
Electronic Communications of the EASST
Volume 52 (2011)

7th Educators’ Symposium @ MODELS 2011:
Software Modeling in Education

(EduSymp2011)

Teaching Programming Students how to Model: Challenges &
Opportunities

Robert France

2 pages

Guest Editors: Marion Brandsteidl, Andreas Winter
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Teaching Programming Students how to Model: Challenges &
Opportunities

Robert France

Department of Computer Science
Colorado State University

Fort Collins, CO80532, USA
france@cs.colostate.edu

Abstract: Computer Science students who have one or more years of basic pro-
gramming experience and little or no exposure to abstractions above the code level,
often struggle to grasp modeling concepts and practices in more advanced software
development courses. In this talk I discuss some of the factors that contribute to
this situation and propose a learning process in which the abstraction gap between
models and implementations is gradually widened as student modeling skills are
developed

Keywords: model-driven development, modeling-in-the-small, modeling-in-the-
large, teaching software modeling concepts

1 Overview of Talk

The focus on programming abstractions in early programming courses may be a contributing
factor to the difficulty some programming students have with mastering software modeling con-
cepts. Students that have invested significant effort in learning how to think about solutions
using only abstractions provided by programming languages, may find it difficult to let go of
those “low-level” abstractions and think about problems and solutions in more abstract, but still
rigorous terms. This view of the source of student difficulties is somewhat optimistic. It pre-
sumes that students have achieved a level of programming mastery that makes them comfortable
with program-level abstractions. In my experience, student difficulties can also stem from their
struggle with identifying and using appropriate abstractions, including programming abstrac-
tions. While students may have developed some mastery of programming language syntax, they
may not yet have grasped how to program. Most educators would agree that learning how to
use a particular programming language is relatively easier than learning how to program. If stu-
dents have difficulty formulating solutions using programming abstractions, then they are likely
to struggle with identifying and using more abstract concepts that can be used as the basis for
building well-designed programs (i.e., programs built using good programming abstractions).

Its interesting to explore the source of difficulties from a student perspective. Many of the
students who discussed their problems with me feel that modeling adds accidental complexity to
software development. They often point to the steep learning curves associated with modeling
tool suites, and the difficulty of determining the “goodness” of a model they create. On the latter
point, students find it difficult to determine whether the abstractions they use in their models are

1 / 2 Volume 52 (2011)

mailto:france@cs.colostate.edu


Teaching Students how to Model

appropriate or “fit-for-purpose”. Students also have difficulty determining what information to
include and not include in a model. In some cases students use models as an excuse to think
informally about a problem or solution, often omitting critical information needed by a model
to fulfill its purpose. Whilst this may be appropriate when using models as sketches, it is not
appropriate for more rigorous use of models (e.g., use of models to produce implementations or
to formally analyze functional properties).

In addition to the above, students often question the merits of learning modeling techniques.
From their perspective, modeling becomes relevant if it makes the programming task easier, but
this is not an experience they all have. In addition, modeling becomes relevant if it is viewed as
a marketable skill. In my classes, some students took a deeper interest in modeling, not because
I convinced them of its merits, but because company recruiters started to ask student job seekers
about their modeling background.

In the past I used a waterfall-like approach to introducing modeling concepts, starting from
requirements modeling and drilling down to detailed design modeling. This top-down approach
to teaching modeling is supported by popular modeling textbooks. It has become clear to me
that having students begin their modeling experience at an abstraction level that is far removed
from programming abstractions can be counterproductive. Top-down modeling approaches can
overwhelm students whose previous experience consists solely of developing small programs
with fully specified requirements. In my classes, students now start by developing what I call
modeling-in-the-small (MITS) skills, and then move to developing more advanced modeling-in-
the-large (MITL) skills. MITS focuses on the use of models to describe to describe program
designs. In this case the abstraction gap (between the program design model and the program)
is small and thus less challenging for the students to bridge. In the MITS part of the course
students are given stable, well-defined requirements of small programs and are required to build
program design models from which implementations can be generated. In the MITL section,
attention turns to modeling larger systems with problematic requirements statements, and that
have architectures consisting of three or more non-trivial subsystems.

The notions of MITS and MITL can be extended across programming courses in a Com-
puter Science program. Introductory programming courses can focus on developing MITS skills
hand-in-hand with the development of programming skills, while more advanced software de-
velopment courses can focus on developing MITL skills.

To support effective development of MITS and MITL skills it would help to have the follow-
ing available: (1) Modeling patterns and anti-patterns that distill expert modeling experience, (2)
A repository of models that illustrate good and bad modeling practices (some are already avail-
able in the MDD repository, ReMoDD - http://www.cs.colostate.edu/remodd), (3) Text books
that focus on developing modeling skills rather than on covering syntactic and semantic lan-
guage concepts, and (4) Lightweight modeling tools that tolerate incompleteness and support
exploratory design.

I’ll conclude with a hypothesis that is based on my personal observations: A good software
design modeler is a good programmer; a good programmer is not necessarily a good design
modeler. Formal empirical studies that test this and other similar hypotheses are needed if we
are to effectively develop student modeling skills.

Proc. EduSymp2011 2 / 2

http://www.cs.colostate.edu/remodd

	Overview of Talk

