
Electronic Communications of the EASST
Volume 47 (2012)

Proceedings of the
11th International Workshop on Graph Transformation and

Visual Modeling Techniques
(GTVMT 2012)

Modeling context with graph annotations

Paolo Bottoni, Francesco Parisi Presicce

14 pages

Guest Editors: Andrew Fish, Leen Lambers
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Modeling context with graph annotations

Paolo Bottoni1, Francesco Parisi Presicce1

Department of Computer Science, ”Sapienza” University of Rome1

Abstract: Organisational policies are often formed of declarational (defining con-
straints on functional services) and operational (realising functionalities via simple
activities) aspects. However, when several perspectives are involved, constraints and
operations can comprise different aspects, without identifying the origin of some
details. We propose the use of annotations as a way to flexibly add and remove ap-
plication conditions on rules, while maintaining an indication of their origin. We use
graph transformations to model operations in some application domain, graph con-
straints to model conditions imposed by some external domain, and annotations to
combine domains. We explore the problem of failure of transactions due to the addi-
tional constraints imposed by the contextual domain, and describe a way to redefine
the success conditions for transactions employing the modified rules.

Keywords: Contextual domain, Graph annotation, Graph constraints

1 Introduction

Separation of concerns leads to modeling systems under different perspectives, for example, the
control-flow, data, resource, and operational ones for workflows [AH02]. High-order views of
service architectures are based on the composition of abstract business models with security,
distribution, or communication protocols [LWF03]. In the field of programming languages, es-
pecially Java, aspects and annotations are ways to enrich behaviours or structure of programs
through the action of specific engines. In particular, aspect-oriented programming is based on
weaving management of non-functional concerns with operational functionalities [KLM+97].

In general, organisational policies are formed of declarative and operational aspects. The
declarative part defines the constraints regulating the overall delivery of the functional services,
while in the operational part, these services are realised by the coordination of simple activities.
However, when several perspectives are involved, constraints and operations can comprise dif-
ferent aspects, without the ability to identify the origin of some details. A typical example of
this is the construction of application conditions constraining the application of rules in a graph
transformation approach to process modeling [EEHP06, KP06].

We propose the use of annotations as a way to flexibly add and remove application conditions
on rules, while maintaining an indication of their origin. In particular, we consider that rules are
defined to model operations in some application domain, while constraints are imposed accord-
ing to the context in which the process has to operate, modeled as a separate domain. Moreover,
while this domain can be in turn modeled via constraints and rules, we assume that its relevance
as context for the execution of the operations can be modeled through some designated property
and relation. Hence, a specific form of annotated constraint is introduced and the construction of
application conditions for rules operating on annotated domains is presented.

1 / 14 Volume 47 (2012)

Modeling context

Besides showing how annotated constraints can be employed to defined application conditions,
in quite a standard way, we explore the problem of how the execution of transactions can be
affected by the context. We observe that a typical transactional pattern is of the form inception-
execution-termination, where inception is modeled by a rule setting the process in motion and
typically producing a token to identify the transaction instance, execution is modeled by some
sequence of rules (we consider here iteration of a single rule), and termination ensures that the
result is collected and consumes the instance token. When contextual application conditions
place additional constraints on the execution rule, it is possible that a transaction fails, which
would otherwise terminate correctly, as the original conditions for termination can be no longer
satisfied, even if some iteration has been performed. In this case, the typical constructions for
modifying a single rule based on constraints are insufficient, and we present a method to modify
both the inception and the termination rule based on the modification of the execution rule.
The involved techniques are illustrated on a running example based on the domain of distributed
document management, with contextual annotations deriving from security and locality domains.
Paper organisation. We give the graph transformation framework in Section 2 and illustrate the
running example in Section 3. A formal definition of annotation and the involved constructions
are given in Section 4 and Section 5 applies the construction to annotations on the contextual
domains. Finally, Section 6 discusses related work and Section 7 conclusions and future work.

2 Preliminaries

We adopt the framework of typed graphs. A graph G = (V,E,s, t) consists of a set of nodes
V =V (G), a set of edges E = E(G), and source and target functions, s, t : E→V . For a set S, its
cardinality is denoted by ∣ S ∣. In a type graph T G = (VT ,ET ,sT , tT), VT and ET are sets of node
and edge types, while the functions sT : ET →VT and tT : ET →VT define source and target node
types for each edge type. For G a typed graph on T G, there is a graph morphism type : G→ T G,
with typeV : V → VT and typeE : E → ET s.t. typeV (s(e)) = sT (typeE(e)) and typeV (t(e)) =
tT (typeE(e)).

We use graph transformations according to the Single PushOut (SPO) approach [Löw93]. An
SPO rule has the form p : L r→ R where L and R are called left-hand and right-hand side graphs,
respectively, and p is a type-preserving partial morphism. The left of Figure 1 shows an SPO
direct derivation diagram, modeling the application of a rule p : L r→ R to a host graph G to
produce a target graph H, via a match m for L in G. Basically, H contains all g ∈ G s.t. there
is no x ∈ L ∖ dom(r) with g = m(x) and all z ∈ R except the elements r(y) s.t. m(y) = m(x) for
x ∈ L ∖ dom(r) and y ∈ dom(r). Notice that m′ can be partial even if m is total. We denote the
application of the rule p on a match m : L→G by G⇒m

p H and write G⇒p H if H can be derived
from G by applying p with respect to some match m for L in G.

An atomic constraint is a morphism of typed attributed graphs c : X → Y . A graph G satisfies
c, noted G ⊨ c, if for each match morphism m : X → G there exists a morphism y : Y → G s.t.
y∘ c = m. For c : X → Y an atomic constraint, ¬c is an atomic constraint, and G ⊨ ¬c iff G ⊭ c.
An atomic constraint of the form nX : X→ /0 is called a negative atomic constraint. We call M(c)
= {G ∣ G ⊨ c} the set of models for c, and assume that a constraint system C is consistent, i.e.∩

ci∈C M(ci) ∕= /0. We use different types of morphisms depending on the domain and the usage,

Proc. GTVMT 2012 2 / 14

ECEASST

L
r //

m
��

R

m′

��

Yi j

oi j
//

=

Xi

ni
,,

=

yi j
oo L

r //
n
oo

m
��

R

m′

��
G // H G // H

Figure 1: SPO Direct Derivation Diagram for simple rules (left) and with AC (right).

both for constraints and rules.
The right of Figure 1 shows that an atomic constraint can be associated with a rule as an

application condition AC, of the form {xi : L→ Xi,{yi j : Xi→Yi j} j∈Ji}i∈I , for a match m : L→G
of the LHS of a rule, where I and Ji are index sets for each i ∈ I. An AC is satisfied by m if,
for each ni : Xi→ G s.t. ni ∘ xi = m, there exists some oi j : Yi j→ G s.t. oi j ∘ yi j = ni. A negative
application condition (NAC) derives from a negative constraint: for the rule to be applicable,
Xi must not be present. A general application condition (GAC) is a composition of nested
constraints according to the operators ∃, ∀, ∧ and ∨.

We use control expressions over identifiers of rules to govern rule application for transactional
processes. Expressions are built on a grammar allowing single rules, the sequential construct ‘;’,
and the iteration construct r∗, where r is a single rule identifier.

3 The running example

To ilustrate our techniques, we use an example of production of, and access to, distributed doc-
uments, where the application domain is described by the typed graph of Figure 2. Types of
relations are concretely described as edge types between node types.

Figure 2: The type graph for the document access domain.

A document is composed of some atomic content, distributed over some server. A user obtains
access to documents via some controlled device. By considering multiplicities, one notices that
users are always in control of exactly one device, while devices can be available for the next user.
Hence, the processes of user and device creation differ in that a user is added to the system only
if a device is available for him/her. In particular, new devices can always be added while a user
can be added only if a device is available (we omit presenting the corresponding rules, due to
their simplicity). Users can switch from using a device to another, provided that a request is not
being served by the old device, and that the new device is not in use (see Figure 3).

Users can add content to a document or use a device to request one. For the first rule (not
shown here), a NAC prevents the same content to be added twice to the same document (but

3 / 14 Volume 47 (2012)

Modeling context

Figure 3: The rule for changing the user of a device.

Figure 4: The rule for starting a request.

it can be shared by several documents). The rule startRequest activates a process which
guarantees that all content from the document is served on the device. As shown in Figure 4, two
NACs are defined, one preventing the replication of the same request, the other checking that no
content included in the document is locked by a user. For all of these rules we consider partial,
type preserving morphisms, and we allow non-injective matches. Atomic contents which are
parts of the document are served on the requesting device if not served already to that device and
if they are not locked, (see rule serveContent in Figure 5). The process is completed when

g1

mg1
PPPPPP

''PPPPPP

g0oo

mg0
@@@

 @@@

L
r //oo

mL

��

R

m′

��
G // H

all contents have been served, as defined by rule requestEnded
in Figure 6. This rule (represented as L r→ R in the diagram on
the right) is equipped with a GAC expressed by the graphs
g0 and g1 on the left of Figure 6 and the formula ∀mg0 .∃mg1 .
Here mg0 and mg1 are matches for g0 and g1, respectively, such
that the diagram commutes, with mL a match of L in G. The
expression startRequest; serveContent∗; requestEnded governs the process.

4 Annotations

Figure 7 presents a metamodel for annotation of patterns from some application domain with
values from some other domain, providing the annotation content. A Domain is therefore com-

Figure 5: The rule for serving content from a requested document.

Proc. GTVMT 2012 4 / 14

ECEASST

(a) g0 (b) g1

Figure 6: The rule for signaling completion of a request.

posed of at least one metatype of domain elements and some metatype of domain relationships.
Relationships are here considered to be binary and directed.

Figure 7: The metamodel for the annotation activity.

We consider one domain to be the application domain, and annotate it with elements from a
number of contextual domains. The Annotation metatype is used to indicate the semantics re-
lation by which some domain Pattern is annotated with some element in a contextual domain,
where a pattern is formed by any aggregation of elements and relationships. We express invari-
ants on the metamodel using OCL. For navigation expressions, if the association does not have
a name, we use the name of the navigation target with a lowercase initial. As annotations relate
elements in different domains, the following invariants hold in the context of an Annotation:

(1): self.annotatesWith.domain.isOclKindOf(AnnotationDomain).
(2): (self.semantics.element.domain->union(semantics.relation))

->forall(d|d.isOclKindOf(ApplicationDomain)).

For each annotation domain, exactly one special relation is taken as the dominating relation,
whereby some structure can be imposed on the elements of the domain. Therefore, in the context
of a Relation, the following invariant holds:

(3): (self.isDominating=true)implies
(self.domain.isOclKindOf(AnnotationDomain)),

while in the context of an AnnotationDomain we have:
(4): self.relation->select(r|r.isDominating=true)->size()=1.

This relation can be reflexive, transitive, symmetric, or else, depending on modeling purposes.
The different axiomatic properties can be expressed through graph constraints. Figures 8 and 9

5 / 14 Volume 47 (2012)

Modeling context

Figure 8: Constraints expressing the reflexivity and symmetry axioms.

Figure 9: Constraint expressing the transitivity axiom.

show three meta-constraints, using injective morphisms, to be specialised to the types of elements
and relations used for annotation. They describe reflexivity and symmetry (Figure 8 left/right,
resp.), and transitivity (Figure 9). Antisymmetry can be expressed by composing symmetry and
reflexivity, using non-injective morphisms.

Finally, patterns are closed w.r.t. relations. Hence, in the context of a Pattern we have:
(5): self.relation->forall(r|self.element->contains(r.src) &&

self.element->contains(r.tgt)).
We discuss here the case in which the annotation domain is restricted to a single type of

element used for annotating and to the use of only the dominating relation. The annotation
process is employed to place additional constraints on the application domain. Moreover, we
consider only annotations on nodes, leaving the treatment of the general case of annotation of
relations and patterns for future work. In particular, we show how to lift rules on the application
domain to their annotated versions, and how to place additional conditions (of positive, negative
or general form) as a result of adding constraints employing elements from the annotation domain
to rules in the application domains. We summarise the approach in the following definitions.

Definition 1 (Domain) Given a type graph T G and a set C of constraints on it, a domain is the
set of graphs typed by T G and satisfying all of the constraints in C .

Definition 2 (Annotation type graph) Let D and A be two domains and T GD and T GA their
type graphs. An annotation type graph is formed by designating in T GD a subset SV ⊂VT (T GD)
and incrementing T GD with: a node type l ∈VT (T GA), an edge type r ∈ ET (T GA), s.t. sT (r) =
tT (r) = l, a new node type a ∕∈VT (T GD)∪VT (T GA), and a set of edge types L, L∩ (ET (T GD)∪
ET (T GA)) = /0 s.t. ∀v ∈ SV .∃!l ∈ L.((sT (l) = a)∧ tT (l) = v).

Definition 3 (Annotated graph) Given an annotation type graph T G, a graph G typed on T G
is called an annotated graph.

Proc. GTVMT 2012 6 / 14

ECEASST

Definition 4 (Annotated constraint) For T G an annotation type graph, with A , D and SV as in
Definition 2, an annotated constraint is an injective morphism p : P ↪→C s.t. P ∈D , C is an an-
notated graph on T G, and ∀χ ∈V (P).((typeT (χ)∈ SV)⇒ ((∃!α ∈V (C),ρ ∈E(C)).typeT (α) =
a∧ typeE(ρ) ∈ L∧ s(ρ) = α ∧ t(ρ) = p(χ))).

The most important construction for adapting domain rules p : L r→ R to (atomic, positive)
contextual constraints c : P→C is shown in Figure 10. Here, X is a maximal overlap between
R and P and Q is their pushout with respect to X ; the graph W obtained from Q by applying the

inverse rule p−1 : R r−1

→ L represents the part of the premise P of the constraint already present in
L. The graph Z is obtained as the pushout of R and C with respect to X , and the result of applying
r−1 to it (via the morphism induced by the pushout) is denoted by M. This graph represents the
part of the conclusion C of the constraint already present in L. The morphisms Q→ Z and
W →M exist and are unique because of the universal property of the pushouts for Q and W . The
morphisms h : L→ M and k : W → M are then used to build application conditions, as will be
discussed in Section 5. An analogous construction builds negative application conditions in the
case of negative constraints. Note that there may be several morphisms W → M for different
choices of X . In the rest of the paper, we consider only situations in which the annotations in Z
only refer to elements which are not produced by R. For the case that also elements produced by
R are annotated in C, that we do not discuss here, one would need to activate some repair action,
after applying p : L→ R, to produce proper annotations for these elements.

L
r //

h

��

w

 @@@@@@@@ R

��>>>>>>>

r−1

ww

��>>>>>>>

��

X? _oo � � // P

c

��

���������

W
k

~~~~~~~~~~
Q

���������
oo

M // Z Coo

Figure 10: Construction of graph M for application conditions.

5 Applying annotations

We now present two cases of annotation for document distribution, one from the security domain,
ensuring that content is served only in a way complying with security levels, and one from the
localisation domain, where distribution is restricted to accessible locations. In the first case the
dominating relation is anti-symmetric, while in the second case we do not demand anything with
respect to symmetry. In both cases the relation is also reflexive and transitive.

Figure 11 shows the introduction of security annotations on the document domain. Each
type in the domain, except Document, can be annotated with a security level and a number of
constraints can be imposed on the existence of edges in the application domain. For example, the
constraint of Figure 12 states that an atomic content can only be kept by a server with a higher

7 / 14 Volume 47 (2012)



Modeling context

security level than the content level, while Figure 13 constrains an atomic content to be served
only to more secure devices. Analogous constraints (not shown here) require users to only use
devices with a higher security level and to lock content with lower security level.

Figure 11: Introducing security annotations on the domain model.

Figure 12: Constraining distribution of content over servers.

Due to this additional constraint on service of content, particular care must be given to the
roles of the rules in the control expression for document service, in order to ensure termination
of the process. More precisely, one needs to make the conditions on starting and running the
process more stringent, and the conditions on concluding the process more relaxed, acting on the
application conditions of the corresponding rules. To this end we need different constructions.

(a) For the starting rule, one has three choices with respect to the security level

(a1) For an existential condition at least one content can be served.

(a2) For a universal condition all of the contents can be served.

(a3) A contextual condition relaxes the universal condition so that the security level is not
checked on contents excluded from service based on other conditions.

(b) For an intermediate rule, it must be applied only in conformity with the security constraint.

Proc. GTVMT 2012 8 / 14



ECEASST

Figure 13: Constraining access to secured documents.

(c) For the concluding rule, depending on choice made for (a), a different GAC is required.
For (a1) and (a3) all elements which were not served based on some criterion can also be
present, for (a2) all elements have had been served.

We deal with case (a) by considering the nested GACs of Figure 14. The graph g2 on the left
describes a situation in which the document contains some content, the graph g3 in the middle
describes a situation where content is servable in a secure way, while g4 on the right depicts
the situation where content has already been served. For the case (a1) the associated formula is
∃mg2 , for case (a2) we have ∀mg2 .∃mg3 , while for case (a3) the formula is ∀mg2 .(∃mg3 ∨∃mg4).

(a) g2 (b) g3 (c) g4

Figure 14: Application conditions for starting the content service process.

Figure 15 shows on the left the graph g5 used in the GACs for dealing with case (b), and on
the right the graph g6 in the GACs for case (c). For (b) we simply add an application condition
requiring the existence of a morphism mg5 while for case (c), to deal with subcase (a1) and
(a3) we extend the formula of Section 3 so that it becomes ∀mg0 .(∃mg1 ∨∃mg1), with the same
convention on the name of matches. To deal with subcase (a2) the original GAC built on graphs
g0 and g1 in Section 3 can be employed. All of the graphs g3, g5, and g6 are constructed as the
graph M of Figure 10, starting from the corresponding rules and the constraint in Figure 13.

The resulting version of the transaction is correct in the sense of Proposition 1.

Proposition 1 Let Γ = r1;r∗2;r3 be the control expression for the transaction above and let
Γa = ra

1;ra∗
2 ;ra

3 be its annotated version. Then, for any graph G in which Γ would succeed, Γa

would succeed on the annotated version G′

9 / 14 Volume 47 (2012)



Modeling context

(a) g5 (b) g6

Figure 15: Application condition for serving content and terminating a request.

Proof. In general, the only case in which Γ does not succeed is one where some element has not
been processed by r2 due to the failure of some application condition. In the case of document
serving, there is no such case. For the annotated version, in case (a1), ra

1 is applied if at least a
content can be served. ra

2 will serve this content, plus any other legitimate content. ra
3 can then

fail only if some content which was servable has not been served, but this cannot happen due
to the iteration of ra

2. For case (a2) all contents were servable and iterating ra
2 has served them,

while for case (a3) a content is non- servable if already served.

In order to detect violations of security, one can modify the GAC for rule ra
3 to check that all

contents are served. For the cases (a1) and (a3) the failure of this rule would signal the violation.
Figure 16 presents the type graph for annotating the document distribution domain with lo-

calisation values. The dominating relation, called accesses is reflexive and not transitive and
indicates direct accessibility of locations. We are not interested here in whether it is symmetric
or not. The constraint in Figure 17 (left and middle) states that a user can only use a device lo-
cated in some position accessible from the user location. Introducing this constraint modifies the
rule for changing a device (see Figure 3) by introducing a GAC based on graph g7 on the right
of Figure 17 associated with the morphism g7

L : L→ g7. In a similar way, constraints on location
add GACs to the rules managing the request process, following the construction described above.

Figure 16: Introducing locality annotations on the domain model.

Proc. GTVMT 2012 10 / 14



ECEASST

The effect of combined annotations with security and localisation context is readily express-
able by taking the co-limits of the resulting application conditions. Alternatively, one can con-
struct layers of nested annotations, each time redefining as application domain the resulting of
applying an annotation layer. This opens the way to unifying several models for role-based ac-
cess control. As an example, one can first annotate an access domain with role information, then
the resulting domain with temporal information, then with geographical information, etc.

(a) (b) (c) g7

Figure 17: Constraining use of a device based on location.

5.1 Modeling GeoRBAC

In this section we discuss how the approach can be applied also in the case when the constraints
involve not simply the existence of an instance of the dominating relation between values of
the annotation domain, but require that specific values be assigned to elements. We show this
extension by considering the addition of location annotations to the Role Based Access Control
model [SFK00]. The players in this model are users, roles, sessions and permissions. For this
example we ignore the permissions, which play no part in the extensions with localities. In order
for a user to access objects with permissions, the user opens a session (which becomes owned by
the user) that is associated with some role authorized for the user (the system then checks that
the permissions requested belong to the role, but this is irrelevant in our example). The simple
rule corresponding to this operation is shown in Figure 18.

Figure 18: Creating a session based on role.

Following [DBCP07] we are given a set of features F = Fs∪Fns distinguished in spatial fea-

11 / 14 Volume 47 (2012)



Modeling context

tures Fs and non-spatial features Fns, and a function LocOb j : F → (GEO∪{⊥}) to associate
features with geographical locations. Features are typed, and a partial order on these types rep-
resents the usual notion of containment (a room part of a building, a town inside a region, etc.).
The type graph for this extended model of RBAC with annotations is shown in Figure 19.

Figure 19: The type graph for annotating RBAC with geographical information.

In this extended model, we want to add a constraint, shown in Figure 20: a user can open
a session in the role of administrator only if the user is present in a certain location, say a
laboratory. The rule in Figure 18 is no longer safe as it would allow the session to be opened in
the administration role even when the user is elsewhere. General application conditions need to
be added. The two components resulting from of the application of the procedure in Section 4
are shown in Figure 21. By calling L the LHS of Figure 18 and g8, g9 the two components of
the GAC from left to right in Figure 21, we obtain the formula ∀g8

L : L→ g8.∃g9
8 : g8→ g9. Note

that in this case g8 corresponds to W in Figure 10, while g9 corresponds to M.

(a) g8 (b) g9

Figure 20: The location constraint for creating a session as administrator.

Figure 21: The elements of the nested GAC for the rule in Figure 18.

Proc. GTVMT 2012 12 / 14



ECEASST

6 Related work

The problem of adapting organizational policies to context conditions is not new. Several papers
extend well known security models to incorporate context conditions, e.g. the location of the
requester or of the resource requested, or the time and duration of the request.

In the standard Role Based Access Control model RBAC [SFK00], users have access to a
resource only if an appropriate role, authorized for the user and associated to the requested oper-
ation, has been activated. In the Geo-RBAC [DBCP07] extension, such a role is activated only if
the context is right, viz. if the user location is correct. Spatial and location-based information is
modelled as spatial entities and the whole hierarchy of RBAC models is extended with this ad-
dition using role schema. The framework used is the usual set-theoretic one. Another important
extension is Temporal RBAC [BBF01], where roles are made available to users only at certain
times. The organizational policies are modified depending on an external context with periodic
role enabling and disabling, role triggers and temporal dependencies among actions. Again, the
formalism is set-theoretical and the approach is ad hoc. Despite both Geo-RBAC and GTRBAC
being extensions of RBAC taking into account an external context for the activation of roles, one
approach is not easily adapted to the other.

Koenig [Koe05] develops an extensive theory of annotated hypergraphs, where a hypergraph
annotation is a morphism from a (typed) hypergraph to a (complete) lattice and morphisms can
also be annotated by functions, in such a way that the composition of annotated morphisms
results into a morphism annotated by the composition of the annotating functions. In this paper
we embed annotations in the typing system, relaxing conditions on the domain and providing a
different mechanism for composition of annotations.

Ehrig et al. [EEHP06] provide a general approach to the construction of application conditions
on rules, while Koch and Parisi [KP06] present a method for composition of security policies
through the addition of application conditions. In both cases, the analysis deals with individual
rules or sets of rules, but not with their composition into transactional specifications.

Lambers et al. [LET08] explore conditions for success of sequences of DPO rules with NACs,
but they do not describe how these conditions change when new constraints are added on rule
application. However, their analysis can be used to discover causes for failure in modified rules.

7 Conclusions

We have presented an approach to enriching models of some application domains with con-
straints coming from contextual domains through the use of annotations relating values from the
latter to model elements of the first. In particular, we have focused on the generation of appli-
cation conditions on model rules, and on the management of transactions following a typical
inception-execution-pattern, where execution is modelled as iteration of a single rule.

The study has been conducted for the case when only nodes can be annotated, but it can
be readily extended to the annotation of edges, by considering them at the metamodel level,
and of patterns, by introducing a special type of annotation elements and considering groups
of elements associated with them through annotation edges. Contextual constraints can then be
used to coordinate the annotations of several model elements belonging to the same pattern.

13 / 14 Volume 47 (2012)



Modeling context

In this paper, we have considered only increasing or decreasing rules in the application domain
and positive atomic constraints for the contextual domain. The case of more general rules and
of negative or nested contextual constraints should also be investigated. Moreover, we need to
properly formalise, along the lines discussed in Section 4, the construction of repair actions for
situations in which elements which in a rule have also to be constrained. Finally, while the use of
general sequences in a transaction can be, under certain circumstances, reduced to that of a single
rule [LET08], more general control expressions could require more complex constructions.

Bibliography

[AH02] W. M. P. van der Aalst, K. M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, 2002.

[BBF01] E. Bertino, P. A. Bonatti, E. Ferrari. TRBAC: A temporal role-based access control
model. ACM Trans. Inf. Syst. Secur. 4(3):191–233, 2001.

[DBCP07] M. L. Damiani, E. Bertino, B. Catania, P. Perlasca. GEO-RBAC: A spatially aware
RBAC. ACM Trans. Inf. Syst. Secur. 10(1), 2007.

[EEHP06] H. Ehrig, K. Ehrig, A. Habel, K.-H. Pennemann. Theory of Constraints and Ap-
plication Conditions: From Graphs to High-Level Structures. Fundam. Inform.
74(1):135–166, 2006.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
J. Irwin. Aspect-Oriented Programming. In ECOOP. Pp. 220–242. 1997.

[Koe05] B. Koenig. A general framework for types in graph rewriting. Acta Informatica
42(4/5):349–388, 2005.

[KP06] M. Koch, F. Parisi Presicce. UML specification of access control policies and their
formal verification. Software and System Modeling 5(4):429–447, 2006.

[LET08] L. Lambers, H. Ehrig, G. Taentzer. Sufficient Criteria for Applicability and Non-
Applicability of Rule Sequences. ECEASST 10, 2008.

[Löw93] M. Löwe. Algebraic Approach to Single-Pushout Graph Transformation. TCS
109(1&2):181–224, 1993.

[LWF03] A. Lopes, M. Wermelinger, J. L. Fiadeiro. High-order architectural connectors. ACM
Trans. Softw. Eng. Methodol. 12(1):64–104, 2003.

[SFK00] R. S. Sandhu, D. F. Ferraiolo, D. R. Kuhn. The NIST model for role-based access
control: towards a unified standard. In Proc. ACM Wks. on RBAC. Pp. 47–63. 2000.

Proc. GTVMT 2012 14 / 14


	Introduction
	Preliminaries
	The running example
	Annotations
	Applying annotations
	Modeling GeoRBAC

	Related work
	Conclusions

