
Electronic Communications of the EASST
Volume 52 (2011)

7th Educators’ Symposium @ MODELS 2011:
Software Modeling in Education

(EduSymp2011)

Avoiding OCL specification pitfalls

Dan Chiorean, Ileana Ober, Vladiela Petraşcu

10 pages

Guest Editors: Marion Brandsteidl, Andreas Winter
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Avoiding OCL specification pitfalls

Dan Chiorean1, Ileana Ober2, Vladiela Petraşcu3

1chiorean@cs.ubbcluj.ro, Babeş-Bolyai University, Cluj-Napoca, Romania
2ober@irit.fr, Université Paul Sabatier, Toulouse, France

3vladi@cs.ubbcluj.ro, Babeş-Bolyai University, Cluj-Napoca, Romania

Abstract: This paper discusses about teaching software modeling by using OCL
specifications, in the context in which the web represents the main source of infor-
mation. The raise of the interest for models induced a higher need for clear and
complete specifications. In case of models specified by means of MOF-based lan-
guages, adding OCL constraints proved to be an interesting answer to this need.
Several OCL examples posted on web include hasty specifications, that are often
dissuasive with respect to complementing models with OCL specification. OCL
beginners, and not only, need to know how to avoid potential specification traps.

Our proposal is based on a complete and unambiguous description of requirements,
that represents the first step towards good OCL specifications. The work highlights
several major aspects that need to be understood and complied with to produce
meaningful and efficient OCL specifications. This approach was tested while teach-
ing OCL at Babes-Bolyai University of Cluj-Napoca.

Keywords: rigorous modeling, OCL specifications, meaningful specifications, effi-
cient specifications, model understanding

1 Introduction

OCL is a language whose spread has not confirmed the optimistic expectations expressed since
its inclusion as part of UML 1.1, and then as part of all OMG MOF-based modeling languages.
Being much more active in promoting the language compared to its industrial counterpart, the
academic community has published several reviews in this respect, identifying among the causes
of this state of facts the ambiguities and gaps from the language specification, as well as the
immaturity of OCL tools, as opposed to the now classical IDEs (Integrated Development En-
vironments). Although there has been progress in the above mentioned fields, the developers’
feedback is far from satisfactory. One possible reason is given by both the lack of illustrative
examples for the advantages of using OCL, and the availability of a large number of examples
which, at best, cause confusion among readers. An experience of over ten years in teaching OCL
to computer science students (at both bachelor and master levels) has allowed us to conclude
that, in addition to providing positive recommendations (articles, books, tools), it is mandatory
to warn potential OCL users (students, in this case) on the pitfalls enclosed by negative exam-
ples. As web users, students are exposed to both clear, well-written documents and to documents
containing pitfalls, on whose potential occurrence teachers have the duty of raising warnings.
However, merely showing that particular models or specifications are inadequate or even incor-

1 / 10 Volume 52 (2011)

mailto:chiorean@cs.ubbcluj.ro
mailto:ober@irit.fr
mailto:vladi@cs.ubbcluj.ro

Avoiding OCL specification pitfalls

rect with respect to the purpose they were created for is not enough. Presenting at least one
correct solution and arguing on its advantages is a must.

Complementing models with OCL is meant at eliminating specifications ambiguities, increas-
ing rigor, reaching a full and clear definition of query operations, as well as promoting design by
contract through the specification of pre and post-conditions.

Development of models and applications takes place as an iterative incremental process, which
allows developers to return to earlier stages whenever the case. Enhancing models with OCL
specifications facilitates their deeper understanding, through both rigor and extra detail. When-
ever the results of evaluating OCL specifications suggest a model change, this change should only
be done if the new version is more advantageous compared to the previous ones, as a whole. The
use of OCL specifications should contribute to the requirements validation. An application is
considered as finished only when there is full compliance among its requirements, its model, and
itself.

The remaining of this paper is organized as follows. Section 2 explains the reasons why
teaching OCL through examples integrated in models is more advantageous compared to the
classical way of teaching OCL. In Section 3, we argue on the necessity of understanding the
model’s semantics, which is the first prerequisite for reaching a good specification. Section 4
emphasizes the fact that we need to consider several modeling solutions to a problem and choose
the most advantageous one with respect to the aspects under consideration. Section 5 shows the
role of OCL in specifying the various model uses, while Section 6 justifies through an example
the need of using snapshots for validating specifications. The paper ends with conclusions.

2 Teaching OCL Through Examples Integrated in Models

The teaching of OCL can be achieved in various ways. The classical approach emphasizes the
main language features: its declarative nature and first order logic roots, the type system, the
management of undefined values, the collection types together with their operations and syntax
specificities, and so on [CD10], [por]. Many examples used for collections employ expressions
with literals, which are context-independent and easy to understand.

OCL is a textual language which complements MOF-based modeling languages. The stu-
dents’ interest in understanding and using the language increases if there are convinced with
respect to the advantages earned from enriching models with OCL specifications. To convince
students on the usefulness of using OCL, the chosen examples should be suggestive in terms
of models and enlightening in terms of earned benefits. That is why we have considered more
appropriate taking an “inverted curriculum”-type of approach, by introducing OCL through ex-
amples in which the specifications are naturally included in the models. Unfortunately, along
with positive OCL specification examples, the existing literature also offers plenty of negative
ones, starting with the WFRs (well-formedness rules) that define the static semantics of modeling
languages. The negative examples may wrongly influence students’ perception. Therefore, we
argue that a major issue in teaching OCL to students is explaining them the basic principles that
should be obeyed when designing OCL specifications, principles that should help them avoid
potential pitfalls.

An example that has been probably meant to argue for the use and usefulness of OCL (taking

Proc. EduSymp2011 2 / 10

ECEASST

into account the title of the paper in question) is the one enclosed by the reference [Tod11]. The
examples and solutions proposed by this article provide an excellent framework for highlighting
important aspects that should be taken into account within the modeling process. In the second
semester of the 2010-2011 academic year, we have used these examples in order to warn students
on the pitfalls that should be avoided when enriching models with OCL specifications.

3 Understanding the Model’s Semantics

A model is an abstract description of a problem from a particular viewpoint, given by its in-
tended usage. The design model represents one of the possible solutions to the requirements of
the problem to solve. It is therefore essential for the students to realize the necessity of choosing a
suitable solution with respect to the aspects under consideration. The first prerequisite for design-
ing such a model is a full understanding of the problem at hand, reflected in a thorough informal
requirements specification. Nygaard’s statement “Programming is Understanding” [Ven04] is to
be understood as “Modeling is Understanding”, since “Object-oriented development promotes
the view that programming is modeling” [Nie11]. Understanding is generally acquired through
an iterative and incremental process, in which OCL specifications play a major role. That is
because, “if you don’t understand something, you can’t code it, and you gain understading trying
to code it.” [Ven04].

The modeling example from [Tod11], mentioned in the previous section, describes parents-
children relationships in a community of persons. However, the model requirements description
is incomplete with respect to both its intended functionalities and its contained information.
In such cases, the model specification, both the graphical and the complementary textual one
(through Additional Operations - AOs, invariants, pre and post-conditions), should contribute
to enriching the requirements description. The process is iterative and incremental, marked by
repeated discussions among clients and developers, until the convergence of views from both
parties.

The proposed solution should allow a correct management of information related to persons,
even when this information is incomplete. Unknown ancestors of a particular person is such a
case (sometimes not even the natural parents are known). For such cases, the model provided in
[Tod11] and reproduced in Figure 1 is inadequate, due to the infinite recursion induced by the
self-association requiring each person to have valid references towards both parents. Snapshots
containing persons with at least one parent reference missing will be thus qualified as invalid.

Produce more accurate domain models by using OCL constraints
Ana Todorova (ana.todorova@orange-ftgroup.com), Research and Development Engineer, France Télécom-Orange

Summary: To build more precise models that are as close as possible to the reality of the relevant business, we often need to add constraints. To show
how to build useful and accurate domain models, this article explains the validation process of a domain model written in UML and OCL with IBM®
Rational® Software Architect and using the EMF validation framework.

Date: 15 Mar 2011
Level: Advanced
PDF: A4 and Letter (679KB | 17 pages)Get Adobe® Reader®

Activity: 4821 views
Comments: 0 (View | Add comment - Sign in)

 Average rating (5 votes)
Rate this article

Software modeling has traditionally been a synonym for producing diagrams. Most models consist of several squares and arrows. The information
conveyed by such a model has a tendency to be incomplete, informal, imprecise and, sometimes, inconsistent. Therefore, one of the goals of software
modeling is the creation of models that are accurate and conform to reality.

Requirements of an accurate domain model

Let's consider a genealogical tree as an example, starting with the diagram in Figure 1. The UML model of the genealogical tree shows that a Person is
defined by name and sex and can have or not have children, who are also Persons. Furthermore, it shows that one Person has exactly two parents, who are
also Persons. This means that the two parents can have the same sex, but that is genetically impossible. Therefore, this model is not accurate.

Figure 1. Genealogical tree model

A UML diagram, such as a class diagram, is generally not precise enough to provide all relevant elements of a business model. It certainly expresses
constraints through multiplicities, but other constraints often remain implicit. If we need to describe additional constraints for the model objects, these are
often described in a natural language. This practice has always shown that it leads to ambiguities.

Formal languages have been developed to avoid these ambiguities. The disadvantage of the traditional formal languages is that they are used by people
who possess a solid mathematical knowledge, but they are difficult to use for a modeling system. OCL (Object Constraint Language) was developed to
fill this gap. It's a formal language that remains easy to read and write. The expressions written in OCL can be interpreted without ambiguities by people
in different roles, such as an analyst and a developer, for example.

To create a precise and complete model, we need both UML diagrams and OCL expressions. Without the OCL expressions, the model would be severely
underspecified. The UML diagrams remain indispensable for the representation of classes and associations, but the OCL expressions would refer to
nonexistent model elements, because there is no way in OCL to specify classes and associations. It's only when we combine the diagrams and the
constraints that we can completely specify the model.

With regard to correctly specify the model of t genealogical tree represented in Figure 1, we need to add this constraint that specifies that the two parents
have different genders, or sexes:

Figure 2. Genealogical tree model with an OCL constraint

{ self.parents->asSequence()->at(1).sex <> self.parents->asSequence()->at(2).sex }

Page 1 of 10Produce more accurate domain models by using OCL constraints

7/19/2011https://www.ibm.com/developerworks/rational/library/accurate-domain-models-using-ocl-...

Figure 1: Genealogical tree model [Tod11]

Both this problem and its solution, consisting in relaxing the parents multiplicity to 0..2,

3 / 10 Volume 52 (2011)

Avoiding OCL specification pitfalls

are now “classical” [Cab11]. Partial or total lack of references (1 or 0 multiplicity) indicates that
either one or both parents are unknown at that time.

The only constraint imposed in [Tod11] on the above-mentioned model requires the parents of
a person to be of different sexes. Following, there is its OCL specification, as given in [Tod11].
self.parents->asSequence()->at(1).sex <> self.parents->asSequence()->at(2).sex

Although apparently correct, this expression encloses a few pitfalls:
1. In case there are valid references to both parents, but the sex of one of them is not specified,

the value of the corresponding subexpression is undefined and the whole expression re-
duces to either Sex::Male <> undefined or Sex::Female <> undefined.
This later expressions provide tool-dependent evaluation results (true in case of USE
[use] and undefined in case of OCLE [LCI]). The results produced by OCLE comply
with the latest OCL 2.3 specification [OMG11]. However, as the topic of evaluating un-
defined values has not yet reached a common agreement, students should be warned on
this.

2. In case at least one parent reference is missing and the multiplicity is 2, the evaluation
of WFRs should signal the lack of conformance among the multiplicity of links between
instances and the multiplicity of their corresponding association. To be meaningful, the
evaluation of model-level constraints should be performed only in case the model satisfies
all WFRs. Unfortunately, such model compilability checks are not current practice. In
case the parents multiplicity is 0..2, the model will comply with the WFRs, but the
constraint evaluation will end up in an exception when trying to access the missing item
(due to the at(2) call);

3. The OCL expression would have been simpler (not needing the asSequence() call), in
case an ordering relation on parents had been imposed at the model level.

Ordering the parents collection with respect to sex (such that the first element points to the
mother and the second to the father) allows writing a more detailed invariant shape. Following,
there is the OCL specification we propose in this respect, in case both parents are known. In
case of invariant violation, the debugging information is precise, allowing to easily eliminate the
error’s cause.
context Person

inv parentsSex:
self.parents->size = 2 implies
Sex::Female = self.parents->first.sex and Sex::Male = self.parents->last.sex

Yet, a correct understanding of the model in question leads to the conclusion that the mere
constraint regarding the parents’ sex is insufficient, despite its explicit specification for each
parent. As rightly noticed in [Cab11], a person cannot be its own child. A corresponding OCL
constraint should be therefore explicitly specified.
context Person

inv notSelfParent:
self.parents->select(p | p = self)->isEmpty

However, restricting the age difference among parents and children to be at least the minimum
age starting from which human reproduction is possible (we have considered the age of sixteen)
leads to a stronger and finer constraint than the previous, that may be stated as follows:

Proc. EduSymp2011 4 / 10

ECEASST

context Person
inv parentsAge:

self.parents->reject(p | p.age - self.age >= 16)->isEmpty

In the above expression, each Person is assumed to own an age attribute. The reject
subexpression evaluates to the collection of parents breaking the constraint in question.

The fulfillment of this constraint could be also required at any point in the construction of the
genealogical tree. Assuming any parent to be created prior to any of its children, this restriction
could be stated by means of the precondition included in the contract below.
context Person::addChildren(p:Person)

pre childrenAge:
self.children->excludes(p) and self.age - p.age >= 16

post chidrenAge:
self.children->includes(p)

The conclusion that emerges so far is that the lack of OCL specifications prohibiting undesired
model instances (such as parents having the same sex, self-parentship or the lack of a minimum
age difference among parents and children) seriously compromises model’s integrity. The first
prerequisite for models to reach their purpose is to have a complete and correct specification of
the requirements, and to deeply understand them. An incomplete specification reveals its limits
when trying to answer questions on various situations that may arise. Specifying and evaluating
OCL constraints should enable us to identify and eliminate bugs, by correcting the requirements
and the OCL specifications themselves. Another conclusion, as important, is that the model
proposed in the analyzed paper does not fully meet the needs of such a problem, and we are
therefore invited to seek for a better solution.

4 Modeling Alternatives

A model equivalent to that of Figure 1, but which is more adequate to the specification of the
required constraints, is the one from Figure 2. The model in question contains two recursive as-

NPerson
sex : Sex
age : Integer
name : String 0..n

0..1

0..n

0..1

+mChildren

0..n

+mother 0..1

+fChildren 0..n

+father

0..1

User

Company

0..1

0..n

+employer 0..1

+employee

0..n

Library LibraryContract

0..n

0..1

+userContract 0..n

+user

0..1

0..11..n

+company

0..1

+companyContract

1..n0..n1

+library

1

+contract

0..n

Figura x ‐ Library model explicitat

Intrucat un rol principal constrangerilor este sa nu lase posibilitatea unor interpretari multiple, procesul
specificarii lor trebuie sa considerat ca o invitatie pentru descrierea cat mai completa si riguroasa a
modelului, nu doar a constrangerilor. In Library model contractul despre care se vorbeste este o
intelegere convenita intre Library si User sau Company. Desi nu apare in modelul din articol, clasa
Library a fost introdusa doar pentru claritatea celor doua parti ale contractului. In consecinta, clasa
Contract modeleaza contractele pe care library le poate avea cu cate un utilizator sau cate o companie.
Pentru a fi mai rigurosi, credem ca o denumire mai potrivita ar fi LibraryContract cum se poate vedea in
figura x. Numele de rol sunt deasemenea foarte importante. In consecinta, intre User si Company ele
sunt: employer si employee. Am explicitat si numele de rol intre user si LibraryUser respectiv Company
si LibraryUser, denumindule userContract, respectiv companyContract. Ramane nejustificata problema
multiplicitatilor pentru userContract si companyContract. Pentru a nu lungi analiza, ele sunt aceleasi din
modelul initial. Mentionam doar ca 0..n si 1..n ar putea fi inlocuite chiar cu 0..1

Fig 12

Analiza snapshotului prezentat in Fig 12, ne conduce la concluzia ca linkurile pe care contractul
contractQYR le are cu utilizatorul userT6D si respectiv company80Y nu pot fi acceptate deoarece
partenerul library nu poate avea alti doi parteneri la acelasi contract ci numai unul.

Figure 2: An alternative model for expressing parents-children relationships

sociations: one named MotherChildren, with roles mother[0..1] and mChildren[*]
and the other named FatherChildren, with roles father[0..1] and fChildren[*].

For this model, the constraint regarding the parent’ sex can be stated as proposed below.

5 / 10 Volume 52 (2011)

Avoiding OCL specification pitfalls

context NPerson
inv parentsSex:

(self.mother->size = 1 implies Sex::Female = self.mother.sex) and
(self.father->size = 1 implies Sex::Male = self.father.sex)

Compared to its equivalent constraint stated for the model in Figure 1, the above one is wider,
since it also considers the case with a single parent and checks the sex constraint corresponding
to the parent in question. The problem with the previous model (the one in Figure 1) is that
we cannot count on an ordering when there is a single parent reference available. The parent
in question would always be on the first position, irrespective of its sex. As opposed to this, in
Figure 2, the parents’ roles are explicitely specified, with no extra memory required.

With respect to the second constraint, we propose the following specification in context of the
model from Figure 2.

context NPerson
inv parentsAge:

self.mChildren->reject(p | self.age - p.age >= 16)->isEmpty and
self.fChildren->reject(p | self.age - p.age >= 16)->isEmpty

The corresponding pre and post-conditions are similar to their equivalents from the previous
section, therefore their specification could be left to students, as homework.

5 Explaining the Intended Model Uses

Any requirements specification should include a detailed description of the intended model uses.
In case of the model under consideration, it is important to know what kind of information may
be required from it. Is it merely the list of parents and that of all ancestors? Do we want the
list of ancestors ordered, with each element containing parents-related information, in case such
information is available? Do we only need information regarding the male descendents of a
person?

In case of the initial model in which the recursive association is ordered, the list of all ancestors
of a person can be easily computed as follows.

context Person
def allAncestors():Sequence(Person) =

self.parents->union(self.parents.allAncestors())

The evaluation result for the constraint above is correct only if we assume the genealogical
tree as loops-free. This latter constraint is implied by the one restricting the minimum age dif-
ference between parents and children. In the absence of this assumption, the OCL expression’s
complexity increases.

A simpler alternative for this case employs the semantic closure operation on collections. This
operation, now included in OCL 2.3, has been implemented in OCLE ever since its first release
and returns a set.

context Person
def allAncestors():Sequence(Person) =
(Sequence{self}->closure(p | p.parents))->asSequence

Proc. EduSymp2011 6 / 10

ECEASST

The asSequence() operation orders the collection it is applied on with respect to the in-
sertion time of each element. In OCLE, elements appear in the same order they were added to
the set.

In case of the model from Figure 2, the use of the Tuple data type allows us to design a speci-
fication enclosing more suggestive information. Following, there is the proposed specification.

context Nperson
def parents:TupleType(mother:Nperson, father:NPerson) =
Tuple{mother = self.mother, father = self.father}

def allAncestors:Sequence(TupleType(mother:Nperson, father:NPerson))=
Sequence{self.parents}->closure(i |

i.mother.parents, i.father.parents))->asSequence->prepend(self.parents)

6 Using snapshots to better understand and improve the require-
ments and the model

One of the primary roles of constraints is to avoid different interpretations of the same model.
Therefore, the specification process must be seen as an invitation for a complete and rigorous
description of the problem, including the constraints that are part of the model. The model
must conform to the informally described requirements, even before attaching constraints. In
case this condition is not fulfilled, the constraints specification process must ask for additional
information, meant to support an improved description of requirements, a deeper understanding
of the problem, and by consequence, a clear model specification.

Despite its importance, as far as we know, this issue has not been approached in the literature.
That is why, in the following, we will try to analyze the second example presented in [Tod11],
concerning a library model. This example aims to model the contractual relationships between
a library, its users and companies associated with the library. The only informal specification
provided is the following: “In this example, we’ll assume that the library offers a subscription
to each person employed in an associated company. In this case, the employee does not have
a contract with the library but with the society he works for, instead. So we add the following
constraint (also shown in Figure 10): . . .”.

First of all, we would like to remind the definition of a contract, as taken from [glo]: “A
binding agreement between two or more parties for performing, or refraining from performing,
some specified act(s) in exchange for lawful consideration.” According to this definition and to
the informal description of requirements, we conclude that, in our case, the parts in the contract
are: the user on the one hand, and the library or the company, on the other hand. Therefore,
the natural context for the constraint is Contract. As one of the involved parts is always the
user, the other part is either the library (in case the user is not employed in any of the library’s
associated companies), or the company (in case the user is an employee of the company in
question).

Regarding the conformance among requirements, on the one side, and model, on the other side
(the class diagram, the invariant presented in Figure 10 and the snapshots given in Figures 12 and
13), several questions arise. Since a thorough analysis is not allowed by the space constraints
of this paper, in the following, we will only approach the major aspects related to the probable

7 / 10 Volume 52 (2011)

Avoiding OCL specification pitfalls

usage of the model. In our opinion, this concerns the information system of a library, that stores
information about libray users, associated companies, books, book copies and loans. The library
may have many users and different associated companies.

Since the Library concept is missing from the model, we have no guaranty that, in case
the user is unemployed, the second participant to the contract is the library. Moreover, in case
the user is employed, the invariant proposed in [Tod11] does not ensure that both the user and
the corresponding company are the participants to the contract. In our vision, two invariants are
needed - one in the context of Contract and the other in the context of User.

Figure 3: A revised version of an excerpt of the library model from [Tod11]

context Contract
inv onlyOneSecondParticipant:
self.library->isEmpty xor self.company->isEmpty

context User
inv theContractIsWithTheEmployer:
if self.employer->isEmpty
then self.contract.library->notEmpty
else self.employer = self.contract.company

endif

The above constraints forbid situations like those from Figure 4 (in which the user u1 has
a contract c1 both with the library l1 and the company comp1) and Figure 5 (in which the
user is employed by comp3, but its contract c2 is with comp2). This undesirable model

Figure 4: The user has a contract with both the library and the company

instantiations are not ruled out by the invariant proposed in [Tod11] in the User context, namely
self.contract->notEmpty xor self.company <> null.

Proc. EduSymp2011 8 / 10

ECEASST

Figure 5: The user is employed by comp3, but its contract c2 is with comp2

Even more, in Figure 12 from [Tod11], contractB65 and contractR43 have only one
participant, company80Y, a stange situation in our oppinion. Also, in the same figure, if
userT6D is unemployed by company80Y, and, by consequence, contractQVR is between
userT6D and the library, we cannot understand why company80Y (which does not include
among its employees userT6D) has a reference towards contractQVR between userT6D
and the library.

Unfortunately, as stated before, our questions do not stop here. In Figure 10 from [Tod11], a
user may have many contracts, but in the requirements a different situation is mentioned. In the
class diagram of Figure 10, all role names are implicit, which burdens the inteligibility of the
model.

In this example, the snapshots meant to be used for testing have supported us in understanding
that the requirements are incomplete and, by consequence, so are the model and the proposed
invariant. In such cases, improving the requirements is mandatory.

7 Conclusions

The building of rigorous models, which are consistent with the problem requirements and have
predictable behavior, relies on the use of constraints. Such constraints are not independent, they
refer to the model in question. Consequently, the model’s accuracy (in terms of the concepts
used, their inter-relationships, as well as conformance to the problem requirements) is a manda-
tory precondition for the specification of correct and effective constraints. In turn, a full under-
standing of the model’s semantics and usage requires a complete and unambiguous requirements
specification. Requirements’ validation is therefore mandatory for the specification of useful
constraints.

The examples presented in this article illustrate a number of bugs caused by failure to fulfill
the above-mentioned requirements. Unfortunately, the literature contains many erroneous OCL
specifications, including those concerning the UML static semantics, in all its available releases.
Having free access to public resources offered via the web, students should know how to identify
and correct errors such as those presented in this article. Our conclusion is that the common
denominator for all the analyzed errors is hastiness: hastiness in specifying requirements, hasti-
ness in designing the model (OCL specifications included), hastiness in building and interpreting
snapshots (test data).

There are, undoubtedly, several ways of teaching OCL. The most popular (which we have
referred as the “classic” one, due to its early use in teaching programming languages), focuses on

9 / 10 Volume 52 (2011)

Avoiding OCL specification pitfalls

introducing the language features. OCL being a complementary language, we deemed important
to emphasize from the start the gain that can be achieved in terms of model accuracy by an
inverted curriculum approach. In this context, we have insisted on the need of a complete and
accurate requirements specification, on various possible design approaches for the same problem,
as well as on the necessity of testing all specifications by means of snapshots.

However, the teaching and using of OCL has a number of other very important issues that
have not been addressed in this article, such as the specifications’ intelligibility, their support for
model testing and debugging, code and test data generation, language features, etc. The theme
approached by this article only concerns, in our view, a first introduction to the language and its
purpose.

Acknowledgements: This work was supported by CNCSIS-UEFISCSU, project number PNII-
IDEI 2049/2008.

Bibliography

[Cab11] J. Cabot. Common UML errors (I): Infinite recursive associations. 2011. http://
modeling-languages.com/common-uml-errors-i-infinite-recursive-associations/.

[CD10] J. Chimiak-Opoka, B. Demuth. Teaching OCL Standard Library: First Part of an
OCL 2.x Course. ECEASST 34, 2010.

[glo] InvestorWords. http://www.investorwords.com/1079/contract.html.

[LCI] LCI (Laboratorul de Cercetare ı̂n Informatică). Object Constraint Language Environ-
ment (OCLE). http://lci.cs.ubbcluj.ro/ocle/.

[Nie11] O. Nierstrasz. Synchronizing Models and Code. 2011. Invited Talk at TOOLS 2011
Federated Conference, http://toolseurope2011.lcc.uma.es/#speakers.

[OMG11] OMG (Object Management Group). Object Constraint Language (OCL), Version 2.3
Beta 2. 2011. http://www.omg.org/spec/OCL/2.3/Beta2/PDF.

[por] The OCL portal. http://st.inf.tu-dresden.de/ocl/index.php?option=com
content&view=category&id=5&Itemid=30.

[Tod11] A. Todorova. Produce more accurate domain models by using OCL
constraints. 2011. https://www.ibm.com/developerworks/rational/library/
accurate-domain-models-using-ocl-constraints-rational-software-architect/.

[use] A UML-based Specification Environment. http://www.db.informatik.uni-bremen.de/
projects/USE.

[Ven04] B. Venners. Abstraction and Efficiency. A Conversation with Bjarne Stroustrup - Part
III. 2004. http://www.artima.com/intv/abstreffi2.html.

Proc. EduSymp2011 10 / 10

http://modeling-languages.com/common-uml-errors-i-infinite-recursive-associations/
http://modeling-languages.com/common-uml-errors-i-infinite-recursive-associations/
http://www.investorwords.com/1079/contract.html
http://lci.cs.ubbcluj.ro/ocle/
http://toolseurope2011.lcc.uma.es/#speakers
http://www.omg.org/spec/OCL/2.3/Beta2/PDF
http://st.inf.tu-dresden.de/ocl/index.php?option=com_content&view=category&id=5&Itemid=30
http://st.inf.tu-dresden.de/ocl/index.php?option=com_content&view=category&id=5&Itemid=30
https://www.ibm.com/developerworks/rational/library/accurate-domain-models-using-ocl-constraints-rational-software-architect/
https://www.ibm.com/developerworks/rational/library/accurate-domain-models-using-ocl-constraints-rational-software-architect/
http://www.db.informatik.uni-bremen.de/projects/USE
http://www.db.informatik.uni-bremen.de/projects/USE
http://www.artima.com/intv/abstreffi2.html

	Introduction
	Teaching OCL Through Examples Integrated in Models
	Understanding the Model's Semantics
	Modeling Alternatives
	Explaining the Intended Model Uses
	Using snapshots to better understand and improve the requirements and the model
	Conclusions

