
Electronic Communications of the EASST
Volume 53 (2012)

Proceedings of the
12th International Workshop on

Automated Verification of Critical Systems
(AVoCS 2012)

Automated Verification of Specifications with Typestates and Access
Permissions

Radu I. Siminiceanu Ijaz Ahmed and Néstor Cataño

15 pages

Guest Editors: Gerald Lüttgen, Stephan Merz
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Automated Verification of Specifications with Typestates and Access
Permissions

Radu I. Siminiceanu1 ∗ Ijaz Ahmed2 † and Néstor Cataño3 †

1 radu@nianet.org National Institute of Aerospace, Hampton, Virginia 23666, USA
2 ijaz.ahmed@m-iti.org The University of Madeira, Madeira ITI

3 ncatano@uma.pt Carnegie Mellon University - Portugal, Madeira ITI

Abstract:

We propose an approach to formally verify Plural specifications of concurrent pro-
grams based on access permissions and typestates, by model-checking automati-
cally generated abstract state-machines. Our approach captures all possible relevant
behaviors of abstract concurrent programs implementing the specification. We de-
scribe the formal methodology employed in our technique and provide an example
as proof of concept for the state-machine construction rules. We implemented the
fully automated algorithm to generate and verify models as a freely available plug-in
of the Plural tool, called Pulse. We tested Pulse on the full specification of a Multi
Threaded Task Server commercial application and showed that this approach scales
well and is efficient in finding errors in specifications that could not be previously
detected with the Data Flow Analysis (DFA) capabilities of Plural.

Keywords: Typestates, Access Permissions, Program Specifications, Model-Checking,
Concurrency.

1 Introduction

The idea of model checking specifications has been around for more than two decades [HJL96,
Jac94]. However, after an initial wave of breakthroughs in the mid 1990s, the enthusiasm has
significantly cooled off. This is due to the tacit understanding of the fact that fully automated
verification of formal specifications is an elusive goal, due to the disproportionate gap between
the expressive power of rich specification languages and the simplicity of temporal logics used
by model-checkers. Theorem provers and satisfiability solvers may succeed in this endeavour,
but it is generally accepted that one has to trade expressiveness for gains in decidability. Alterna-
tively, one may choose to model certain aspects of the specification that can be tackled by model
checking via sound abstractions. These facts have not visibly changed in the last decade.

In this paper we follow the latter approach, by applying an efficient symbolic model checking
technique to a selected set of aspects of the specification language used by Plural [Plu] to per-
form an exhaustive analysis of properties related to concurrency. We implemented the proposed

∗ This work has been supported by NASA Cooperative Agreement NNX08AC59A, subagreement number 27-001310.
† This work has been supported by the Portuguese Research Agency FCT through the CMU-Portugal program, R&D
Project AEminium, CMU-PT/SE/0038/2008.

1 / 15 Volume 53 (2012)

mailto:radu@nianet.org
mailto:ijaz.ahmed@m-iti.org
mailto:ncatano@uma.pt

Automated Verification of Specifications with Typestates and Access Permissions

model-checking techniques as the Pulse [ACSA11] tool. The Plural specification language is
based on access permissions and typestates. Access permissions are abstract descriptions of how
various references to an object can coexist [BNR01]. For instance, a unique access permission
describes the case when only one reference to a particular object exists, thus enforcing absence of
interference and enabling parallelization of code. Typestates enable the tracking of syntactically
correct but semantically undefined sequences of program instructions by defining the correct
object (type-) states on which they can be called [SY86].

The analysis performed by Pulse focuses on a core set of guarantees related to concurrency:
absence of deadlock, absence of unreachable code, the typestate reachability graph has the in-
tended structure, and access permissions are not used incorrectly. In contrast to the existing DFA
analysis in Plural, our model-checking approach verifies specifications and not their program
implementation.

The approach to verification presented in this paper is not limited to Plural specifications alone,
but may be employed for any language that can capture the concepts of typestates, access per-
missions and concurrency, such as the language of the Fugue checker [DF04]. More concretely,
the contributions of the proposed work are: (1) an exhaustive yet tractable approach to analyze
specifications at an appropriate level of abstraction; (2) a discrete semantics for fractional access
permission manipulation that is scalable; (3) a translation algorithm that allows full automation;
(4) an integration of model checking techniques into the Plural framework; (5) the Pulse plug-in.

The paper is organised as follows. Section 2 introduces Plural. Section 3 presents the Pulse
tool that implements the model-checking analysis of Plural specifications. Section 4 presents the
state-machine model of Plural specifications. Section 5 describes the algorithm used to translate
Plural specifications into the state-machine model. Section 6 presents experimental results on
Pulse. Section 7 presents related work, and Section 8 presents future directions for our work.

2 Preliminaries

2.1 The Plural Tool

Plural is a sound modular typestate and access permission checker tool implemented as an
Eclipse plug-in. The Plural tool takes a Java program annotated with Plural specifications and
checks whether the program complies with its specifications or not by using DFA (Diagram Flow
Analysis). Plural performs several types of program analysis, e.g. fractional analysis (influenced
by Boyland’s work in [Boy03]), whereby access permissions can be split in several more relaxed
permissions and then joined back again to form more restrictive permissions. Plural also has a
simple effects analyser that checks whether a particular method has side effects or not, and an
annotation analysis tool that checks whether annotations are well formed.

There are two main issues stemming from the style of verification of Plural: (1) only one client
program (a program that uses the Plural’s specified libraries) at a time can be verified, similar
to testing, which is not exhaustive; if other errors are manifested by a different client program
(in a sequence of method calls), they will not be exposed; (2) if the specification itself has errors
or unintended semantics, the programmer might never become aware of it. The model-checking
technique presented in this paper can solve some of these issues. Equally important from the
practical point of view, the implementation of the technique as the Pulse tool [ACSA11] has

Proc. AVoCS 2012 2 / 15

ECEASST

This reference Other references
Unique /0

Full Pure
Share Share, Pure
Pure Full, Share, Pure, Immutable

Immutable Pure, Immutable

Current permission Access through
read/write read-only other permission
Unique - none
Full Immutable read-only
Share Pure read/write

Figure 1: Simultaneous access permissions taxonomy [BA07]

scaled well in practice.

2.2 The Plural Specification Language

The Plural specification language combines access permissions and typestates specifications.
Access permissions are abstract capabilities allowing a method to access a particular object
state [BNR01]. Plural uses access permissions to keep track of the various references to a partic-
ular object, and to check the types of access these references have. Access can be read or write
(modify). Typestates define protocols on finite state machines [SY86] as the sets of valid object
states on which a method can be called.

Plural specifications are embedded in Java code within special marked comments. A sim-
ple Plural specification for a method combines pre- and post-conditions, embedded immediately
before the method declaration. The pre-condition describes (1) the typestate the object must
be before the method starts, and (2) the type of access the object permits. In the spirit of Gi-
rard’s Linear Logic [Gir87], access permissions are produced and consumed. The method post-
condition describes the produced access permissions and the typestate the object will be after the
method ends.

Plural provides support for five types of access permissions, namely, Unique, Immutable,
Full, Share, and Pure. Unique(x) guarantees that reference x is the sole reference to the refer-
enced object; Immutable(x) provides x with read-only access to the referenced object and allows
other references to exist and read from it; Full(x) states that x has reading and writing access to
the referenced object, but other references cannot modify it; Share(x) is similar to Full(x) except
that other references to the object can modify it; Pure(x) provides x with read-only access to the
referenced object and allows the existence of other references to the same object with either read-
only or read-and-modify access. Figure 1 presents a taxonomy of the rights an access permission
can have and how different access permissions can coexist.

In Plural, a method specification is written with the aid of a @Perm clause1, composed of a re-
quires part, describing the resources required by the method to be executed (the pre-condition),

1 Alternatively, Plural allows the use of @Case.

3 / 15 Volume 53 (2012)

Automated Verification of Specifications with Typestates and Access Permissions

@Refine ({
@dim(name=”STATS” , va lue ={” F i l l e d ” , ” Empty ” }) ,
@dim(name=”MUTEX” , va lue = {”Acq” , ” NestedAcq ” , ” NotAcq ” })

})
@ClassStates ({

@State (name=”Acq” , inv =”own!= n u l l ∗ n e s t e d == f a l s e ”) ,
@State (name=” NestedAcq ” , inv =”own!= n u l l ∗ n e s t e d == t r u e ”) ,
@State (name=” NotAcq ” , inv =”own== n u l l ∗ n e s t e d == f a l s e ”) ,
@State (name=” Empty ” , inv =”own== n u l l ∗ s t a t == n u l l ”) ,
@State (name=” F i l l e d ” , inv =”own!= n u l ∗ s t a t != n u l l ”)

})
p u b l i c c l a s s MutexImpl ex tends Mutex {

p r i v a t e Thread own ;
p r i v a t e boolean n e s t e d ;
p r i v a t e M u t e x S t a t i s t i c s I m p l s t a t ;

@Perm(ensures = ” Unique (t h i s) i n Empty∗Unique (t h i s) i n NotAcq ”)
MutexImpl () {}

@Cases ({
@Perm(r e q u i r e s =” F u l l (t h i s) i n NotAcq ” , ensures =” F u l l (t h i s) i n Acq”) ,
@Perm(r e q u i r e s =” F u l l (t h i s) i n Acq” , ensures =” F u l l (t h i s) i n NestedAcq ”) ,
@Perm(r e q u i r e s =” F u l l (t h i s) i n NestedAcq ” , ensures =” F u l l (t h i s) i n NestedAcq ”)

})
p u b l i c vo id a c q u i r e () {}

@Cases ({
@Perm(r e q u i r e s =” F u l l (t h i s) i n Acq” , ensures =” F u l l (t h i s) i n NotAcq ”) ,
@Perm(r e q u i r e s =” F u l l (t h i s) i n NestedAcq ” , ensures =” F u l l (t h i s) i n Acq”) ,
@Perm(r e q u i r e s =” F u l l (t h i s) i n NestedAcq ” , ensures =” F u l l (t h i s) i n NestedAcq ”)
})
p u b l i c vo id r e l e a s e () {}

@Perm(r e q u i r e s =” Pure (t h i s) ”)
p u b l i c boolean i s M u t e x A c q u i r e () {}

@Perm(r e q u i r e s =” F u l l (t h i s) i n Empty ∗ F u l l (s t) i n F i l l e d ” ,
ensures =” F u l l (t h i s) i n F i l l e d ”)

p u b l i c vo id s e t S t a t i s t i c s (M u t e x S t a t i s t i c s s t) {}

@Perm(r e q u i r e s =” Pure (t h i s) i n F i l l e d ” , ensures =” Pure (t h i s) i n F i l l e d ”)
p u b l i c M u t e x S t a t i s t i c s g e t S t a t i s t i c s () {}

@Full (r e q u i r e s =” F u l l (t h i s) i n F i l l e d ” , ensures = ” F u l l (t h i s) i n Empty ”)
p u b l i c vo id r e s e t S t a t i s t i c s () {}

}

Figure 2: Specification of class MutexImpl

and an ensures part (the post-condition), describing the resources generated after method ex-
ecution. Some methods can legally be called with and can produce different sets of resources
(declared within a @Cases clause). Hence, if the client does not know which case pre-condition
in the specification will be selected, it must be prepared to deal with any of the post-conditions
listed by the @Cases specification. A typestate is declared within a @State clause, and several
typestates are made available inside a @ClassStates declaration. Additionally, an object can be
in different dimensions representing the dynamic typestates of the object. In Plural, dimensions

Proc. AVoCS 2012 4 / 15

ECEASST

are declared with the aid of the @dim keyword.
Figure 2 shows the Plural specification of a MutexImpl class taken from a Multi-Task Server

Application (MTTS) case study presented in [CA11]. The MutexImpl class implements a reen-
trant mutex algorithm that handles the access to a critical section. We model two dimensions
STATS and MUTEX. The former dimension comprises two typestates Filled and Empty model-
ing whether any statistical locking information is available or not. The latter dimension models
how the object lock is currently acquired: acquired, acquired several times by the same object, or
not acquired. Each typestate is defined by its own invariant that relates the typestate with code.
Class MutexImpl declares three variables namely own, the owner of the lock, stat, the statisti-
cal locking information, and the boolean variable nested that models whether the lock has been
acquired several times by the same object.

The class constructor produces a Unique access permission for an object that is in state Empty
for the dimension STATS, and NotAcq for the dimension MUTEX. The specification for method
acquire requires the object to have Full access permission and produces the same permissions.
The typestate transitions, in each case, from NotAcq to Acq, from Acq to NestedAcq, and from
NestedAcq to NestedAcq. The method isMutexAcquire requires this to have a Pure (read-only)
access permission. The method resetStatistics requires this to be in typestate Filled with Full
access permission, and ensures that this will be in typestate Empty with Full access permission
when the method ends.

3 The Pulse Tool

The Pulse tool [ACSA11] takes a Plural annotated Java specification and produces an abstract
state machine model expressed in the input language of the evmdd-smc model-checker2. We
use the evmdd-smc symbolic model checker 3 [RS10] to verify that the Plural specifications
satisfy a set of basic integrity properties. The input language of evmdd-smc is similar to SAL
(Symbolic Analysis Laboratory), however evmdd-smc is more efficient than SAL for several
reasons. The evmdd-smc is powered by an edged-valued decision diagrams (EVMDD) library,
libevmdd3 that can be orders of magnitude faster [RS10] than the ubiquitous CUDD, espe-
cially for models that capture concurrency. Secondly, the much leaner evmdd-smc is free of all
of the syntactic sugar provided by SAL, which often leads to tremendous pre-processing over-
head. The ability to express custom temporal logic properties for concurrent programs gives
evmdd-smc further freedom to perform verification tasks tailored to each application.

The evmdd-smc state machine model defines three main sections that encode Plural specifi-
cations. (1) The first section “variable declaration (initialisation)” declares variables to represent
typestates, methods, access permissions and method execution status; (2) the second section
“transitions” models method specifications, e.g. pre- and post-conditions; (3) the “properties”
section encodes CTL formulae that are verified by the evmdd-smc model-checker4.

We implemented Pulse as an Eclipse plug-in that works on top of the Plural tool. Pulse uses
an abstract syntax tree visitor that traverses the Java classes and methods declaration and feeds

2 Sections 4 and 5 give full details on how these models are generated.
3 Available at http://research.nianet.org/˜radu/evmdd/.
4 Section 5.4 presents the CTL encoding of the properties that Pulse verifies.

5 / 15 Volume 53 (2012)

Automated Verification of Specifications with Typestates and Access Permissions

relevant information to an ANTLR parser. The ANTLR parser relies on the Plural grammar
to process the Plural specifications and to produce the target evmdd-smc model. Then, Pulse
invokes the evmdd-smc model checker to verify properties about the specifications. Pulse
processes the evmdd-smc output and generates a comprehensive report of the results as a Latex
file for the user 5.

4 Abstract Models of Specifications

A Plural specification comprises a finite set of class declarations C = {C1, . . . ,Cc}. Every class
Ci might contain a set of dimensions declarations DSi = {d1

i , . . . ,dgi
i } where gi is the number

of dimensions of the class Ci. The class Ci might also contain typestate declarations T Si =
{t1

i , . . . , thi
i }, where hi is the number of typestates of class Ci, for 1 ≤ i≤ c. The typestate might

declare a class invariant that links the typestate with additional constraints. For each typestate
dimension, we create an object in the model, and for each class declaration Ci,1 ≤ i ≤ c, we
create a finite number of K +1 references to objects of that type: Ri = {r0

i ,r
1
i , . . . ,r

j
i , . . . ,r

K
i }. K

is a parameter that can be set by the user to a desired value. For K = 0, there is no concurrency
in the model, while for any strictly positive value, a K number of independent aliases will be
introduced for each reference, corresponding to a truly concurrent setting. The question whether
there exists a smallest value for K that is sufficiently large to capture all relevant behaviors
depends on the expressiveness of the specification logic. If integer arithmetic would be allowed
for invariant definitions of typestates, it is easy to construct a model where no such smallest
upper bound exists: for example by defining a typestate that is entered when the reference count
to the object exceeds a certain value n. In this work, we do not include integer arithmetic in
the invariant expressions, a restriction that allows the construction of sound abstractions for our
approach.

4.1 The Basic Component

The building block of our model is the state-machine of an object reference r j
i that includes:

1. the program counter, (pc j
i)∈ PCi = {exe,done}×

{
⊥,M1

i , . . . ,Mmi
i

}
, two per method. The

second element of the pair is the identity of the method. For the first element, the value
exe represents that the method is currently being executed, whereas the value done means
that the method has finished its execution.

2. the access permissions associated with r j
i : a field of enumerated type

ap j
i ∈ AP = {⊥,Unique,Full,Pure,Immutable,Share}.

3. the typestate associated with r j
i : tsi ∈ T Si =

{
⊥, t1

i , . . . , thi
i

}
We reserve the symbol ⊥ for undefined values (for multiple domains: typestates, access permis-
sions, methods).

5 An online version that generates and checks the model is available at http://poporo.uma.pt/∼ncatano/Projects/
aeminium/pulsepulse/pulse.php; however the Latex report is only generated by the Eclipse Plugin.

Proc. AVoCS 2012 6 / 15

http://poporo.uma.pt/~ncatano/Projects/aeminium/pulsepulse/pulse.php
http://poporo.uma.pt/~ncatano/Projects/aeminium/pulsepulse/pulse.php

ECEASST

4.2 State Transition Rules

Our model allows a non-deterministic transition from done-local-states (i.e. a local states with
pc j

i = (done, ·)) to any exe-local-state (i.e. a local states with pc j
i = (exe, ·)) provided that it

respects its transition guards. This covers all possible sequences of method calls, which is be-
haviorally equivalent to placing the reference (this,oi) in any reachable global context.

The transitions from done-local-states to exe-local-states are guarded by expressions that cap-
ture (1) the required typestate condition of the exe-local-state, and (2) the required access per-
missions. Additionally, from each exe-local-state (exe,m) a reference can only transition to its
matching done-local-state (done,m), capturing the completion of the call to method m. The tran-
sition is guarded by the postcondition associated with the method in the specification and reflects
the change in typestate and access permissions that may occur.

5 The Translation Algorithm

The algorithm translates the Plural specifications into the abstract model presented in Section 4
builds the two components of a finite state machine: the set of potential global states S and the
transition relation between states, R⊆ S×S. The potential state space is simply the cross product
of the local state spaces of all references:

S =
c

∏
i=1

({
⊥, t1

i , . . . , thi
i

}
×

K

∏
j=0

(PCi×AP)

)

The transition relation can be defined component-wise. For each reference r j
i there are two

local transitions corresponding to starting a method and ending a method. The global transition
relation is the asynchronous composition of the local transition relations. We use the standard no-
tation for pairs of states (from-state, to-state) in the transition relation, where unprimed variables
refer to the from-state and primed variables to the to-state.

The routines StartMethod (Algorithm 1) and EndMethod (Algorithm 2) build the transition
relation. The inputs of these routines are the reference r j

i , the method m, the global context
(represented by the global state s and the global typestate t, where global state s includes ac-
cess permission ap and program counter pc) and two triples. The triples

(
r j0

i0 , tsk0
i0 ,ap0

)
and(

r j1
i1 , tsk1

i1 ,ap1

)
encode the requires (indexed i0) and ensures (indexed i1) clauses from the

method’s specification, i.e. the required and ensured reference, typestate, and access permis-
sion. The output of the algorithm are the two Boolean formulae: guard and update. The guard
formula must hold for the transition to be enabled, and the update formula encodes the changes
in the values of global states that occur by executing a transition. The translation algorithm calls
a routine Compatible(apx,apy), that implements a Boolean function that decides whether the ac-
cess permissions apx and apy are compatible, more precisely if apx can be split or merged to apy
(splitting and merging rules are provided in detail in the technical report [SC11]). The second
routine, ChangePermission(apx,apy), builds the update formula corresponding to a compatible
access permission transformation from apx to apy. We employ the following types:

7 / 15 Volume 53 (2012)

Automated Verification of Specifications with Typestates and Access Permissions

GlobalTypestate = TS1× . . .×TSc

LocalState = (PC,AccessPermission)
GlobalState = Array[1..c] of Array [0..K] of LocalState
Reference = (ObjectIdx,AliasIdx)
Triple = (Reference,Typestate,AccessPermission)

Algorithm 1 for the transition corresponding to starting a method

StartMethod(s : GlobalState, t : GlobalTypestate, r j
i : Reference, m : Methodi,((

r j0
i0 , tsk0

i0 ,ap0

)
,
(

r j1
i1 , tsk1

i1 ,ap1

))
: Triple×Triple

)
guard ← s[i][j].ap 6=⊥∧ s[i][j].pc = (done, ·)∧ t[i0] = ts j0

i0 ∧
Compatible(s[i0][j0].ap,ap0)∧Compatible(s[i1][j1].ap,ap1)

update ← s′[i][j].pc = (exe,m)∧ChangePermission(s[i0][j0],ap0)
return guard⇒ update

Algorithm 2 for the transition corresponding to ending a method.

EndMethod(s : GlobalState, t : GlobalTypestate, r j
i : Reference, m : Methodi,((

r j0
i0 , tsk0

i0 ,ap0

)
,
(

r j1
i1 , tsk1

i1 ,ap1

))
: Triple×Triple

)

guard ← s[i][j].pc = (exe,m)
update ← t ′[i1] = tsk1

i1 ∧ s′[i1][j1].ap = ap1∧ s′[i][j].pc = (done,m)∧
ChangePermission(s[i1][j1].ap,ap1)

return guard⇒ update

5.1 Access Permissions as Global Invariants

Access permission transformations are based on an underlying concept of collective management
of permissions among references to the same object. Intuitively, access permissions are viewed
as resources (tokens), stored in a central location (bank) and available globally. Each reference
has its own share of resources, represented as a fraction or set of tokens. The references can
take a portion (fraction) or all tokens, depending on access’ needs and then return them back to
the bank. Thus, the total number of tokens for each object is preserved as a global invariant.
None, a portion of, or all resources can be used at a moment in time. We describe the access
permissions of a reference r j

i as a pair of fractions: (f r j
i , f w j

i), with f r j
i , f w j

i ∈ [0,1], representing
the fraction of the read and write permissions to object oi owned by reference r j

i . There are three
semantic classes for the values of a fraction f : f = 0 (no permission), 0 < f < 1 (partial/shared
permission), or f = 1 (exclusive rights). The preservation of access permissions is a global
invariant, with f rB

i and f wB
i the unused fractions (still in the bank): f rB

i +∑
K
j=0 f r j

i = 1∧ f wB
i +

∑
K
j=0 f w j

i = 1.

Proc. AVoCS 2012 8 / 15

ECEASST

5.2 Dimensions and Typestate Invariants

Plural provides limited support to the verification of typestate invariants. Plural can verify in-
variants on boolean properties, e.g. checking for non-nullness, but cannot verify invariants that
involve arithmetic predicates, e.g. x > 0 (where x is an integer field). Our abstract model of
specifications (Section 4) adds a boolean variable for each class field, e.g. it adds three boolean
variables for the class specification in Figure 2, to represent invariants about the stat, own, and
nested class fields.

For typestates described by boolean invariants, e.g. typestate Empty, the update formula
restricts the underlying variables, e.g. own and stats, to satisfy the invariant.

Dimensions allow objects to be in several typestates at the same time, e.g. in Figure 2, an
object of type MutexImpl can be in Filled and Acq, or Empty and NotAcq at the same time.
However, these typestates must belong to different dimensions. Our abstract model of specifica-
tions creates a different object for each dimension along with its transitions. The created objects
are independent of each other, thus providing a way for the model checker to detect violations
regarding dimensions. For instance, if an object is in several typestates that belong to the same
dimension then, the model-checker will issue a error.

5.3 Inheritance and Class Fields Visibility

Although our model-checking approach only analyzes method specifications and not their im-
plementation, we can model aspects related to program implementation such as inheritance and
class fields visibility. Inheritance is simulated by modeling an implicit call to the parent class
constructor. For example, in generating the model for class MutexImpl, we first generate the
model for the parent Mutex class, and then we merge the model of the parent class constructor
with the model of the MutexImpl class constructor in a way that respects the semantics of inher-
itance in Java. Hence, the model-checker will report any violations found in the specification of
the parent class.

We believe that an approach similar to the “merging” constructor can be used to handle nested
method calls. However at the moment, the Pulse tool does not handle that. Also, in Java, class
fields can have different levels of visibility, e.g. public, protected, or private. Pulse creates an
alias for every public class field in the model however we do not create the alias for private class
fields.

5.4 Checking Properties

Checking Sink (Deadlock) states. The presence of states without successors (sink states) may
have different root causes, including improper use of access permissions that block the progress
of all threads, among which deadlock (due to mutual circular wait) is one particular undesired
behavior. In CTL, this can be expressed as:

deadlock : ¬EX(true)

Satisfiability of Method Preconditions. The unsatisfiability of the requires clause of a method
may be caused by the non-availability of access permissions or typestates, hence the method may

9 / 15 Volume 53 (2012)

Automated Verification of Specifications with Typestates and Access Permissions

never be called by another object. In our model, we represent this through the CTL property
below that uses the predicate satisfiabilityi(mn) to check whether the precondition of method mn

is satisfiable.

∀1≤ i≤ c,∀mn ∈Mi: satisfiabilityi(mn) : EX(pc j
i = (mn,exe))

Typestate Transition Matrix. Often when laying out a specification, the designer knows in
advance the expected control flow through the typestates of a class, which can be captured by
means of the typestate transition matrix very well. The intended matrix can then be compared
with the actual one, computed by Pulse. In CTL, this can be expressed as the formula below,
where adjacenti (t1, t2) checks whether a transition between t1 and t2 exists or not.

∀1≤ i≤ c,∀t1 6= t2 ∈ T Si: adjacenti (t1, t2) : statei = t1∧EX(statei = t2)

Checking Concurrency. Access permissions can be used to represent parallel executions of
methods along with some other dependency information. Parallel execution is expressed by
the CTL formula below, where concurrenti (m1,m2) checks whether two methods can be run in
parallel, meaning that two program counters for methods m1 and m2 exist with a value exe.

∀1≤ i≤ c,0≤ j1 6= j2 ≤ K,∀m1 6= m2 ∈Mi

concurrenti (m1,m2) : EF
(

pc j1
i = (m1,exe)∧pc j2

i = (m2,exe)
)

Correctness of Access Permissions. Integrity checks can be performed to ensure that an ac-
cess permission does not violate its intended semantics. We enforce access permissions correct-
ness through the model construction presented in Section 5.1. In CTL, this is expressed as:

∀1≤ i≤ c,∀m ∈Mi,∀0≤ j1 6= j2 ≤ K: not unique(m) : EF
(

pc j1
i = (m,exe)∧ap j2

i 6=⊥
)

not full(m) : EF
(

pc j1
i = (m,exe)∧pc j2

i = (·,exe)∧ tkw j2
i > 0

)
6 Experimental Results

Running Pulse on the Plural specifications presented in Figure 2 produces the results shown
in Tables 1, 2 and 3. Table 1 shows the results of the satisfiability of the pre-conditions (the
“requires” part) of the methods of the MutexImpl class. The results show that the requires clause
of all the methods are satisfiable. Table 2 shows the possible transitions among typestates. The
symbol ↑ indicates the possible transition among typestates and the symbol× indicates that there
is no possible transition. For instance, there is a transition from typestate NotAcq to typestate
Acq, but there is no transition from NotAcq to NestedAcq. The typestate transition matrix can
be used to reason about the control-flow among typestates. Table 3 shows the possible pair
of methods that can be executed in parallel or sequentially. The symbol ‖ indicates that the
methods can be executed in parallel and the symbol ∦ indicates that methods cannot be executed
in parallel. For instance, no methods can be executed in parallel with the constructor; similarly,
methods that requires Full (modifying) access permissions, e.g. acquire and release, cannot be

Proc. AVoCS 2012 10 / 15

ECEASST

Method Satisfiability
MutexImpl

√

acquire
√

release
√

isAcquired
√

getStatistics
√

setStatistics
√

resetStatistics
√

Table 1: Satisfiability of Requires Clauses

E
m

pt
y

Fi
lle

d

A
cq

N
es

te
dA

cq

N
ot

A
cq

Empty ↑ ↑ × × ×
Filled ↑ ↑ × × ×
Acq × × ↑ ↑ ↑
NestedAcq × × ↑ ↑ ×
NotAcq × × ↑ × ↑

Table 2: Typestate Transition Matrix

executed in parallel. However, the methods that requires Pure (read-only) access permissions,
e.g. isAcquired and getStatistics, can be executed in parallel with each other. We tested Pulse
on the specification of the Multi Threaded Task Server (MTTS) commercial application that
was subject to a previous case study [CA11]. MTTS organises tasks in queues and schedules
threads to run the tasks. MTTS contains four packages: library, mtts, il (intelligent lock)
and server, totaling 55 classes, 376 methods, 14451 lines of code, and 546 lines of Plural
specification. The core aspects of the specification are related to the modularity and design of
the MTTS application, and concurrency issues such as mutual exclusion.

Table 4 presents a synopsis of the analysis carried out by Pulse on the MTTS specifications
with K=0 (i.e., no concurrency in this case). In the table, SS stands for sink states, SMP for
satisfiability of method preconditions and STM for state transition matrix. Columns 5 to 7 show
the number of checked properties. Columns 8 to 10 show the time taken by Pulse (in seconds) to
perform the tests. The last three columns show the number of violations found, more precisely,
the number of sink states, unsatisfiable requires clauses, and unreachable typestates, respectively.
The first five rows represent partial models when the three utility packages are checked in iso-
lation. The last row includes the server package that has most of the class interdependencies
and hence there is a significant jump in complexity (State Space) and time (Runtime).

Pulse found errors in the MTTS specification which were undetected by the Plural DFA ana-
lyzer. It found 58 unsatisfiable requires clauses and 60 unreachable typestates in the full model.
The main reasons of these violations are (a) the use in specifications of different typestates that
belong to the same dimension, (b) the writing of wrong specifications that lead to unreachable
typestates or methods, and (c) the specification of class constructors that do not produce access

11 / 15 Volume 53 (2012)

Automated Verification of Specifications with Typestates and Access Permissions

M
ut

ex
Im

pl

ac
qu

ir
e

re
le

as
e

is
A

cq
ui

re
d

se
tS

ta
tis

tic
s

ge
tS

ta
tis

tic
s

re
se

tS
ta

tis
tic

s

MutexImpl ∦ ∦ ∦ ∦ ∦ ∦ ∦
acquire ∦ ∦ ∦ ‖ ∦ ‖ ∦
release ∦ ∦ ∦ ‖ ∦ ‖ ∦
isAcquired ∦ ‖ ‖ ‖ ‖ ‖ ‖
setStatistics ∦ ∦ ∦ ‖ ∦ ‖ ∦
getStatistics ∦ ‖ ‖ ‖ ‖ ‖ ‖
resetStatistics ∦ ∦ ∦ ‖ ∦ ‖ ∦

Table 3: Method Concurrency Matrix

Packages Classes Methods State #Properties Runtime (s) Violations
Space SS SMP STM SS MR STM SS SMP STM

library 8 39 1×108 1 39 6 0.07 0.30 0.04 0 0 1
il 13 61 7×109 1 61 96 0.10 0.18 0.09 0 0 9
mtts 19 166 2×1016 1 166 98 0.11 0.33 0.17 0 44 26
il,
library

21 100 1×1018 1 100 102 0.08 0.25 0.15 0 0 27

il,
library,
mtts

40 266 2×1034 1 266 200 0.43 0.89 0.44 0 44 37

il,
library,
mtts,
server

55 368 8×1052 1 368 280 24.34 152.39 2824.47 0 58 60

Table 4: Results: using Pulse on the MTTS specification.

permissions. Wrongly specified constructors leads to a situation in which class method precon-
ditions are never satisfied.

7 Related Work

In [HL96], the requirements for the TCAS airborne, collision avoidance protocol formulated
in RSML were checked with SMV. The model checker builds a highly abstract model to avoid
the state-space explosion problem. The TLA+ specification of a Compaq multiprocessor cache
coherence protocol was verified in TLC to verify design. An “everything is a set” approach to
translating Z into SAL is presented in [SW05], but not fully automated and applied only to small
models. The Alloy analyser [Jac02] supports a very expressive language, but is not a temporal
logic model checker. ProB [PL07] is an animator and model checker for B specifications that
can detect deadlocks and invariant violations. The Verifast tool [JSP+11] provides support for
verifying fractional permissions in a similar fashion to Plural. Validating temporal properties
of software has been proposed in [BR01] and applied to Windows NT drivers. The technique,
based on predicate abstraction, is implemented in the SLAM toolkit. In [DF01], the Vault pro-

Proc. AVoCS 2012 12 / 15

ECEASST

gramming language is used to describe resource management protocols that the compiler can
statically enforce through a certain order of operations for a given data object. In [CDHR02], the
Bandera Specication Language (BSL) based on assertions, and pre- post-conditions of methods,
is translated into the input of several model checkers such as Spin and NuSMV, so as to verify a
variety of system correctness properties. In [PL10], a more expressive LTLe is proposed to verify
high-level specification languages such as B, Z and CSP. The model checker based on extended
LTLe can detect deadlocks and partially explored state spaces in an effective way. In a recent
work [WG11], a small specification language PL that models business process, is translated into
linear temporal formulas, to check deadlock freedom of interacting business processes of an air-
line ticket reservation system. Our work analyses specifications based on access permissions and
typestates, that according to best knowledge of authors is not the subject of previous work. We
apply our technique on a relatively large set of MTTS specifications. The generated model does
not require any pre-processing overhead, due to less syntactic sugar.

The Plural group has conducted several case studies to verify API protocols using DFA tech-
niques [BA07]. By contrast, our technique is able to analyze the specification for any possible
concurrent execution of programs implementing it, while the DFA analysis of Plural is designed
to study one program at a time. We have also used symbolic model checking in [GLMS09]
to check the locking mechanism of the Linux Virtual File System (VFS) by extracting abstract
models from the Linux kernel.

8 Conclusion and Future Work

The work presented in this paper translates Plural specifications into evmdd-smc models. This
opens up a new window for the evaluation of Plural specifications. The main challenge is to
encode the access permissions and dimensions into the model.

The Pulse tool was used to detect a significant number of errors in the MTTS specifica-
tion [CA11] that were previously undetected by the Plural DFA analyzer. The relatively high
number of detected errors shows that model checking of specifications can also be practical.
Our approach is not limited to Plural specifications alone, but can be customized for other spec-
ifications languages (and even for radical new programming languages like Plaid6) based on
typestates and concurrency. The approach is particularly useful for evaluating reusable libraries
that can have multiple clients. The designer of the libraries can reason about all possible call-
ing scenarios for the methods by using the State Transition Matrix. Pulse helps the designer to
investigate the behavior of the library objects in the presence of multiple references to the same
object. The experimental results on Pulse suggest that our approach is reasonably scalable.

There are several extensions possible for our approach. One potential avenue is to avoid ex-
plicitly encoding the access permissions into the states, but instead use a deductive method (SMT
solver) to “decide” if one can transition from a particular pre-access permission to a particular
post-access permission. We would also like to explore the possibility of representing access per-
mission fractions explicitly in a model, which would therefore require abandoning the traditional
model checking framework, that only uses discrete-state systems, and using more powerful, de-
ductive techniques. The current semantics of Full (write) access permission is the generic ability

6 http://www.cs.cmu.edu/ aldrich/plaid/plaid-intro.pdf

13 / 15 Volume 53 (2012)

Automated Verification of Specifications with Typestates and Access Permissions

to “modify” the object, which potentially includes the permission to change the size (or even
delete it – possible in C++, not in Java). There are collateral implications in allowing the dele-
tion of the object. Therefore the write permission can be further refined into two subcategories
of access: modify-but-not-delete and delete.

Bibliography

[ACSA11] I. Ahmed, N. Cataño, R. Siminiceanu, J. Aldrich. The Pulse Tool. 2011. http:
//poporo.uma.pt/∼ncatano/Projects/aeminium/pulsepulse/pulse.php [Online].

[BA07] K. Bierhoff, J. Aldrich. Modular Typestate Checking of Aliased Objects. In Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-Oriented Pro-
gramming Systems and Applications. OOPSLA, pp. 301–320. 2007.

[BNR01] J. Boyland, J. Noble, W. Retert. Capabilities for Sharing: A Generalisation of
Uniqueness and Read-Only. In Proceedings of the 15th European Conference on
Object-Oriented Programming. ECOOP, pp. 2–27. Springer-Verlag, London, U.K.,
2001.

[Boy03] J. Boyland. Checking interference with fractional permissions. In Proceedings of the
10th International Conference on Static analysis. SAS, pp. 55–72. 2003.

[BR01] T. Ball, S. K. Rajamani. Automatically validating temporal safety properties of in-
terfaces. In Proceedings of the 8th international Workshop on Model checking Soft-
ware. SPIN, pp. 103–122. 2001.

[CA11] N. Cataño, I. Ahmed. Lightweight Verification of a Multi-Task Threaded Server: A
Case Study With The Plural Tool. In Formal Methods for Industrial Critical Systems
(FMICS). Lecture Notes in Computer Science 6959, pp. 6–20. Trento, Italy, 2011.

[CDHR02] J. C. Corbett, M. B. Dwyer, J. Hatcliff, Robby. Expressing checkable properties of
dynamic systems: the Bandera Specification Language. International Journal on
Software Tools for Technology Transfer (STTT) 4:34–56, 2002.

[DF01] R. DeLine, M. Fähndrich. Enforcing high-level protocols in low-level software. In
Proceedings of the ACM SIGPLAN 2001 conference on Programming Language
Design and Implementation. PLDI, pp. 59–69. 2001.

[DF04] R. DeLine, M. Fähndrich. The Fugue Protocol Checker: Is Your Software Baroque?
Technical report MSR-TR-2004-07, Microsoft Research, Jan. 2004.

[Gir87] J.-Y. Girard. Linear Logic. Theoretical Computer Science 50(1):pp. 1–101, 1987.

[GLMS09] A. Galloway, G. Lüttgen, J. Mühlberg, R. Siminiceanu. Model-Checking the Linux
Virtual File System. In Verification, Model Checking, and Abstract Interpretation
(VMCAI), Savannah, GA. Lecture Notes in Computer Science 5403, pp. 74–88.
2009.

Proc. AVoCS 2012 14 / 15

http://poporo.uma.pt/~ncatano/Projects/aeminium/pulsepulse/pulse.php
http://poporo.uma.pt/~ncatano/Projects/aeminium/pulsepulse/pulse.php

ECEASST

[HJL96] C. L. Heitmeyer, R. D. Jeffords, B. G. Labaw. Automated consistency checking
of requirements specifications. ACM Transactions on Software Engineering and
Methodoly (TOSEM) 5(3):231–261, July 1996.

[HL96] M. P. E. Heimdahl, N. G. Leveson. Completeness and Consistency in Hierarchical
State-Based Requirements. IEEE Transactions on Software Engineering 22(6):363–
377, June 1996.

[Jac94] D. Jackson. Abstract Model Checking of Infinite Specifications. In Proceedings of
Formal Methods Europe. FME, pp. 519–531. Springer-Verlag, London, U.K., 1994.

[Jac02] D. Jackson. Alloy: Lightweight Object Modelling Notation. ACM Transactions on
Software Engineering and Methodology 11(2):256–290, Apr. 2002.

[JSP+11] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, F. Piessens. Veri-
Fast: a powerful, sound, predictable, fast verifier for C and Java. In Proceedings
of the Third international conference on NASA Formal methods. NFM, pp. 41–55.
Springer-Verlag, Berlin, Heidelberg, 2011.

[PL07] D. Plagge, M. Leuschel. Validating Z Specifications Using the ProB Animator and
Model Checker. In Integrated Formal Methods. Lecture Notes in Computer Sci-
ence 4591, pp. 480–500. Springer Berlin / Heidelberg, 2007.

[PL10] D. Plagge, M. Leuschel. Seven at one stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more. International Journal on Software Tools for
Technology Transfer (STTT) 12(1):9–21, Jan. 2010.

[Plu] The Plural Tool. http://code.google.com/p/pluralism/ [Online].

[RS10] P. Roux, R. Siminiceanu. Model Checking with Edge-valued Decision Diagrams. In
NASA Formal Methods Symposium (NFM), NASA/CP-2010-216215. Pp. 222–226.
Langley Research Center, April 2010.

[SC11] R. Siminiceanu, N. Cataño. Automated Verification of Specifications with Types-
tates and Access Permissions. Technical report NASA/CR-2011-217170 NF1676L-
13249, NASA Langley Research Center, August 2011.

[SW05] G. Smith, L. Wildman. Model Checking Z Specifications Using SAL. In 4th Interna-
tional Conference of B and Z Users (ZB). Lecture Notes in Computer Science 3455,
pp. 85–103. 2005.

[SY86] R. E. Strom, S. Yemini. Typestate: A Programming Language Concept for En-
hancing Software Reliability. IEEE Transactions on Software Engineering (TSE)
12(1):pp. 157–171, January 1986.

[WG11] P. Y. H. Wong, J. Gibbons. Property specifications for workflow modelling. Science
of Computer Programming 76(10):942–967, October 2011.

15 / 15 Volume 53 (2012)

http://code.google.com/p/pluralism/

	Introduction
	Preliminaries
	The Plural Tool
	The Plural Specification Language

	The Pulse Tool
	Abstract Models of Specifications
	The Basic Component
	State Transition Rules

	The Translation Algorithm
	Access Permissions as Global Invariants
	Dimensions and Typestate Invariants
	Inheritance and Class Fields Visibility
	Checking Properties

	Experimental Results
	Related Work
	Conclusion and Future Work

