
Electronic Communications of the EASST
Volume 47 (2012)

Proceedings of the
11th International Workshop on Graph Transformation and

Visual Modeling Techniques
(GTVMT 2012)

Inter-Modelling with Graphical Constraints:
Foundations and Applications

Juan de Lara, Esther Guerra

16 pages

Guest Editors: Andrew Fish, Leen Lambers
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Inter-Modelling with Graphical Constraints:
Foundations and Applications

Juan de Lara1, Esther Guerra1

1 (Juan.deLara, Esther.Guerra)@uam.es
Department of Computer Science

Universidad Autónoma de Madrid, Spain

Abstract: Model-Driven Engineering (MDE) promotes an active use of models in
the different phases of the development, so that the construction of systems usually
involves a number of models expressed in different languages and levels of abstrac-
tion; therefore, there is the constant need to compare, generate and update models
and their relations.

We call inter-modelling to the activity of building models that describe how mod-
elling languages should be related. This includes many MDE activities like the spec-
ification of model-to-model transformations, the definition of model matching and
traceability constraints, and the development of inter-model consistency mantainers.
While most approaches build different operational programs to handle each activity
separately, we propose using a high-level specification language called PAMOMO

to specify inter-models in a declarative, graphical, bidirectional way. This specifica-
tion can be compiled into operational mechanisms to solve different inter-modelling
activities like transformation, model comparison and traceability support. Other us-
age scenarios for PAMOMO are the specification of transformation contracts and the
automated testing of transformations.

Keywords: Model Transformation, Inter-Modelling, Graph Constraints, Bidirec-
tionality

1 Introduction

Models are the core assets of the development in Model-Driven Engineering (MDE). The ratio-
nale is that they allow a high-level, more intentional description of systems, with less accidental
details because they frequently use concepts of the problem domain and not of the solution space.
Hence, models are used to specify, test, maintain and generate code for the final applications. In
this context, model manipulations become a key activity which may involve one model (e.g. for
model animation, simulation and refactoring) or several models (e.g. when transforming a model
to a different modelling language, or when comparing, merging or establishing traceability links
between models). In the latter case, the usual approach is building a different program for each
particular manipulation, regardless they involve the same modelling languages. This sometimes
leads to an unnecessary proliferation of heterogeneous programs which become difficult to main-
tain synchronized when the involved languages change.

We call inter-modelling [GLO11, GLKP10a] to the activity of building models that describe

1 / 16 Volume 47 (2012)

mailto:(Juan.deLara, Esther.Guerra)@uam.es

Inter-Modelling with Constraints

how the models of different modelling languages should be related. Most manipulations that
involve several models can be specified using inter-models. In this paper, we give an overview of
our inter-modelling language PAMOMO (for Pattern-based Model-to-Model specification lan-
guage) [GLKP10b]. This is a bi-directional, declarative specification language (in contrast to
an implementation language) where the same specification can be used to solve several model
manipulation scenarios. For this purpose, we provide several notions of conformance or sat-
isfaction, and several compilations into operational mechanisms. This paper will present the
foundations of PAMOMO [GLKP10b, GLO11, LG08] as well as some applications [GLKP10a,
GLW+12, GL12].

The rest of the paper is organized as follows. Section 2 introduces some inter-modelling ac-
tivities. Then, Section 3 overviews the foundations of PAMOMO, including its syntax, different
notions of conformance, and compilations into operational mechanisms for different scenarios.
Section 4 illustrates its use with two examples. The first one applies an inter-modelling spec-
ification to the discovery of design patterns in meta-models. The second one uses PAMOMO

as a means to specify contracts for model transformations, and their application for automated
testing. Section 5 compares with related work and Section 6 concludes the paper.

2 Inter-Modelling Activities

This section introduces some inter-modelling activities of interest, namely, model-to-model trans-
formation, model matching and traceability between models.

In model-to-model transformation, a source model conforming to a source meta-model is
transformed into a target model conforming to a target meta-model. In the simplest case, the
target model is created from scratch. This scenario, called batch transformation, is depicted
schematically in Figure 1(a). In this case, the transformation creates a target model together with
a trace model containing mappings between source and target model elements. If we need to
transform also backwards (from target to source), and we are using an operational transforma-
tion language, then we need to implement a different transformation for each direction. Instead,
we propose using bi-directional, declarative inter-modelling specifications from which deriving
operational transformations for both directions. Thus, a model transformation definition can be
seen as an inter-modelling specification that states the conditions under which a target model is
considered a correct transformation of a source model, and vice versa. For each direction we
use a different notion of conformance. The figure uses SATF to convey that we use the spec-
ification to check forward conformance: whether the target model can be considered a correct
transformation of the source. Backward conformance, denoted as SATB, is defined symmetri-
cally. We say that two models are synchronized if they conform both forwards and backwards to
the specification.

A more complex scenario is the so-called incremental transformation. In this scenario, a
source model is initially transformed into a target model (e.g. using a batch transformation), then
the source model is updated, and the incremental transformation must propagate the performed
changes to the target model. This is usually done for efficiency reasons, to avoid having to
regenerate the target model from scratch, or to prevent the overriding of any manual change made
to the target model. This scenario is illustrated in Figure 1(b). Finally, in the more complex

Proc. GTVMT 2012 2 / 16

ECEASST

MM A

M1

«conforms»

Trace
Model

«conforms»«satF»

MM BRelat
spec

MM A

M1

«conforms»

MM BRelat
spec

M2 Trace
Model

«conforms»«satF»

MM A

M1’

«conforms»

MM BRelat
spec

M2’ Trace
Model

«conforms»

MM A

M1

«conforms»

MM BRelat
spec

M2

Trace
Model

«conforms»

MM A

M1’

«conforms»

MM BRelat
spec

M2

«conforms»

MM A

M1

«conforms»

MM BRelat
spec

M2

«satM»

«satF»

(a) (b) (c)

Figure 1: Some inter-modelling activities: (a) forward batch transformation, (b) forward incre-
mental transformation, (c) model-matching.

synchronization scenario, both the source and target models may be modified after they were
consistent, and the operational mechanism may have to update them to recover their consistency.

In addition to model transformations, another interesting inter-modelling activity is to estab-
lish traceability between models [PDK+11, WP10]. In this case, given two unrelated models,
the operational mechanism must produce a trace model relating source and target elements so
that both models (or parts of them) become synchronized. This can be used to trace the origin or
provide semantics to the different model elements, or as a previous step to the synchronization
scenario. In the latter case we first produce the traces between two given unrelated models, and
then apply the synchronization operational mechanism.

Model matching is the last inter-modelling activity we tackle. It is useful when we want to
compare models, or as a previous step to model merging [Kol09]. The scenario is depicted in
Figure 1(c). In this case, a trace model is created identifying all elements in the source and
target models considered equivalent according to the inter-modelling specification. After the
operational mechanism has created the trace model, the related models should conform to the
specification. This can be checked by using a special notion of conformance, different from the
previous ones, depicted in the figure as SATM.

Altogether, an inter-modelling specification is used in two ways. First, it is used to generate
operational mechanisms for solving a particular scenario (e.g. creating a target model given
a source one, as shown in Figure 1(a)). Secondly, it is used to check the conformance of a
set of related models for a particular scenario. The next section provides an overview of our
specification language for inter-modelling, the way it is used to check conformance of models
with respect to specifications, and the methods to synthesize operational mechanisms for the
different scenarios.

3 PAMOMO: A Specification Language for Inter-Modelling

PAMOMO is a pattern-based, formal, declarative, bi-directional language. In our approach,
shown in Figure 2, designers can use this language to build inter-modelling specifications stating
how the models of two modelling languages should be related (label “1” in the figure). Patterns
in a specification can be positive or negative, to express allowed or forbidden relations between

3 / 16 Volume 47 (2012)

Inter-Modelling with Constraints

PAMOMO inter‐modelling specification

Specification
Designer

1

• Pattern‐pattern conflicts
• Pattern‐metamodel conflicts
• Metamodel coverage
•…

Static Analysis
22

Select op. scenario:
Batch transformation
Model traceability
Model matching

3a

Select check-only. scenario:
conformance
redundant traces
incorrect traces
enabled occurrences

3b

check for…

OCL
QVT‐R

Check‐only

…

compilation

EOL

…

TGG rules
44

act on…

Set of related models

Figure 2: Architecture of our approach.

two models. Such a specification can be analysed (label “2” in the figure), for example to detect
conflicts or contradictions between patterns, to find redundant patterns, or to identify discon-
formities between the patterns and the meta-models of the languages being related. It is also
possible to measure the degree of coverage of a (source or target) language by a specification,
and analyse whether certain classes only participate in negative (i.e. non-generative) patterns.
This provides an indication of the completeness of a specification.

Specifications can be used both in operational and check-only modes for each particular inter-
modelling scenario (up to now, batch transformation, model traceability and model matching).
For the operational mode, we generate operational Triple Graph Grammar rules [Sch94] or pro-
grams written in the Epsilon Object Language (EOL) [KPP06] that implement the expected be-
haviour for the chosen scenario. EOL is a variant of OCL [OCL] with side effects that enable for
example creating new objects or setting attribute values. For the check-only mode, we generate
OCL code that can be used to assert conformance of models with respect to the specification for
the chosen scenario, as well as to identify incorrect, redundant or missing traces between models.
Additionally, for the batch transformation scenario, we can generate QVT-Relations code [QVT]
that can be executed in check-only mode with a QVT engine like ModelMorf [Mod] to check for
disconformities of models with respect to the specification. As we will see in Section 4.2, this is
especially useful in model transformation testing [GLW+12].

3.1 Models and their relations, algebraically

The building blocks of PAMOMO patterns are the so-called constraint triple graphs, an algebraic
construction that we have defined to relate two models. In this section we present this construct.
We keep the discussion on an informal level, and refer to [GLO11] for technical details.

We represent models as attributed typed graphs [EEPT06]. In this kind of graphs, attribute

Proc. GTVMT 2012 4 / 16

ECEASST

c0: class

name=“person”
persistent=true

t0: table
name=“person”

:C2T

c1: class

S C T

c1: class

name=“person”
persistent=true

t1: table
name=“person”:C2T

a: attribute
name=“age”
type=“integer”
public=true

fe
at

ur
e

(a) A triple graph

c0: class

name=X
persistent=P

t0: table
name=Y

:C2T

X=YP=true X=YP=true

(b) A CT-graph

c0: class

name=N1

persistent=P1

t0: table
name=NT1

:C2T

c1: class

name=N2

persistent=P2

t1: table
name=NT2:C2T

fe
at

ur
e

a: attribute
name=A
type=T
public=P3

fe
at

ur
e

N1=“person”
N2=“person”
P1=true P2=true
P3=true A=“age”
T=“integer”

NT1=“person”
NT2=“person”

(c) A CT-graph representation of the
triple graph in (a)

Figure 3: A unified view of triple graphs and constraints.

values are represented as data nodes, and attributes are edges connecting graph nodes with data
nodes. For inter-modelling, we need to relate models through a trace model. For this purpose,
we use triple graphs [Sch94], which are structures made of a source and a target graph (S and
T) related through a correspondence graph (C). The correspondence graph represents the trace
model and contains the mappings (or traces) between the other two graphs. These mappings are
given by two graph morphisms cs : C → S and ct : C → T . A graph morphism is a collection of
set functions relating the sets of nodes, edges and attributes in two graphs, and preserving the
graph structure. As an example, Figure 3(a) shows a triple graph relating a class diagram (in
abstract syntax) and a relational data-base schema. The source graph contains one edge (labelled
feature) and three graph nodes: c0, c1 and a. The first two graph nodes have two attributes each
(name and persistent), while the last graph node has three attributes. We represent graphs using
the usual UML object diagram notation, showing attributes inside a box compartment close to
the owning graph node, and indicating the typing after the node name, separated by a colon.

An inter-modelling language needs to express constraints on related models. For this purpose,
we define constraint triple graphs (CT-graphs in short) as triple graphs where the data nodes
(i.e. the attribute values) are replaced by a finite set of variables and a formula α constraining
their value. Additionally, CT-graphs are defined over a signature Σ = (S,op) that contains the
sorts and operations used by the formula α . As an example, Figure 3(b) shows a CT-graph. We
usually omit the conjunctions in the formula α and split it in three parts: αS, containing the terms
dealing with variables of the source model only, αT containing the terms dealing with variables
of the target model only, and αC with the terms that relate variables in both models. We display
αS inside the source compartment (see P=true in the figure), αC in the middle (see X=Y in the
figure), and αT in the target compartment (true in this case as no formula is shown).

Triple graphs can be represented as CT-graphs by creating a variable for each attribute value,
and including a conjunctive term with the equality of each variable and its value in the formula,
as Figure 3(c) shows. In this way, we only need to handle one kind of structure. Thus, finding
an occurrence of a CT-graph in a triple graph amounts to defining a morphism between two
CT-graphs, called CT-morphism. A CT-morphism f : M1 → M2 between two CT-graphs M1 and
M2 is made of a structural morphism (i.e. a morphism on triple graphs), with the condition that

5 / 16 Volume 47 (2012)

Inter-Modelling with Constraints

c0: class

name=X

persistent=P

P=true

c0: class

name=X

persistent=P

X=“Person”

P=true P1=true

A=name

T=“String”

c0: class

name=X

persistent=P

t0: table

name=Y

:C2T

X=Y P=true

M1

M2

C

a: attribute
name=A

type=T

public=P1

fe
a
tu

re

c0: class

name=X

persistent=P

X=“Person”

P=true P1=true

A=“name”

T=“String”

G

a: attribute
name=A

type=T

public=P1

fe
a
tu

re

t0: table

name=Y

:C2T

X=Y

a

b c

d

P.O.

Figure 4: Glueing of CT-graphs: Pushouts.

the formula α1 in M1 should be weaker or equal than the formula α2 in M2. More in detail,
CT-morphisms must fulfil three implications: αS

2 ⇒ αS
1 , αT

2 ⇒ αT
1 , and α2 ⇒ α1. For instance,

there are two CT-morphisms from the CT-graph in Figure 3(b) to the one in Figure 3(c). The first
one identifies equally named elements, and the second one identifies c0 with c1 and t0 with t1.

A useful operation in our context is the merging or glueing of two CT-graphs M1 and M2
through some common elements given by a CT-graph C and two CT-morphisms a : C → M1 and
b : C → M2. This is called a pushout in category theory [EEPT06]. This operation yields a new
CT-graph G and two CT-morphisms from M1 and M2 to G. The resulting CT-graph G contains
a copy of the elements present in the other two graphs, without duplication, and its formula is
the conjunction of the formulas in M1 and M2. Figure 4 shows an example of pushout, where
CT-graphs M1 and M2 are glued through their common element c0. The resulting CT-graph G
contains the different elements of M1 and M2 glued via the common part, so that element c0 only
appears once, and its formula is the conjunction of the formulas in M1 and M2.

3.2 The PAMOMO specification language

In this section we briefly introduce PAMOMO, our pattern-based language for inter-modelling.
For technical details, the reader can consult [GLO11].

A PAMOMO specification is made of a set of patterns. Patterns are built on the notion of CT-
graph presented in the previous subsection. A pattern describes in a declarative way a relation
between two models. If the relation is allowed, then we say that the pattern is positive (P-
pattern), whereas if the relation is forbidden, then we say that the pattern is negative (N-pattern).
P-patterns are made of a main CT-graph Q defining the allowed relation, an optional enabling
condition C with a CT-morphism q : C → Q, and a set NPre = {ci : Q → Ci}i∈Pre of disabling
conditions, which may be empty. The enabling and disabling conditions can be used to reduce
the scope of a pattern to the locations where the enabling condition is met, and the disabling
conditions are not. N-patterns have the same structure as P-patterns, but the interpretation is that
the relation defined by the CT-graph Q is forbidden to occur.

Proc. GTVMT 2012 6 / 16

ECEASST

p: Package
name=X
persistent=P

s: Schema
name=Y

:P2S

Y=XP=true

PackageSchema

(a) A positive pattern

p: Package
name=X
persistent=P1

s: Schema
name=Y

:P2S

NoPersistentClasses

c: Class
name=C

t: Table
name=T

:C2T

Y=X
C=TP1=true∧P2=false

name=C
persistent=P2

name=T

(b) A negative pattern

c: Class
name=X
persistent=P

t: Table
name=Y

m:C2T

Y=XP=true

c: Class

p: Class
parent

ClassTable

N(Parent)

name=X
persistent=P

P=true

m:C2T t: Table
name=Y

Y=X

(c) A pattern with a disabling condition

Figure 5: PAMOMO patterns.

As an example, Figure 5 gathers some patterns that belong to the specification of the “clas-
sical” class-to-relational transformation (see the appendix of [QVT]). Figure 5(a) shows a P-
pattern specifying how Packages and Schemas should be related. In particular, it specifies
that if there is a trace mapping between a package and a schema, then they have the same name
and the package is persistent. We will see that the precise meaning of the pattern depends on
the inter-modelling scenario to be solved. Visually, we depict P-patterns with green background,
and N-patterns with red background. Figure 5(b) shows an N-pattern stating that non-persistent
classes should not be related to tables. In this way, PAMOMO specifications can indicate not only
how elements should be related, but also forbidden situations, i.e., it supports a non-constructive
specification style. Finally, the P-pattern in Figure 5(c) has a disabling condition with label
N(Parent). The main CT-graph, with label ClassTable, demands a trace relating persis-
tent classes and tables with same name. The disabling condition forbids the existence of a parent
for the class. Altogether, the trace between the class and the table is only required to occur when
the class does not have a parent.

An inter-modelling specification is made of a set of declarative patterns. As we will explain in
the following sub-section, patterns are given different semantics depending on the usage scenario
(forward/backward transformation, matching, traceability, etc.). The idea is to interpret patterns
as special graph constraints [EEPT06] that should hold (for P-pattern) or not (for N-patterns) in
the CT-graph where we evaluate the specification.

3.3 Satisfaction checking

Patterns are interpreted differently depending on the inter-modelling scenario [GLO11]. For
instance, if our purpose is performing forward batch transformation, then the P-pattern in Fig-
ure 5(a) is interpreted as “for each persistent package, there must be a schema with same name”.
Conversely, in backward transformation, the pattern is interpreted as “for each schema, there

7 / 16 Volume 47 (2012)

Inter-Modelling with Constraints

c: Class
name=X
persistent=P

t: Table
name=Y

:C2T

Y=XP=true

c: Class

p: Class
parent

ClassTable

name=X
persistent=P

P=true

c: Class
name=X
persistent=P

P=true

t: tablec: class :C2T

Forward pre-condition

Negative Forward pre-condition

c1: class

name=N2

persistent=P2

t: table
name=NT

:C2T

N1=“person”
N2=“employee”
P1=true P2=true NT=“person”

c: class

name=N1

persistent=P1

:C2T

parent

(a) Forward satisfaction (SATF)

c: Class
name=X
persistent=P

t: Table
name=Y

:C2T

Y=XP=true

c: Class

p: Class
parent

ClassTable

name=X
persistent=P

P=true

c: Class
name=X
persistent=P

P=true

t: table
name=NT1

c: class

name=N1

persistent=P1

:C2T

t: Table
name=Y

Y=X

t: Table
name=Y

Y=X

:C2T

Match pre-condition

Negative Match pre-condition

c1: class

name=N2

persistent=P2
:C2T

N1=“person”
N2=“person”
P1=true P2=true

NT1=“person”

persistent=P1

NT2=“person”

t1: table
name=NT2

:C2T

(b) Match satisfaction (SATM)

Figure 6: Different notions of satisfaction.

must be a persistent package with same name”. The model matching and model traceability
scenarios consider the source and target of patterns at the same time. For instance, in model
matching, the same pattern is interpreted as “for each package and schema with same name,
there should be a trace relating them”. Note that, in all cases, there is a part of the pattern that
is sought with a “for-all” iteration, and for each occurrence, the existence of the whole pattern
is demanded. However, depending on the specific inter-modelling scenario, the domain of the
sought part (source, target or both) and how this part is constructed differs.

In forward satisfaction (i.e. in the forward transformation scenario), the sought part is called
forward pre-condition. This is built by glueing the enabling condition of the pattern (if there is
any), together with the source part of the main CT-graph. Moreover, we built so-called negative
forward pre-conditions by restricting each disabling condition of the pattern to the source part
(see [GLO09] for the technical details). This construction is illustrated in Figure 6(a). As pattern
ClassTable does not have an enabling condition, the forward pre-condition is equal to the
source CT-graph. The negative forward pre-condition is made of the source of the pattern’s
disabling condition.

A CT-graph M forward-satisfies a positive pattern P, written M |=SATF P, if for each occur-
rence of P’s forward pre-condition such that there is no occurrence of P’s forward negative pre-
conditions, there is some occurrence of P’s main CT-graph. These conditions are expressed using
CT-morphisms, as Figure 6(a) shows. In the figure, there is only one morphism from the forward
pre-condition that does not commute with a morphism from the forward negative pre-condition.
This morphism is the one identifying c in the forward pre-condition and the model. For this
morphism, there is a commuting morphism from the pattern’s main constraint. Thus, the model
forward-satisfies the pattern.

The forward satisfaction of a negative pattern is similar. In this case, for each occurrence of its
forward pre-condition, there should not be an occurrence of its main CT-graph. The definition of
backward satisfaction for patterns is symmetric to the forward case.

A CT-graph M forward-satisfies a specification S, written M |=SATF S, if it forward-satisfies
all the patterns in S. A pattern P spans a language SEMF(P) = {M | M |=SATF P}, which is the
set of all CT-graphs that satisfy the pattern. Therefore, the semantics of PAMOMO is composi-

Proc. GTVMT 2012 8 / 16

ECEASST

tional, as the semantics of a specification S is the intersection of the languages of all its patterns,
SEMF(S) =

⋂
P∈S SEMF(P).

In model matching, we use a different notion of satisfaction in which, first, the so-called match
pre-condition is sought. The match pre-condition of a pattern is made of the source and target
parts of its main CT-graph, glued together with the pattern’s enabling condition (if there is any).
Moreover, we built so-called negative match pre-conditions by restricting each disabling condi-
tion of the pattern to its source and target parts. This construction is illustrated in Figure 6(b).
The satisfaction checking procedure is similar as before, as for each occurrence of the match
pre-condition that does not commute with any occurrence of the match negative pre-conditions,
there should be a commuting occurrence of the pattern’s main CT-graph. In Figure 6(b), the
CT-graph M match-satisfies the pattern, written M |=SATM ClassTable, as for each combination
of class and table equally named, a trace exists.

The notions of satisfaction presented so far make sure that the source, target and trace models
contain all necessary elements according to a specification. However, they do not check whether
unnecessary source and target elements or whether incorrect traces exist in the models. This
closed-world assumption for a given specification can also be considered in order to detect in-
correct traces that can be subsequently deleted by an operational mechanism, or else change the
source or target models to achieve consistency.

In practice, we generate OCL code from the patterns and use it against a given CT-graph
to check whether it satisfies a specification [GLKP10a]. As an example, Listing 1 shows the
generated OCL code to check forward satisfaction of pattern ClassTable.
1 operation forwardsat ClassTable() : Boolean {
2 return Class.allInstances().forAll(c | c.persistent=true and not Class.allInstances().exists(p | c.parent.includes(p))
3 implies Table.allInstances().exists(t |
4 C2T.allInstances().exists(m | m.source=c and m.target=t and checkatt ClassTable(c, t, m)));
5 }
6 operation checkatt ClassTable(c:Class, t:Table, m:C2T) : Boolean {
7 var X:=c.name;
8 var Y:=t.name;
9 return Y=X;

10 }

Listing 1: OCL code to check forward satisfaction of pattern in Figure 5(c).

Once we have seen different notions of satisfaction, the next subsection overviews the gener-
ation of operational mechanisms to enforce the patterns.

3.4 Generation of operational mechanisms

Each inter-modelling scenario requires a different operational mechanism. For example, in for-
ward transformation, the target and trace models are created from scratch starting from the source
model. In model matching and model traceability, a trace model is built mapping elements in the
source and target models.

We implement these operational mechanisms by generating operational TGG rules from the
patterns in the specification [GLO09], using a similar procedure to the generation of operational
TGG rules from declarative TGG rules [Sch94]. In our case, a TGG operational rule is a non-
deleting rule, made of a left-hand side (LHS) CT-graph L, a right-hand side (RHS) CT-graph
R, a CT-morphism r : L → R, a set NACpre = {ni : L → Ni} of negative application conditions

9 / 16 Volume 47 (2012)

Inter-Modelling with Constraints

c: Class t: Table:C2T

LHS
c: Class t: Table:C2T

RHS=NAC1

c: Class t: Table:C2T

NAC2 :C2T :Table

c: Class t: Table:C2T

P=false

a: Attribute
name=X
public=P

c: Column
name=Y

X=“__”+Y

:A2C
c: Class t: Table:C2T

PrivateAttribute2Column

P=false

a: Attribute
name=X
public=P

P=false

a: Attribute
name=X
public=P

c: Column
name=Y

X=“__”+Y

:A2C

c: Class t: Table:C2T

P=false

a: Attribute
name=X
public=P

c: Column
name=Y

X=“__”+Y

:A2C

(a) A pattern with enabling condition

c: Class t: Table:C2T

LHS
c: Class t: Table:C2T

RHS=NAC1

c: Class t: Table:C2T

NAC2 :C2T :Table

c: Class t: Table:C2T

P=false

a: Attribute
name=X
public=P

c: Column
name=Y

X=“__”+Y

:A2C
c: Class t: Table:C2T

PrivateAttribute2Column

P=false

a: Attribute
name=X
public=P

P=false

a: Attribute
name=X
public=P

c: Column
name=Y

X=“__”+Y

:A2C

c: Class t: Table:C2T

P=false

a: Attribute
name=X
public=P

c: Column
name=Y

X=“__”+Y

:A2C

(b) Generated forward rule

LHS

c: Class t: Table :C2T

P=false

RHS=NAC1

a: Attribute

name=X

public=P

c: Column

name=Y

X=“__”+Y

:A2C

c: Class t: Table

P=false

a: Attribute

name=X

public=P

c: Column

name=Y

X=“__”+Y

:C2T

(c) Generated model matching rule

LHS

RHS

a: Attribute c: Column :A2C
c: Class t: Table :C2T

P=false

a: Attribute

name=X

public=P

c: Column

name=Y

X=“__”+Y

:A2C

NAC

a: Attribute c: Column

(d) Generated trace deleting rule

Figure 7: Generation of operational TGG rules.

and a set NACpost = {n j : R → N j} of negative post-conditions. A rule can be applied to a CT-
graph M if a CT-morphism m : L → M exists, and there is no commuting morphism from any
negative application condition in NACpre. If such a CT-morphism exists, the rule can be applied
by glueing M and R through its common elements in L (i.e. by a pushout as seen in Figure 4).
As a result, M is enlarged with the new elements in R, and the formula in R is added to M as
well. After applying the rule, the negative post-conditions in NACpost are checked, and if some
of them are found in the resulting CT-graph, then the rule application is undone1. A grammar is
made of a set of rules. Applying a grammar means an iterated application of its rules (chosen in
random order) until no rule is further applicable.

In our case, if the inter-modelling scenario is forward transformation, then we generate a rule
from each P-pattern. The LHS of the rule contains the forward pre-condition of the pattern
(i.e. the source of its main CT-graph together with the enabling condition). The RHS of the rule
contains the main CT-graph. A number of negative application conditions are added to the rule to
ensure termination, as explained in [GLO09]. Moreover, if the specification contains N-patterns,
then these are transformed into negative post-conditions of the generated rule. As an example,
Figure 7(a) shows a P-pattern with an enabling condition, and Figure 7(b) contains the forward
transformation rule generated from the pattern.

Our generation procedure yields grammars that are terminating (i.e. their execution eventu-
ally stops) and correct (i.e. each generated terminal CT-graph forward-satisfies the specifica-
tion) [OGLE09]. However, in order to achieve completeness (i.e. being able to generate all pos-
sible models that satisfy the specification) we need to generate additional rules with increasingly

1 In practice, this is usually checked a priori by advancing the post-conditions to pre-conditions.

Proc. GTVMT 2012 10 / 16

ECEASST

EClass

EOperation

EReference

eSuperTypes

*
*

ClassBind

OpBind

RefBind

Instance

ClassRole OpRole RefRole

PatternRole

name: String

DesignPattern

name: String

1..*

Ecore Design pattern vocabulary

(a) Meta-model for design pattern discovery

cmpn: EClass

Abstract=true

cmps: EClass

Abstract=false

leaf: EClass

eSuperTypes

eSuperTypes

ch: EReference

containment=true

eStructuralFeatures

eType

: Instance

: ClassBind

: ClassBind

: ClassBind

: DesignPattern

: ClassRole

name=“Component”

: ClassRole

name=“Composite”

: ClassRole

name=“Leaf”

Composite Design Pattern

: EReference

containment=true

eType NAC
name=“Composite”

(b) Specifying the Composite design pattern

Figure 8: Inter-modelling for the discovery of design patterns.

bigger LHS. The generated grammar is in general not confluent because, indeed, a specification
may admit several target models that are considered correct transformations of the same source
model [OGLE09].

The generation of operational TGG rules to implement other inter-modelling scenarios like
model matching and traceability is similar [GLO11]. As an example, Figure 7(c) shows the
rule generated from the pattern in Figure 7(a) for model matching. Moreover, if we consider
a closed-world assumption, then we need additional rules to delete incorrect traces between
models. These rules can also be generated from the inter-modelling specifications. For instance,
the rule in Figure 7(d) deletes an incorrect trace between an attribute and a column if the trace
does not conform to any P-pattern in the specification. The NAC forbids deleting the trace in
case the trace context is the one specified by the PrivateAttribute2Column P-pattern,
assuming this is the only P-pattern containing such trace type.

4 Examples

Next, we present two applications of our inter-modelling approach.

4.1 Discovery of design patterns

We have implemented a general inter-modelling specification tool, based on PAMOMO, over
the Eclipse Modeling Framework (EMF) [SBPM08]. In this tool, patterns can be specified us-
ing a textual syntax, and then can be compiled into OCL expressions and EOL programs that
implement the notions of satisfaction and the behaviour of the operational TGG rules presented
before. In this subsection we show an application of this tool to the discovery of design patterns
on meta-models.

In the model matching scenario, an inter-model specifies similarity criteria between two pos-
sibly heterogeneous models. We have used this semantics to find and annotate occurrences of
design patterns [GHJV94] in meta-models. In particular, the two models to compare are: (a)
the meta-model and (b) a model with the design pattern roles, for each design pattern. In this
case, each inter-modelling pattern in the specification corresponds to the description of a design
pattern. Thus, whenever an occurrence of an inter-modelling pattern is found, the corresponding
traces are created [GLKP10a] to indicate a design pattern instance in the meta-model.

11 / 16 Volume 47 (2012)

Inter-Modelling with Constraints

Figure 8(a) shows an excerpt of the meta-models used for this example. The left part corre-
sponds to a small fragment of the ecore meta-model, while the right part contains the vocabulary
meta-model used to specify the roles of the elements (classes, operations, references) involved in
design patterns. The trace meta-model in between permits assigning design pattern roles to the
elements in the ecore meta-model. For this example, we used an extended theory where traces
may point to just one element in one of the models (e.g., node Instance) and edges in the
trace model are not mapped [GLKP10a]. Then, each design pattern is specified as a PAMOMO

inter-modelling pattern. Figure 8(b) shows a simplified version of the Composite design pat-
tern [GHJV94]. There is a disabling condition, which is depicted using a compact notation en-
closed in a polygon labelled as NAC together with the main CT-graph. The disabling condition
forbids containment references from the Leaf class to the Component class.

To identify design patterns in a meta-model, we have to give as input the ecore meta-model of
interest, as well as an instance of the meta-model to the right of Figure 8(a). The matching mech-
anism generates traces identifying the occurrences of the different design patterns specified in
the inter-modelling patterns. Such traces can be maintained correct by the generated operational
mechanisms, creating new traces whenever a new instance of a design pattern is created, and
deleting incorrect traces whenever some meta-model change deletes a design pattern instance.

4.2 Transformation contracts for automated testing

The most widely adopted means to build transformations is by the use of transformation im-
plementation languages like ATL [JABK08], ETL [KPP08] or simply Java. These approaches
are likely the most immediate to build transformations, as they are well supported by develop-
ment environments. However, their abstraction level is close to programming languages, so that
transformations often become difficult to program, test, maintain and understand.

To simplify the previous tasks, in previous works we have proposed using inter-models as a
way to specify requirements for model transformations. In particular, we use PAMOMO spec-
ifications as contracts for model transformation implementations, so that they can be used to
automate their testing [GLW+12]. A PAMOMO specification can be used to specify: (a) pre-
conditions, (b) post-conditions and (c) invariants that a transformation implementation needs to
fulfil. Pre-conditions specify conditions that any input models to the transformation must satisfy.
They are specified as PAMOMO patterns where the correspondence and target parts of the main
CT-graph is empty. Post-conditions specify conditions that every output model resulting from
the transformation must satisfy. They are specified as PAMOMO patterns where the source and
the correspondence parts of the main CT-graph is empty. Invariants specify properties that pairs
of source/target models should satisfy (i.e. patterns where the source and target are not empty).

Figure 9 shows a scheme of our approach. First, the transformation designer can gather re-
quirements for the transformation in the form of PAMOMO patterns. These patterns specify what
the transformation is to do. Then, an implementation could be constructed using any transfor-
mation language (e.g. ATL, ETL or simply Java)2. This implementation can be tested against its
requirements. For this purpose, we have currently two approaches. In the first one, we generate

2 Although we can produce operational mechanisms (operational TGGs) for model transformation from our specifica-
tions, we do not currently have a full implementation, which would rely on a combination of rewriting and constraint
solving.

Proc. GTVMT 2012 12 / 16

ECEASST

designer …

contract (requirements) 1

c: Class

P(InheritedAttributes)

p: Class

a: Attribute

name=A
c.general->includes(p)

t:Table

co:Column

name=A

Class Relational
pa: Package

s: Schema

isPersistent = true

name=C
name=C

p:Class

N(NoRedefinedAttrs)

a:Attribute

name=X

c:Class ar:Attribute

name=X
c.general->includes(p)

Class Relational

pa:Package

3

developer

tester

transformation
implementation2

automated
testing4

transformation

implementation

implementation

+

oracle

input model

output model

3

O
C

L
 c

o
r
r
e

c
t
n

e
s
s

a
s
s
e

r
t
io

n
s

Figure 9: Automated testing with PAMOMO

OCL expressions from the specification, which are evaluated before and after the transforma-
tion execution [GLKP10b]. In particular, the pre-conditions are checked before the execution,
whereas the post-conditions and invariants are checked after the execution. If the input/output
models satisfy all generated OCL expressions (i.e. the expressions return true) then it means
that the models satisfy the specification. In this way, the generated OCL code acts as a partial
oracle function for transformation testing. In our second approach, we generate QVT-Relations
code from the requirements (instead of OCL) [GLW+12]. The advantage is that executing the
QVT-Relations code in check-only mode using an engine like ModelMorf provides more infor-
mation about the reasons for failure than an OCL expression. In particular, the engine reports
the location in the models where the specification is not fulfilled. Please note that, normally,
PAMOMO contracts are under specifications of the behavior that transformations implementa-
tion should satisfy. Moreover, the meta-models used by the implementations can be refinements
of those used in the specification.

As an example, Figure 10 shows a pattern capturing a transformation requirement: inherited
attributes should be transformed into columns of the table created for the child class. The figure
shows to the left the OCL code generated from the pattern, which checks the satisfaction of the
pattern by a pair of models. To the right, the figure shows the QVT-Relations code generated
from the same pattern for the same purpose. In both cases, it can be observed that the generated
code is less compact than the original pattern [GLW+12].

5 Related Work

We define inter-modelling as the activity of modelling relations between models. Thus, we
describe such relations as models, as opposed to hard-coding specific mechanisms for each con-
crete scenario. In general, models tend to be more flexible, understandable and maintainable than
lower-level programs. Inter-models can be seen as a generalization of the term transformation-
model [BBG+06], comprising additional inter-modelling scenarios other than transformations.

Our approach is closely related to Triple Graph Grammars (TGGs) [Sch94]. In TGGs, an
inter-model is specified by a declarative TGG, from which operational TGG rules are derived for
different scenarios, like forward/backward transformation or model matching. Two models are

13 / 16 Volume 47 (2012)

Inter-Modelling with Constraints

Figure 10: A pattern capturing a transformation requirement (middle), and its compilation into
OCL (left) and QVT-Relations (right)

correctly related if they can be produced by the declarative TGG. Therefore, one must resort to
parsing. In our case, an inter-model is made of constraints, and two models are correctly related
according to some scenario if they satisfy all constraints in the specification. To our knowledge,
there is no equivalent to our negative patterns in TGGs. In practice, we check whether a set of
models satisfy a specification by deriving appropriate OCL expressions. Therefore, an advan-
tage of our approach is that we have different notions of satisfaction depending on the scenario.
Moreover, the generated OCL can be used in existing MDE tools. For instance, we can use ex-
isting OCL-based constraint solvers to generate models satisfying a specification, which may be
useful for transformation testing [Gue12].

Another inter-modelling tool is the ATLAS Model Weaver (AMW) [FBJ+05], which is used
to establish relationships (i.e. links) between models. The links are stored in a so-called weaving
model, conforming to a weaving meta-model. Simple source-to-target transformations can be
derived from a weaving model, but only when the source and target meta-models are very sim-
ilar. The definition of complex conditions enabling the creation of traces, like those that can be
encoded with PAMOMO, requires defining additional conditions at the model level by means of
patterns of source and target instances, which is not supported in AMW.

In [DMC12], a formal framework for inter-modelling is proposed based on Kleisly categories.
Instead of using patterns to specify relations between models, model queries are defined, which
enrich the models with derived information. Then, trace models are direct mappings between the
enlarged models. It is up to future work to identify how our patterns correspond to such queries,
and how such framework can be used for the inter-modelling scenarios we have presented.

6 Conclusions and Future Work

In this paper, we have argued that many MDE activities that involve several models can be
seen as a form of inter-modelling. We define inter-modelling as the activity of building models
that describe how other models should be related. Inter-modelling specifications can be used
in check-only mode to assert whether several models are correctly related with respect to the
specifications, for different scenarios (e.g. model transformation, model matching and model
traceability). They can be used operationally as well, so that the models can be manipulated to

Proc. GTVMT 2012 14 / 16

ECEASST

enforce their conformance to the specifications for a certain scenario. We have presented the
inter-modelling language PAMOMO, which follows a declarative, bi-directional, relational style.
Finally, we have shown several examples illustrating its use in practice.

We are currently working on using PAMOMO to specify transformation requirements, and for
transformation testing. In particular, we are exploring the automatic generation of input models
for testing, covering all relevant properties of the transformation according to the specification.
We are also working on providing tool support for using PAMOMO as a part of a family of
languages, called transML [GLK+12], for the engineering of model transformations.

Acknowledgements: Work sponsored by the Spanish Ministry, with project “Go Lite” (TIN2011-
24139), and the R&D programme of Madrid Region with project “e-Madrid” (S2009/TIC-1650).

Bibliography

[BBG+06] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, A. Lindow. Model trans-
formations? Transformation models! In MODELS’06. LNCS 4199, pp. 440–453.
Springer, 2006.

[DMC12] Z. Diskin, T. Maibaum, K. Czarnecki. Intermodeling, queries, and Kleisli cate-
gories. In FASE’12. LNCS 7212, pp. 163–177. Springer, 2012.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of algebraic graph trans-
formation. Springer-Verlag, 2006.

[FBJ+05] M. D. D. Fabro, J. Bézivin, F. Jouault, E. Breton, G. Gueltas. AMW: A generic
model weaver. In 1éres Journées sur l’Ingénierie Dirigée par les Modéles. 2005.
See also http://www.eclipse.org/gmt/amw/.

[GHJV94] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

[GL12] E. Guerra, J. de Lara. An algebraic semantics for QVT-Relations check-only trans-
formations. Fundam. Inform. 114(1):73–101, 2012.

[GLK+12] E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige, O. M. dos Santos. Engineer-
ing model transformations with transML. Software and Systems Modeling In press,
2012.

[GLKP10a] E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige. Inter-modelling: From theory to
practice. In MoDELS (1). LNCS 6394, pp. 376–391. Springer, 2010.

[GLKP10b] E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige. A visual specification language
for model-to-model transformations. In VLHCC’10. Pp. 119–126. IEEE CS, 2010.

[GLO09] E. Guerra, J. de Lara, F. Orejas. Pattern-based model-to-model transformation:
Handling attribute conditions. In ICMT’09. LNCS 5563, pp. 83–99. Springer, 2009.

15 / 16 Volume 47 (2012)

http://www.eclipse.org/gmt/amw/

Inter-Modelling with Constraints

[GLO11] E. Guerra, J. de Lara, F. Orejas. Inter-modelling with patterns. Software and Systems
Modeling In press, 2011.

[GLW+12] E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,
J. Schönböck, W. Schwinger. Automated verification of model transformations
based on visual contracts. Automated Software Engineering Journal In press, 2012.

[Gue12] E. Guerra. Specification-driven test generation for model transformations. In
ICMT’12. LNCS 7307, pp. 40–55. Springer, 2012.

[JABK08] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev. ATL: A model transformation tool.
Science of Computer Programming 72(1-2):31 – 39, 2008. See also http://www.
emn.fr/z-info/atlanmod/index.php/Main Page. Last accessed: Nov. 2010.

[Kol09] D. S. Kolovos. Establishing correspondences between models with the Epsilon
Comparison Language. In ECMDA-FA’09. LNCS 5562, pp. 146–157. Springer,
2009.

[KPP06] D. S. Kolovos, R. F. Paige, F. Polack. The Epsilon Object Language (EOL). In
ECMDA-FA’06. LNCS 4066, pp. 128–142. Springer, 2006.

[KPP08] D. S. Kolovos, R. F. Paige, F. Polack. The Epsilon Transformation Language. In
ICMT’08. LNCS 5063, pp. 46–60. Springer, 2008.

[LG08] J. de Lara, E. Guerra. Pattern-based model-to-model transformation. In ICGT.
LNCS 5214, pp. 426–441. 2008.

[Mod] ModelMorf. http://www.tcs-trddc.com/trddc website/scripts/project detail.php?
lab=SWRD&project id=44. Last accessed: April 2012.

[OCL] OCL. http://www.omg.org/spec/OCL/2.3.1/.

[OGLE09] F. Orejas, E. Guerra, J. de Lara, H. Ehrig. Correctness, Completeness and Termina-
tion of Pattern-Based Model-to-Model Transformation. In CALCO’09. LNCS 5728,
pp. 383–397. Springer, 2009.

[PDK+11] R. F. Paige, N. Drivalos, D. S. Kolovos, K. J. Fernandes, C. Power, G. K. Olsen,
S. Zschaler. Rigorous identification and encoding of trace-links in model-driven
engineering. Software and System Modeling 10(4):469–487, 2011.

[QVT] QVT. http://www.omg.org/docs/ptc/05-11-01.pdf.

[SBPM08] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse Modeling
Framework, 2nd Edition. Addison-Wesley Professional, 2008.

[Sch94] A. Schürr. Specification of graph translators with triple graph grammars. In WG’94.
LNCS 903, pp. 151–163. Springer, 1994.

[WP10] S. Winkler, J. von Pilgrim. A survey of traceability in requirements engineering and
model-driven development. Software and System Modeling 9(4):529–565, 2010.

Proc. GTVMT 2012 16 / 16

http://www.emn.fr/z-info/atlanmod/index.php/Main_Page
http://www.emn.fr/z-info/atlanmod/index.php/Main_Page
http://www.tcs-trddc.com/trddc_website/scripts/project_detail.php?lab=SWRD&project_id=44
http://www.tcs-trddc.com/trddc_website/scripts/project_detail.php?lab=SWRD&project_id=44
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/docs/ptc/05-11-01.pdf

	Introduction
	Inter-Modelling Activities
	PaMoMo: A Specification Language for Inter-Modelling
	Models and their relations, algebraically
	The PaMoMo specification language
	Satisfaction checking
	Generation of operational mechanisms

	Examples
	Discovery of design patterns
	Transformation contracts for automated testing

	Related Work
	Conclusions and Future Work

