i = 1,2), can we
construct rule systems for Cy,C, whose behaviour when applied to the graphs G; is the same as
the global behaviour?

The decomposed local graph transformation systems have smaller LTS’s resulting in cheaper
analysis cost. Analysis can be carried out on these smaller state spaces and then lifted to the
global level, thus partially avoiding the state space explosion common to monolithic models of
realistic systems.

Furthermore, the decomposition should allow flexible communication between the compo-
nents; in particular, we want to pass information in the form of subgraphs between components.

In a previous paper [Renl10], we proposed an initial approach for rule and graph composition,
based on common subrules. In this approach, common nodes can only be created and deleted
from components simultaneously; in other words, graph passing is not supported. Moreover, we
investigated individual rules only and did not yet consider the rule system level.

In this paper, we extend the previous results in two ways. Firstly, we add a synchronisation
interface that explicitly declares the degree of sharing between local rules, but does not prescribe
whether nodes are created, deleted or passed from one component to the other. Secondly, we
define behaviour-preserving (de)composition on the level of rule systems.

As

Ay A
C C
1 i 2

System

Environment

Figure 1: Composition schema: the A; are shared between C; and the environment,
Ay is shared by all three, and Ay, is shared between C and C, only.
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1.2 Approach

At the core of the approach, we compare the transitions of individual components, G| £ H,
and G, £2» H, where G; and H; are graphs and p;, p transformation rules, to global transitions
G UG, £ H and show the conditions under which the following properties hold.

Soundness. Compatible local transitions always give rise to global transitions: G| £% H; and
G, 225 H, imply G1 UG, 2922, H| U H,.

Completeness. All global transitions can be obtained by composing compatible local transi-
tions: Gy UGy £, H implies that there are rules p; and p, such that G; £ H; and
Gy 22y Hy and H = H|UH,.

When decomposing a rule system, the split of the host graph is not precisely known, as this
may develop during previous rule applications. For that reason, the decomposition must take all
possible splits into account. Unfortunately, this gives rise to a very large number of decomposed
rules, threatening to make the method infeasible. For that reason, we also study a special scenario
where components are specified by partial graphs [SE76]. In this scenario, every node can be
owned by at most one component; other components can only know the node. This severely
limits the number of possible splits.

It should be noted that, although we rely on the algebraic style of transformation, the results
of this paper are not put into a categorical framework: instead, we use a concrete graph repre-
sentation and rely on node identities to identify the common parts of graphs.

1.3 Motivating example

We illustrate the results on a simple example of a production chain. The whole-world, global
rule system is given in Fig. 2. As always, the intuitive meaning of the rules is that a match
is found for the left hand side (LHS), which is then replaced by the right hand side (RHS). The
production chain consists of connected machines denoted by (m}™%m]. The start machine creates
some preliminary product denoted by [P] (start rule, Fig. 2a), and transfers it to the next machine
(transfer rule, Fig. 2¢). The next machine similarly works on the product (work rule, Fig. 2b) and
passes it on to the next machine. Finally the last machine hands the final product to the client
(denoted by (C)), if there is still a demanding client (deal rule, Fig. 2d). A sample start graph
is given in Fig. 2e. Note that the same rule system potentially applies to different production
chain systems with different configurations. For example, a system can have different number of
machines in the production lane or even multiple parallel production lanes.

In Fig. 3a, we split our start graph into four subgraphs where each graph models the behaviour
of a single machine. We also add some context information to be able to glue the subgraphs
together (the right machine in each subgraph). Consequently, the effect of the rules given in
Fig. 2 has to be divided over the split graphs. For example, the transfer rule should transfer the
product from one subgraph to another. Therefore, we need to adapt our rule systems as well. For
example, one way to decompose the transfer rule is shown in Fig. 3b: the top and bottom show
split rules, and the middle shows the additional synchronisation interface as a subset of the union
of the left and right hand side graphs.
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LHS
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(a) Start rule (b) Work rule (c) Transfer rule
LHS RHS
ha has Start Graph G
T =] ]
demanding idle Start Final demanding
(d) Deal rule (e) Start graph

Figure 2: Running example: A simple production chain

The decomposition of the entire rule system of Fig. 2 will result in new rule systems for each
of the components (defined by the split graphs). For example, each machine may have dedicated
rules to reflect the different ways in which each of them perform their task. Moreover, only the
rule system of the first component should contain the start rule, and similarly, the deal rule only
needs to be included in the grammar of the last component. The resulting local rule systems can
then be analyzed separately and their results can be composed.

Roadmap. The structure of the paper is as follows: Sect. 2 introduces the basic definitions;
subsequently, Sect. 3 defines the composition of graphs, rules and transformations. Furthermore,
it shows the soundness and completeness properties of the composition of transformations. In
Sect. 4, we study partial graphs and show that they improve the size of the decomposed rule
systems. Sect. 5 concludes the paper with an overview of related work and open questions. Due
to space limitations proofs are omitted and can be found in [GR12].

LHS (transfer-1) Union (transfer-1) RHS (transfer-1)
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LHS (transfer-2) Union (transfer-2) RHS (transfer-2)

G3

next M
Final
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(a) Split start graph (b) Split transfer rule
Figure 3: split start graph and split transfer rule
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2 Basic definitions

Throughout this paper we assume global (countable) disjoint universes N of nodes, E of edges,
and L of labels, with (also globally defined) functions src,tgt: E— N and lab: E— L. In partic-
ular, for every combination of v,w € N and a € L, there are assumed to be countably many e € E
such that src(e) = v, tgt(e) = w and lab(e) = a.

Furthermore, we will use structure-preserving functions over N U E, which are functions f =
fv U fg with fy: V— N for some V C N and fg: E — E for some E C E such that src(E) U
tgt(E) CV and the following equations are satisfied:

srco fg = fyosrc[E tgto fg = fyotgt[E labo fg =lab [ E

Definition 1 (graph) A graph is a finite set G C NUE, such that sre(GNE)Utgt(GNE) C G.
We often write Vi for GNN and Eg for GNE, or just V and E if the index G is clear from the
context. Given graphs G, H, a graph morphism f: G— H is a structure-preserving function such
that f(G) C H. If f is bijective we also call it an isomorphism and G and H isomorphic.

As usual, rules are essentially defined by a left hand side (LHS) and a right hand side (RHS)
graph. For the purpose of rule composition we use named rules; The names are taken from some
global set which we do not further specify. As discussed in the introduction, we also add a an
extra component, the synchronisation interface, which essentially declares which part of the rule
is exposed to the environment.

Definition 2 (rule) A graph transformation rule is a tuple p = (a,L,R,S), consisting of a name
a, a left hand side L, a right hand side R, and the synchronisation interface S C LUR.

We often denote the intersection LNR by I. A transformation rule p = (a,L,R, S) is applicable
to a graph G (often called the host graph) if there exists a match m: L — G, which is a graph
morphism satisfying the following conditions:

No dangling edges: Forall e € Eg, src(e) € m(L\1) or tgt(e) € m(L\I) implies e € m(L\I);
No delete conflicts: m(L\I)Nm(I) = 0.

The intuition is that the elements of G that are in m (L) but not in m(I) are scheduled to be deleted
by the production. If a node is deleted, then so must its incident edges, or the result would not
be a graph. Note that, due to the absence of delete conflicts, m(L\ R) = m(L\ 1) = m(L) \ m(I).

Given such a match m, the application of p to G is defined by extending m to a morphism
m': LUR— H', where H' O G and all elements of R\ L have distinct, fresh images under m’,
and defining H = (G\m(L\1))Um/(R\I). We call H the farget of the production; we write
G 2, H to denote that m C m’ is a valid match on G, giving rise to target graph H. Note that
m’ is not uniquely defined for a given p and m, due to the freedom in choosing the fresh images
for R\ I; however, it is well-defined modulo isomorphism of H. In the remainder of this paper,
we will use this freedom to make a posteriori assumptions about the actual choice of identities,
for instance that they are fresh with respect to a set of nodes elsewhere in the system.
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3 Compositionality

In the following we define graph and rule composition. Furthermore, we will show the soundness
and completeness properties for the compositionality of transformations. We also lift the notion
of decomposition to the rule system.

Definition 3 (graph and rule composition) Composition of two graphs G and H is defined as
GUH. We refer to G and H as local graphs and GUH as the global graph.

Two rules p; = (a;,L1,R;,S1) and py = (az,L,,R>,S>) are compatible iff the have the same
name (a; = ay), and S NS, = (L UR;) N (Ly UR,) and their composition, denoted by p; U pa,
is defined as the composition of their components, i.e., p; U p, = (a1,Li ULy, Ry UR,,S1US?).
We denote the composition of two rules by p; U p». We refer to the rules p; and p; as local rules
and to their composition, p; U ps, as a global rule.

Definition 4 (rule dominance) Let p; = (aj,L;,R1,S1) and pr = (ay,Ly,R2,S>) be two rules.
Then p, dominates p; iff a; = a», Ly = Ly, R| = R and §1 O S3. We denote this dominance
relation by p; > p.

Rule compatibility only imposes restrictions on the intersection of the synchronisation inter-
faces of two rules. Consequently, the following proposition is a direct implication of the rule
compatibility and rule dominance definitions.

Proposition 1  Let py, py and p)y be rules such that p), = p>. If pi and p; are compatible, then
p1 and ply are also compatible.

Two compatible local rules are applied to two local graphs, and each results in a target graph.
Now we show under which conditions the composition of two target graphs is identical to the
target graph resulted from applying the transformation of the global rule.

Definition 5 (transformation compatibility) Given two compatlble rules p1= (a,Li,Ry,S1) and
p2 = {(a,Ly,Ry,S,), we call two transformations G P‘—W» H; and G, PZ—Z» H, compatible when
the following conditions hold:

Synchronisation compatibility: m/(S; NS,) =m)(S1NS»)
Delete compatibility: L; \ Ry Nm| ' (G2) C L, and Ly \ Ry Nmb ' (G) C L.
Transfer compatibility: m'(L\R)Nm'(LiNRy) =0 and m'(L\R) Nm'(LaNR;) = 0.

The first condition says that the image of the synchronisation interfaces must be identical, i.e.,
nodes with the same identity in the local rules must have the same image in the global graph.
For example, in cases where a node is passed from one graph to another (by getting deleted
from one local graph and getting created in the other), this condition makes sure that the created
node shares the identity of the deleted one. Similarly, when the right hand sides of local rules
share a node, they both create nodes with the same identities. The second condition states that
if an element is deleted from the intersection of the two graphs by one rule, the same element
must either be deleted or explicitly matched and preserved by the other rule. Finally, the transfer
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Figure 4: Running example: composition of the transfer rule

compatibility states that the nodes that are to be deleted by the global rule must not have images
in common with the transferred nodes from one subgraph to another by applying the local rules.
Note that the last condition is automatically satisfied for injective matches.

Synchronisation interface compatibility, and Prop. 1 imply the following proposition.

Proposition 2 Let py, ps, and p)y be rules, and G, prmy, H, and G, JZELN Hy compatible
transformations. If p = p,, then Gy 25 Hy and G, 222y H, are also compatible.

We can also deduce the following proposition directly from synchronisation compatibility.

Proposition 3 Given two compatible transformations Gy 22"\ Hy and G, 222 H,, my Um
is a function from G1 U G, to H U Hs.

From now on, in cases where two transformations are synchronisation compatible, we use
m' = m) Um), for the combination of m} and m. In the remainder of this section, we show that
the composition of transformations is sound and complete.

Theorem 1 (Soundness) Let p; = {(a,Li,R1,S1) and py = (a,Ly,R,S2) be two compatible
rules. If Gy 2Y" Hy and G, 22"y H, are two compatible transformations, then there is a
global transformation Gy U G, 212P2mYImy mp (|,

The application of the split transfer rule (Fig. 3b) on G and G; (shown in Fig. 3a) is illustrated
in Fig. 4. The larger rectangles are graphs and the arrows between them are morphisms. Arrows
of the form — denote subgraph relations (monomorphisms), and arrows with the shape — rep-
resent general morphisms. Due to space limitation, some of the labels are abbreviated (refer to
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LHS (transfer-1) Union (transfer-1) RHS (transfer-1) LHS (transfer-1) Union (transfer-1) RHS (transfer-1)

Synchronisation Interface Synchronisation Interface

] ]

LHS (transfer-2) Union (transfer-2) RHS (transfer-2) LHS (transfer-2) Union (transfer-2) RHS (transfer-2)

]

(a) split transfer rule 1 (b) split transfer rule 2
Figure 5: Running example: decomposition of the transfer rule

the legend for further clarification).

The top face of the cube shows the application of transfer-1 on G; and the bottom face rep-
resents the application of transfer-2 on G,. In the middle of the cube, SI and SK are the syn-
chronisation interface and its image, respectively. S; and Sk are L1 N L, and R; N R, respectively
and S and Sy are their images. In all the morphisms in the picture, [PJs are always mapped to
each other. In cases where two [M)s exist in a graph, nodes with dotted circles around them are
mapped to each other. The application of the global transfer rule on G| U G, also results in the
union of H; and H, as illustrated in the picture.

In the following, we also show that the decomposition of a graph transformation is complete.
First we show a mechanism for decomposing rules.

Definition 6 (rule decomposition) Given a rule p = (a,L,R,S), we call two compatible rules
p1 and py a decomposition of p if pyUpy = pand V;, C VNV, for j=1,2.

The conditions on the node set of the interfaces of the rules state that local rules cannot delete
a node unless it is deleted by the global rule. In other words, if a node is preserved by the global
rule and appears on the left hand side of the local rule, it must also be preserved by the local
rule. The following proposition shows that the decomposition of a rule results in compatible
transformations.

Proposition 4 Let GiUG, =G 2" H be a transformation and p| and py a decomposition
of p such that L = m'~'(Gy) and L, = m'~'(G,). Then G| 22" H| and G, 2™ H, are
compatible transformations.

The completeness theorem directly follows from Prop. 4 and Th. 1.

Theorem 2 (completeness) G = G; UG 2 H ocan be decomposed into two compatible
transformations Gy 24y Hy and G, 222y H, such that py U ps = p, and m' = m Um), and
H=H,UH,.

Proc. GTVMT 2012 8/14
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Remember that we are ultimately interested in the behaviour of the global system, therefore
we need to mimic the global behaviour by combining the behaviour of local systems. That means
that whenever there is a global rule which is applicable on the global graph, we need to have two
local rules whose combined effect is equivalent to the global rule. Moreover, we do not know
the local host graphs in advance as they develop by local rule applications. This means that
the local host graphs are not completely known and therefore local rule systems must contain all
different possible ways of splitting the global rules. Therefore, for every rule we need to consider
all different possible ways that its left hand side can be decomposed. The following definition
specifies such a set of decomposed rules.

Definition 7 (rule split set) Let p = (a,L,R,S) be a rule. We call U, the split set of p, if for
Ly,L, such that Ly UL, = L there exist p; = (a,Li,Ry,S1) and p» = (a,L»,R>,S>) in U, such
that p; and p, are a decomposition of p.

The decomposition of a rule system comes down to finding the split set of all the global rules.
However, the number of all different splits is an exponential function of the number of nodes and
edges, as each element of the global rule can appear in the first, the second or both local rules.

Definition 8 (rule system decomposition) The decomposition of a rule system fR is a set con-
taining a U, for every rule p € ‘K.

Note that the decomposed rule systems constitutes a new rule system which on its own can be
subjected to further decompositions. This can result in decompositions with more than two local
components.

Back to our running example, two possible ways of splitting the transfer rule (Fig. 2c) are
shown in Fig. 5. Both rules have the same left hand sides and the combined effect of both of
them on G| U G is equivalent to H; U H,. Therefore, the split set of transfer rule only needs to
have one of them.

Besides, observe that there is redundancy between transfer-1 and transfer-2 of both splits. This
redundancy originates from the fact that both splits have a node in common, which is one of the
machines. This redundancy is inherent in the structure of the graph. For instance, in our running
example naturally we like to decompose our start graph in such a way that each local graph only
contains one machine. However, we needed to add the second machine to the first local graph
(Fig. 3a) because otherwise the edges between the machines would not belong to any of the local
graphs. That means that some machines needed to appear in two graphs. In the next section we
relax the definition of graphs so that, firstly, we can avoid the redundancy caused by the inherent
structure of graphs, and secondly, the decomposition of the global rules lead to considerably
fewer number of local rules.

4 Partial graphs

In this section, inspired by [SE76], we propose partial graphs as opposed to graphs for the local
components.
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Definition 9 (partial graph) A partial graph is a finite set G C NUE, such that sre(GNE) C G.
The completion of a partial graph G, denoted by G, is GUtgt(GNE). Given partial graphs G, H,
a partial graph morphism f: G — H is a structure-preserving function such that f(G) C H.

Similar to graphs, we often write Vi for GNN and Eg for GNE, or just V and E if the index
G is clear from the context. Note that a partial graph can contain an edge which is dangling from
its target side. Therefore, any graph is also a partial graph. We refer to the missing target nodes
of the dangling edges of a partial graph as its virfual nodes. The virtual nodes of a partial graph
are included in its completion, which implies that the completion of a partial graph is a graph.
Note that the partial graph morphism is defined exactly similar to graph morphisms.

In line with the intuition behind proposing partial graphs to avoid redundancy between the
local components we define the following definition.

Definition 10 (disjoint partial graphs) Two partial graphs G and G, are disjoint if they have
no node in common, i.e., Vg, NVg, = 0.

Note that as edges cannot be dangling from their source sides, therefore two disjoint graphs
do not have any edge in common.

In the following we give the definition of a partial rule, and partial rule applicability. Further-
more, we also discuss the applicability conditions of partial rules.

Definition 11 (partial rule) A partial rule is a tuple p = (a,L,R,S) where a is its name and L
and R are partial graphs, and S C (LUR) is a graph.

Let p = (a,L,R,S) be a partial rule and G a partial graph. Then p is applicable to G if there
exists a match m: L — G satisfying the following conditions

No dangling edges: For all e € Eg, if src(e) € m(L\1) then e € m(L\ I); and if 7gt(e) € m(L\
(1US)) then e € m(L\I);
No delete conflicts: m(L\R)Nm(I) = 0.

Similar to the application of a transformation rule to a graph, the elements of G that are in m(L)
but not in m(I) are scheduled to be deleted by the production. Moreover, if a node is deleted,
then so must its outgoing edges. In contrast to the application of a rule to a graph, the deletion
of a node leads to the deletion of its incoming edges only if the node is not in the image of the
synchronisation interface.

Given such a match m, the application of p to G is defined by extending m to a morphism
m': LUR— H', where H' O G and all elements of R\ L have distinct, fresh images under m’, and
defining H = (G\m(L\I))Um'(R\I). Before we define the composition of partial graphs and
rules, we define the condition under which two partial rules are compatible.

Definition 12 (partial rule compatibility and composition) Two partial rules p; = (a;,L;,R1,S1)
and p, = (a2,L2,R,,S,) are compatible if they have the same name, i.e., a; = a, and both L;
and Ly, and R; and R, are disjoint, also S; NS, must be equal to (L; UR;) N (L UR;). Then their
composition is (L; ULy, R UR;,S1US>).

Proc. GTVMT 2012 10/ 14
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Compared with the rule compatibility condition of graph rules, the partial rule compatibility
enforces two extra conditions, i.e., the left and right hand sides of the partial rules to be disjoint.
The intuition behind these extra constraints is that if two compatible partial rules are applied to
disjoint partial graphs the results will also be disjoint. This is of course desirable as it guarantees
the lack of redundancy between all related pairs of local states. This property is shown in the
following proposition.

Proposition 5 Let G| and G, be compatible partial graphs and p) and py compatible partial
rules. If G, 2y Hy and Gy 22 Hy are two transformations which satisfy synchronisation
compatibility, then Hy and H, are also compatible.

The compatibility of two partial graph transformations is defined exactly the same way as it
is defined for graph transformations, namely, two partial graph transformations are compatible
if they satisfy delete compatibility, synchronisation compatibility, and transfer compatibility.
Through an analogous line of reasoning to the one for graphs, the soundness and completeness
properties for partial graphs hold as well. The split set of a partial graph rule can also be defined
similarly to the split set of graph rules given in Def. 7. However, the size of the split set of
a partial rule is considerably smaller than that of a graph rule. This is because we can always
decompose a partial graph into two disjoint partial graphs. In fact, decomposing a global partial
graph to two disjoint local partial graph comes down to just choosing which local graph a node
belongs to. Then each edge must reside in the local partial graph where its source node has gone.
However, in case of graphs, each edge and each node can belong to either of the local graphs or
even both.

5 Conclusion

We have defined a notion of composition for graphs and graph transformation rules which allows
passing subgraphs between components. This was done by equipping every graph transforma-
tion rule with a synchronisation interface, which declares the part of the rule that is exposed
to the environment. Rules and transformations can be composed when they have compatible
synchronisation interfaces.

Moreover, we defined the behaviour-preserving (de)composition on the level of rule systems.
We also showed that the decomposition of a rule system can give rise to a very large number of
decomposed rules. To tackle this problem, we also studied a scenario in which components are
specified by partial graphs and partial graph rules.

5.1 Related work

The concepts of graph and rule composition, with the appropriate notions of soundness and
completeness, were introduced in [Renl0] and later generalised in [HeilO]. With respect to
those papers, the variation studied here offers a more powerful notion of composition, in which
nodes and edges can be deleted in one component and simultaneously created in the other. On the
other hand, we have only presented the approach for a single concrete category of (multi-sorted)
graphs. The partial graph variant in Sect. 4 is inspired by [SE76].
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In addition, there are a number of other approaches to introduce aspects of compositionality
into graph transformation.

Synchronised Hyperedge Replacement. This is a paradigm in which graph transformation rules
(more specifically, hyperedge replacement rules) can be synchronised based one the adjacency
of their occurrences within a graph; see [HMO1, FHL"06]. The synchronised rules are not them-
selves understood as graph transformation rules, and consequently the work does not address the
type of compositionality issues that we have studied here. Still, it is interesting to see whether
SHR synchronisation can be understood as a special type of composition in our sense.

History-Dependent Automata. This is a behavioural model in which states are enriched with a
set of names (see [MPO5] for an overview). Transitions expose names to the environment, and
can also record the deletion, creation and permutation of names. HD-automata can be composed
while synchronising their transitions: this provides a model for name passing. Transition systems
induced by graph transformation rules can be understood as a variant of HD-automata where the
states are enriched with graphs rather than just sets, and the information on the transitions is
extended accordingly.

Rule amalgamation and distributed graph transformation. Studied in [BFH87] and later, more
extensively, in [Tae97], the principle of rule amalgamation provides a general mechanism for
rule (de)composition. This is a sub-problem of the one we have addressed here, as we study
composition of the graphs as well as the rules. Our notion of rule composition is actually a
generalisation of rule amalgamation, as local rules do not have to synchronise on deletions and
creations.

Borrowed contexts. Like our paper, the work on borrowed contexts [EK06, BEK06] uses a setting
where only part of a graph is available, and studies the application of rules to such sub-graphs
in a way that is compatible with the original, reductive semantics. In contrast to our approach,
however, they do not decompose rules: instead, when a rule is applied to a graph in which some
of the required structure (“context”) for the match is missing, this is imported (“borrowed”)
as part of the transformation. As a result, in this paradigm the subgraphs grow while being
transformed, incorporating ever more context information. This is quite different from the basic
intuitions behind our approach.

Summarising, where only rules are (de)composed in rule amalgamation, and only graphs in
borrowed contexts, in our approach both rules and graphs are subject to (de)composition.

Compositional model transformation. [BHE09] studies a notion of compositionality in model
transformation. Though on the face of it this sounds similar, in fact they study a different ques-
tion altogether, namely whether a transformation affects the semantics of a model (given as a
separate mapping to a semantic domain) in a predictable (compositional) manner. This is in
sharp contrast with our work, which rather addresses the compositionality of the graph transfor-
mation framework itself.

Graph Transformation Units. The graph transformation units exemplified in [KBKO1], also
provide a notion of composition. However, this work takes the form of an explicit structuring
mechanism of local graph transformation systems, called Units. The question of equivalence of
a monolithic graph transformation system and a composition of local units is not addressed in
this approach.
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5.2 Future work

This paper continues our investigation into compositional graph transformation, and although
it is a step forward with respect to [Ren10] in that the notion of composition is more general,
it is simultaneously a step backward in that the technical development in this paper is within a
single concrete category only. We plan to investigate whether our results carry over to adhesive
categories [LS04] as a foundation for graph transformation.

Negative application conditions (NACs) as introduced in [HHT96] have shown to be very
useful in practice. It will be interesting to extend our notion of compositionality to rules with
NAC:sS, in particular with respect to the soundness and completeness properties.

The left hand sides of the local rules are usually smaller than the one of the global rules. This
can potentially lead to many rule applications on the local components. We intend to investigate
this potential explosion of the local state spaces and devise some heuristics for the decompo-
sitions which are immune from this possible explosion. A major challenge is that, even for
the variant with partial graphs ([SE76]), the number of decomposed rules can grow very large
(exponential in the size of the LHS). We plan to study conditions under which the number of
decomposed rules stays within bounds. This can be done for instance by associating a notion of
hierarchy with the graphs, as in [DHP02]: the idea is that the graph nodes that are hierachically
contained in another node must reside in the same component, and so there are fewer possible
splits of a rule.
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