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Abstract: Safe separation between aircraft is the primary consideration in air traffic
control. To achieve the required level of assurance for this safety-critical application,
the Automated Airspace Concept (AAC) proposes three levels of conflictdetection
and resolution. Recently, a high-level operational concept was proposed to define
the cooperation between components in the AAC. However, the proposed coordina-
tion protocol has not been formally studied. We use formal verification techniques
to ensure there are no potentially catastrophic design flaws remaining in the AAC
design before the next stage of production.

We formalize the high-level operational concept, which was previously described
only in natural language, in NuSMV and performmodel validationby checking
against LTL/CTL specifications we derive from the system description. We write
LTL specifications describing safe system operations and use model checking for
system verification. We employspecification debuggingto ensure correctness of
both sets of formal specifications andmodel abstractionto reduce model check-
ing time and enable fast, design-time checking. We analyze two counterexamples
revealing unexpected emergent behaviors in the operational concept that triggered
design changes by system engineers to meet safety standards. Our experience report
illuminates the application of formal methods in real safety-critical system develop-
ment by detailing a complete end-to-end design-time verification process including
all models and specifications.

Keywords: model validation, specification debugging, model checking, safety-
critical system

1 Introduction
Safe distance between commercial aircraft must always be guaranteed toprevent potential air-
craft collisions. The Automated Airspace Concept (AAC) [13] is designated to ensure the safe
separation of these aircraft within a given airspace sector. The AAC is ahigh-level generic frame-
work proposed as a candidate for the Next Generation Air Traffic Control System (NextGen),
which is currently under development at NASA. To mitigate the complexity of calculating air-
craft trajectory resolutions and enable separation assurance in real time, the AAC divides the
task of separation assurance between three independent resolution systems that handle long-
term, near-term, and urgent predicted loss of separation between aircraft, in addition to juggling

∗ Work contributing to this paper was supported in part by NASA’s AirspaceSystems Program and by the National
Science Foundation under Grant CCF-1018057.
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other tasks, such as fielding trajectory requests from controllers and pilots. It is essential that we
verify the interactions between the set of independent components of the AAC result in emergent
total-system behaviors that are safe, and that pilots reliably receive the correct routes from the
correct components.

Formal verification has been gradually accepted as an important step in the design flow of
safety-critical systems. Model checking is one of the most widely used formal verification meth-
ods. We use the model checker NuSMV [8,9] since it is well-documented [27], open-source1,
and frequently used in industry [7,16,20,22,28,32]. We need to build asystem modelof the oper-
ational concept [12–14,24] in formal semantics and also describe the behaviors required for safe
system operation, themodel verification specification, using temporal logic. NuSMV is then
able to prove that the system model conforms to the model verification specification or return
counterexamples corresponding to possible executions in the operationalconcept that violate
that specification. Previously, significant effort has been devoted to increasing the automation
and efficiency of the model checking step. However, formalizing safety-critical systems that are
not inherently built on formal semantics becomes a bottleneck. We argue thatsystem model
validation and specification debugging are necessary tools to build confidence when formalizing
a high-level conceptual design, because inconsistencies between the model and the real system
and erroneous specifications can lead to spurious verification results.

We illuminate a complete end-to-end design-time verification process on the full-scale AAC
coordination protocol, presenting our work on formally specifying, validating, and model check-
ing from three aspects. The first aspect is theformalization methodology. We detail a process
for deriving a formal model of the AAC operational procedure building upon existing literature
and input from human experts via about 100 person-hours of interviews with system architects.
We extractmodel validation specificationsfrom the operational concept and constructmodel
verification specificationsby codifying the expectations of system designers, extracted via con-
versation, in temporal logic; all models and specifications are available online. 2

The second aspect ismodel and specification debugging, which addresses a practical chal-
lenge in the above model checking procedure: how to ensure that the formalization of the system
model correctly reflects the designer’s intentions. Counterexamples returned from the model
checker may not reveal problems in the operational concept itself, but instead correspond to im-
precisions in the system model. Our solution to this problem is to create both the system model
and a set of temporal logic properties (our model validation specification) from the description
of operational concept as two ways of formalizing the designer’s intentions. We validate our sys-
tem model by model checking this set of specifications, which directly correspond to statements
in the designer’s description of how the system is constructed. Note that thisis distinct from
verification, which involves model checking the system model against specifications encoding
the system safety requirements that describe how the system should behave. The reported coun-
terexamples pinpoint any inconsistencies between these two and we manually identify whether
the problem lies in the model or the specification. We exemplify our process ofspecification
debugging, including LTL satisfiability checking [29] and counterexample-guided specification

1 The source code and documentation are available for download from:http://nusmv.irst.itc.it/.
2 Both NuSMV models, all specifications, and the commands we ran to checkthem are available at
http://ti.arc.nasa.gov/m/profile/kyrozier/AAC/AAC.html.
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debugging, to increase confidence in the correctness of our specifications. This iterative pro-
cess greatly increases our confidence in the consistency between the system model, the formal
specifications for both model validation and model verification, and the designer’s intention.

The third aspect,model checking, completes our system verification process by checking the
system model against the model verification specifications. We detail two emergent unexpected
behaviors of the AAC that were pinpointed by counterexamples and discuss possible modifica-
tions to mitigate them. System designers identified these two cases as particularly illuminating
and changed the system design in response to our counterexamples. We also discuss the lessons
resulting from our experience and provide insights that are instructive for the formal specifica-
tion, validation, and verification via model checking of other industrial systems.

The remainder of this paper is organized as follows. We highlight related work in Section2.
We introduce the full AAC operational concept and the merits of formalizing itin Section3. In
Section4, we detail our system modeling techniques and their effects on the verification process.
Section5 discusses our specification debugging techniques. Section6 presents important coun-
terexamples describing unexpected emergent behaviors along with modifications to the system
design to combat them. Section7 concludes and points out future work.

2 Related Work

The three AAC components that calculate resolution maneuvers have undergone verification
through simulation as well as ongoing component-level verification utilizing formal methods
[5, 15, 25]. However, there is an important verification aspect that has never been addressed:
the cooperation between components. Verification efforts to date have concentrated on single
components in the AAC; each component has been rigorously evaluated individually under the
assumption that if each component of the system behaves correctly that thesystem as a whole will
also function as desired. Employing simulation or testing on the AAC as a whole is formidable,
and too time-consuming to provide real-time results. Evaluating different potential system con-
figurations, as we do here, was not previously possible.

Although [23] pointed out weaknesses of model checkers in handling complex data structures
and arithmetic operations, model checking is still a powerful tool for verifying safety-critical
protocols and several case studies on model checking various aerospace systems have been pub-
lished [6, 21, 31]. Our study is carried out early in the design phase before any system imple-
mentation is available. Our system model and specifications for model validationand model
verification are generated directly from natural language, while [31] generates the system model
from the source code, and [6, 21] generate NuSMV models automatically from another formal
language.

Specification debugging has drawn much attention [2, 17, 26]. These methods analyze the
consistency, completenessandsafetyof formal specifications. For example, [2,26] presented a
platform for formal analysis of hardware requirements called “RAT,” which has been applied in
the analysis of aerospace systems [4]. Using this framework, instead of creating a system model,
we only need to generate the model validation specification in Section4.2 as the formal spec-
ification of the operational concept; RAT is able to check this specification against our model
verification specification. However, the consistency between the formal specification under ver-
ification and the designer’s intention is not guaranteed within this framework.Moreover, our
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work is able to create a validated system model that can be used as a prototype for the future
system implementation.

We demonstrate the simultaneous creation of the system model and model validation speci-
fications; our approach is to validate these two parts against each other using model checking.
Previous work [5, 6, 23, 31] often requires one or both of these two parts as the input to do
analysis and verification. The chicken-and-egg relationship between thesystem model and the
formal specifications describing system requirements provides a challenge when employing for-
mal methods at design-time. We present the process of formalizing both the model validation
and model verification specifications, like [21], and, as a highlight, we also present our speci-
fication debugging scheme, including LTL satisfiability checking. Little information about the
effectiveness of LTL satisfiability checking in practical model checking isavailable in previous
publications. We are the first to publish the complete details of such an end-to-end verifica-
tion process, including the code for NuSMV models and specifications. Ourmodels are open
to the public for future research to help shed some light on the problem of initial, design-time
formalization.

3 The Automated Airspace Concept
The central task of the AAC is to maintain safe separation and provide collisionavoidance in the
airspace. The AAC is able to detect a potential loss of separation (LOS) in the future, referred to
as aconflict, and resolve conflicts by generating resolution maneuvers for the aircraft involved
and sending these resolutions securely to pilot(s). Pilots are expected to carry out resolutions
in a timely manner. To simplify communication and coordination, it is desirable to implement
a single system capable of detecting and resolving all possible conflicts andcollisions. How-
ever, the complexity of this system would be formidable and satisfactory response times are not
achievable with currently available hardware. Thus, the AAC incorporates a compositional de-
sign, in which different components are responsible for handling short-, and near-term conflicts,
and collision avoidance. Figure1 illustrates the infrastructure of the AAC.

The strategic separation layer, referred to as theAutoResolver, addresses conflicts from three
to 20 minutes in the future. The AutoResolver is implemented in software running on a central
computer on the ground, taking in the trajectory of each aircraft in the airspace, detecting any
conflicts, and outputting resolution maneuvers for any aircraft involved insuch conflicts. There
is no direct data link between the AutoResolver and the aircraft; the controller is in charge of
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Figure 1: Automated Airspace Concept
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sending the resolutions generated from the AutoResolver.
The tactical separation layer, known as theTactical Separation Assured Flight Environment

(TSAFE), addresses conflicts projected to occur less than 3 minutes in the future. TSAFE is also
implemented in software running on a ground computer, but using a different algorithm from
the AutoResolver. TSAFE can automate conflict resolution on the tactical layer, allowing the
controller to focus more on strategic operation.

Finally, theTraffic Alert and Collision Avoidance System (TCAS), is required by the Federal
Aviation Administration mandate to address possible collisions less than 30 seconds in the future.
TCAS software runs on each aircraft’s on-board computer and detectspossible collisions using a
transponder installed in the aircraft. Thus, TCAS is totally independent from on-ground systems.

Theoperational conceptof the AAC proposed in [13] specifies the authority and responsibil-
ities of the above three systems, controllers and pilots. Figure2 shows the responsibilities of
the controller and TSAFE for each aircraft that is involved in a conflict. Since conflict detection
is limited by the precision of route prediction, conflicts projected more than 20 minutes out are
not considered. The AutoResolver detects long-term conflicts, up to 20 minutes in the future,
corresponding to time slot(1), and also provides resolutions accordingly to the controller. If
approved by the controller, the resolutions from the AutoResolver will be transmitted to the af-
fected aircraft. TSAFE detects conflicts up to 3 minutes in the future. If the time toLOS is
between 1 and 3 minutes, corresponding to time slot(2) in Figure2, TSAFE will first alert the
controller and wait for approval. In this circumstance, the controller has three choices: approve
the resolution from TSAFE and give control responsibility for the involvedaircraft to TSAFE,
resolve the conflict manually, or wait without resolving the conflict. In the latter two cases, the
controller maintains responsibility for controlling the aircraft involved in the conflict. If the con-
troller transfers control to TSAFE, he should not give resolutions to the involved aircraft until
the conflict has been resolved. However, if the time to LOS falls below the TSAFE threshold
of 1 minute, as defined in [13], TSAFE will take control of the aircraft involved in the conflict
from the controller, without having to wait for controller approval, and send resolutions to these
aircraft automatically. This case corresponds to time slot(3) in Figure2. After the conflict is
resolved, TSAFE will return control of the aircraft involved to the controller, as shown in time
slot (4) in Figure2. Without the help of ground-based systems, TCAS is able to detect possible
collisions that are projected in under 30 seconds and give resolutions, constituting the last layer
of protection against collisions. TCAS does not wait for any approvals from the ground or notify
other systems, but directly advises the pilot.
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The operational concept defines a total order on resolution priority forpilots: TCAS reso-
lution>TSAFE resolution>controller (with the AutoResolver) resolution. Pilots are required
to execute the resolution maneuvers following this priority list if more than one resolution is
received.

4 Formalization methodology
The system model and formal specification (for both validation and verification) are two sides
of our formalization. To achieve efficient, design-time feedback using modelchecking, we also
consider an abstract model, which conserves all possible execution paths in the original model.
We provide specifications and report model checking results for both models.

4.1 Model of the AAC
Our model assumes the following:(1)All conflicts will eventually trigger AutoResolver, TSAFE,
and/or TCAS alerts, i.e. while we do not assume completeness for any one component, we as-
sume there is no conflict that will go undetected by all three components.(2) TCAS, TSAFE, and
the AutoResolver have been independently verified and therefore always give correct resolutions
(“correct resolution assumption”). As long as the resolution advisory is executed by the pilot, the
detected conflict will be correctly resolved.(3) We assume humans arecompetent operators. A
controller will never give an incorrect resolution or fail to give a resolution when one is expected.
Pilots are aware of the AAC component systems and the priority of differentresolutions received
and are always able to respond correctly, in the required time frame.(4) There are no hardware
failures or lost messages. We do not consider hardware failure probabilities and human error
models in the system model. Since the AAC components have been individually verified and the
humans-in-the-loop rigorously trained, we do not consider cases where automated algorithms
and humans simultaneously behave incorrectly, but instead focus on verifying the protocol for
transmission and execution defined in the operational concept.

As shown in Figure3, the AAC is modularized into four components:Aircraft, TSAFE, Con-
troller, and theEnvironment. Arrows show the important input/output variables interconnecting
the modules. Note that there could be several instances of the aircraft module, A1,A2, · · · , in our
model; we picture a single instance to simplify the figure. The resolution transmissions between
TSAFE, the controller, and aircraft are abstracted as the Boolean variables “TSAFEcommand”
and “CTRcommand” with suffixes1/ 2/ 3 to indicate the destination aircraft for these resolu-
tions. We omit the suffixes when they are not necessary. For example, variable “TSAFEcommand1”
is an output of theTSAFEmodule and an input to aircraftA1. If TSAFE transmits a resolution
to aircraftA1, TSAFEcommand1 is set to1, andAircraft 1 module will react accordingly.

Aircraft

TSAFE

Controller 
(Autoresolver)

TSAFE_command

CTR_command

Environment

TSAFE_Alert

AR_Conflict

TCAS_command

TCAS/TSAFE/CTR_cmd_done

Figure 3: Interconnection between modules

Non AT

BT

TSAFE_cmd_done

TSAFE_cmd_done

Figure 4: FSM for variable TSAFEAlert
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In the real system, the inputs to TSAFE and the AutoResolver are the aircraft trajectories and
flight plans. We can abstract these inputs using the variables ARConflict and TSAFEAlert
to indicate “whether there is an AutoResolver/TSAFE alert.” While ARConflict is a Boolean
variable, there are three possible values for the variable TSAFEAlert: Non, AT and BT, corre-
sponding to no LOS detected, LOS detected with time to LOS above and below the threshold.
Since TSAFE and the AutoResolver construct pairwise conflict lists, thereis such a variable for
each pair of aircraft with different suffixes. For example, “TSAFEAlert 12=BT” means there
is a LOS within the threshold time between aircraftA1 andA2. These variables are maintained
in theEnvironmentmodule, which is not a part of the AAC, and mimics all possible conditions
of conflicts in the real system. After theAircraft module sets “TCAS/TSAFE/CTRcmd done”
flag, meaning a corresponding resolution has been executed by the pilot, the variables regarding
the resolved conflict are reset.

Figure4 is the finite state machine (FSM) for variable TSAFEAlert, illustrating transitions
between the three possible values. When TSAFEcmd done =1, meaning aircraft involved in
the TSAFE alert have executed the resolution, TSAFEAlert is reset to “Non.” All the other non-
self-loop transitions reflect possible effect of time elapsing, either a LOS occurs or time to LOS
falls below the threshold. Similar FSMs are built for variables ARAlert and TCAScommand
to mimic the conflict detected by the AutoResolver and TCAS, and the only difference is that
these variables only have true or false values. The cross-product ofthese FSMs constitutes the
possible conflict conditions and transitions between them. In our model, we discretize the real-
time execution of the system into sequences of transitions between possible configurations of the
AAC system and conditions of the environment.

The Aircraft module models the TCAS system and the behaviors of the pilot. All aircraft
in compliance with the AAC can be modeled as homogeneous aircraft modules. Each module
maintains a priority list of received but not executed resolutions based onthe priority TCAS
resolution>TSAFE resolution> controller’s resolution, and each pilot can execute only one
resolution in each time frame. At one time, there can only be one TCAS/TSAFE/controller
resolution active, so this list is always finite with a maximum length of three. Due totheir
resolution algorithms, the AutoResolver resolves the one most imminent pairwiseconflict at a
time, while TSAFE resolves all detected pairwise conflicts simultaneously. To simplify the logic,
we assume the same pair of aircraft cannot appear on both the AutoResolver and TSAFE conflict
lists at the same time. If this happens, we can safely remove the conflict from the AutoResolver
conflict list. Based on our correct resolution assumption, a resolution cannot cause a conflict
more imminent than the one it is resolving, when a resolution is executed, the setsof aircraft in
conflict leave the conflict list. If the conflict detected by the AutoResolver and that detected by
TSAFE involve two disjoint sets of aircraft, this is equivalent to resolving only the AutoResolver
conflict and only the TSAFE conflict separately and independently. We mustalso account for the
cases where the same aircraft is involved in both TSAFE and AutoResolverconflicts. To avoid
the state space explosion problem, we need to build the AAC model containing theminimum
sufficient number of aircraft instances. We agree with system designers that it is possible to
reason about all meaningful corner cases of the real system utilizingthreeaircraft.

TheTSAFEmodule models the behaviors of TSAFE with its dedicated data link. For a TSAFE
conflict between aircraftA1 andA2 (TSAFEAlert 12 = AT or BT), the TSAFE algorithm may
generate a resolution for onlyA1 (TSAFEcommand1= 1), onlyA2 (TSAFEcommand2= 1),
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or both (TSAFEcommand1= 1 ∧ TSAFE command2= 1); in our model one of these three
cases is chosen nondeterministically. The AutoResolver does not generate cooperative resolu-
tions, so we nondeterministically generate a resolution for one of the two aircraft involved in a
conflict. Since AutoResolver resolutions must be sent by a controller, we integrate its functional-
ity into theControllermodule. When TSAFE or the AutoResolver alerts arise in theEnvironment
module, these two modules react as defined in the operational concept andoutput resolutions for
the involved aircraft. Our full-scale model contains 97 Boolean variables,including the variables
indicating conditions of conflicts, TCAS/TSAFE/AutoResolver(controller’s) resolutions, resolu-
tions received by aircraft and hand-shaking signals between modules inthe communication.

4.2 Specifications
We write two sets of specifications: model validation specifications to ensure the model follows
the system design description, and verification specifications capture the emergent behaviors that
should be avoided in the AAC system. Our specification sets are expressedusing invariant dec-
larations and LTL and CTL formulas. For the most part, we use LTL formulas, which more
aptly describe the temporal behaviors for all paths; LTL most intuitively captures all of our sys-
tem requirements and most of our checks of the system model design. We use CTL formulas
to check that distinct behaviors occur on distinct paths at the same time, whichis valuable for
checking that we have modeled multiple disparate paths when validating our system model de-
sign. Table1 lists the specifications we verified. Formulas are identified with IDs in the first
column, where “LTL,” “CTL,” and “INV” distinguish LTL, CTL, and pure invariant formulas
respectively. The specifications coalesce properties from two sources: the properties for model
validation are from [13], and the properties for verification are generated from discussions with
AAC designers. For model validation properties, which should correctly reflect the intentions of
the designers, we quote the original sentences from [13] in the second column to demonstrate
how we converted the natural language system design into formal temporal logic. Verification
properties are primarily generated from the discussion with the designers,and we provide brief
descriptions in the second column. Note that the actual formulas used in both model validation
and verification (available online) are more complex than those listed in Table1; for readability,
we omit some details and only show the idea behind each formula.

4.3 Model abstraction
Our full-scale model takes more than 9 hours on an Intel Xeon 2.53GHz workstation with 36GB
RAM to verify all properties in Table1. Considering that we will need to modify the model
and rerun the verification as the structure of the AAC or its operational concept evolve, this run
time is not satisfactory. Faster response times are required to be useful in design time as system
designers check proposed AAC modifications. Therefore, we employ a simple model abstrac-
tion [10] to speed up the verification process. Constructing both models required approximately
three man months.

We abstract out the transition relation for variables related to the three aircraft and instead
assign them randomly in each cycle. In NuSMV, this abstraction simply removesall statements
under the keywords “TRANS” and “ASSIGN” in theAircraft module. The set of possible exe-
cutions in the abstract model is a strict super-set of the possible executions in the original model.
Since the abstract model has the same set of variables in the concrete model, the map between

Proc. AVoCS 2012 8 / 15
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ID Model Validation Specifications from [13] Formula Abs. Cpl.

LTL-1 “With TSAFE alert, if the time to LOS in TSAFE alert exceeds a threshold,
controllers retain responsibility for formulating resolutions and taking action to
resolve conflicts. ”

G((CTR control & X TSAFE Alert 6= Non)→ X CTR control)) T T

INV-1 “The next step is to send the TSAFE Alert information into a system for gener-
ating resolution manoeuvres and ... ”

TSAFE Alert → TSAFE res T T

CTL-1 “As long as the time to loss of separation remains (above threshold), the con-
troller can choose from the following three options: 1. inhibit TSAFE Reso-
lution from issuing a resolution advisory for the current conflict;” “(The con-
troller) takes responsibility for resolving the conflict manually without the help
of TSAFE resolution.”

AG (TSAFE Alert = AT → E (!TSAFE snt cmd U controller cmd) NA T

“2. command TSAFE Resolution to issue a resolution advisory tothe aircraft;” AG (TSAFE Alert = AT → EX TSAFE snt cmd)
“3. take no action at the current time.” AG (TSAFE Alert = AT → EG !TSAFE snt cmd)

LTL-2 “If the controller chooses the second option, TSAFE immediately sends a reso-
lution advisory to the aircraft. ”

G (TSAFE snt cmd→ X TSAFE cmd) T T

LTL-3

“... in the events that the time to LOS in TSAFE alert falls below threshold,
without the controller having chosen the first or second option, responsibility for
resolving the conflict defaults automatically to TSAFE Resolution.”

G(TSAFE res & TSAFEAlert = BT → X TSAFE cmd)
G(TSAFE Alert = BT & CTR control)→ X !CTR control T T

LTL-4 “A message on the controllers monitor indicates when the aircraft has cleared the
conflict and control of the aircraft is handed off to the controller. ”

G (ac.TSAFEcmd done→ X CTR control) T T

LTL-5 “As in TCAS, pilot compliance within a specified time period will be required.”
“Pilots need to be trained to respond to TSAFE and to understand the difference
in the conditions that trigger either a TSAFE or TCAS alert.”

G(ac.TCAScmd & !ac.TSAFEcmd done → (!ac.TSAFE
cmd doneU ac.TCAScmd done))

F T

ID Model Verification Specifications Formula Abs. Cpl.
LTL-6 All TSAFE alert will be resolved finally. G (TSAFE alert6= Non→ F (TSAFE alert=Non)) F T
LTL-7 If TSAFE takes control of aircraft, it will finally hand control off to the controller. G (TSAFE control→ F !TSAFE control) F T
LTL-8 If the controller hands the control of an aircraft to TSAFE, this aircraft will not

executes the command from the controller.
G ((!controller.CTRcontrol 1 & !ac1.CTRcommanddone)
→ ((!ac1.CTRcommanddone U controller.CTRcontrol 1) ||F
ac1.TSAFEcommanddone))

F F

INV-2 AutoResolver or TSAFE controls an aircraft exclusively. (TSAFE control → !CTR control) & (CTR control →
!TSAFE control)

T T

LTL-9 The elder TSAFE resolutions will always be executed ahead oflater ones. G ((ac1.TSAFEcommand & !ac2.TSAFEcommand) →
(!ac2.TSAFEcommanddoneU ac1.TSAFEcommanddone))

F F

Table 1: Specifications for model validation from the AAC operational concept and for model verification via model checking
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the states in the abstract model and the concrete model is clear. As a specialcase of Corollary
5.7 in [10], the following theorem holds in our abstract and concrete models.
Theorem [10]: If an invariant or LTL property is true for the abstract model, it must also be true
for the concrete model.

In other words, this abstraction is sound but not complete and only true results on the ab-
stract model are conserved in the original model. Note that this theorem does not hold for CTL
properties with path predicateE. The abstract model takes only about half an hour to verify all
properties. The verification results for the abstract and concrete modelsare listed in Columns
“Abs.” and “Cpl.” of Table1 respectively; “T” and “F” designate true and false. We only need to
use the concrete model to verify properties that are false for the abstract model, saving run time
and providing a valuable tool for model and property debugging.

5 Specification debugging
When model checkers identify counterexamples where the model does notsatisfy the model vali-
dation specification, it means the system model and the specification are inconsistent, and at least
one of them violates designer’s intention. However, it is unclear whether the inconsistency is due
to an error either in the system model (if it is different from the real system), or in the formal
specification. Debugging must be conducted on both the model and the specification of the op-
erational concept. Writing correct formal specifications is difficult. and there is not a automated,
systematic approach to specification debugging. We adapt two specificationdebugging tech-
niques to increase our confidence in our formal specification. LTL satisfiability checking [30]
finds erroneous specifications that will always be trivially satisfied or willnever be satisfied, re-
gardless of the details of the model. Counterexample-guided specification debugging [31] aids
us in fixing imprecise specifications that generate false negative results.

5.1 LTL satisfiability checking
Some errors may not be detected when the model-checking result is positive: a guarantee that the
model satisfies the specification does not necessarily answer the real question, namely, whether
the system has the intended behavior. If a specification isvalid, or true inall models, then model
checking this specification always results in a positive answer and this is certainly due to an error
in the specification itself. Similarly, if a specification isunsatisfiable, or true inno model, then
this is also certainly due to an error. Even if each individual specification inour set is satisfiable,
their conjunction may be unsatisfiable. Recall that a logical formulaϕ is valid iff its negation
¬ϕ is not satisfiable [29].

We utilize the observation that LTL satisfiability checking can be reduced to model check-
ing [29]. Consider a formulaϕ over a setProp of atomic propositions and a modelM that is
universal, meaning thatM contains all possible traces overProp. Thenϕ is satisfiable precisely
when the modelM doesnot satisfy¬ϕ . For all LTL and invariant properties, we employ the
PANDA tool [30] as a front-end to NuSMV to check the satisfiability of each property, the nega-
tion of each property, and the conjunction of all properties. Note that we cannot perform the
same test for CTL properties since CTL satisfiability checking is significantly harder than model
checking: with respect to formula size, model checking is NLOGSPACE-complete for CTL [18]
while satisfiability is EXPTIME-complete for CTL [11].

When employing satisfiability checking, we enhance the method in [30] by further considering
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the fairness constraints in the system model, defined by “FAIRNESS” or “JUSTICE” keywords3

in NuSMV. Fairness, constraining the verification only to executions wheresome events happen
infinitely often, is often used to guarantee the valid progress of the system. Under the (weak)
fairness constraintψ , each LTL formulaϕ would be treated asGFψ → ϕ . Even when PANDA
identifies thatϕ is not valid, an overstrict fairness constraintψ will causeGFψ → ϕ to be valid,
concealing the potential meaningful counterexamples toϕ . In a model checker like NuSMV,
fairness statements are defined implicitly outside the specifications; this construction has not
drawn much attention in previous work on satisfiability checking. PANDA efficiently encodes
the negation of each LTL specification as a NuSMV symbolic automaton. We cantackle fairness
in LTL satisfiability checking by incorporating all of the fairness constraintsin the AAC model
into the PANDA output. We conduct satisfiability checking via model checking against a univer-
sal NuSMV model. If a formula proves to be satisfiable, we conclude that it issatisfiable under
the fairness constraints.

In our experience, this enhancement helped us find an error while all LTL formulas proved
satisfiable without the added fairness constraints. Since TSAFE alerts occur rarely in practice
(once or twice in an average day), we intended to distinguish consecutiveTSAFE alerts using
the following fairness constraint:

FAIRNESS (TSAFEAlert = Non);

By LTL satisfiability checking with added fairness, we discovered that LTL-6 becomes valid
under this constraint. We found that this fairness constraint is too strict. Itobscures meaningful
counterexamples to LTL-6. We rewrote it as:

FAIRNESS (TSAFEAlert! = AT);

which also suffices to guarantee the progress of the model.
We debugged our specification set until all specifications (both individuallyand as a set), and

their negations were satisfiable. The performance of our LTL satisfiability checks was consistent
with the data in [30]; all of the checks required less than a minute to complete.

5.2 Counterexample-guided specification debugging
When a model checker returns a negative result, the reason may be that the specification is
imprecise and thus fails to express the system execution we want to check. We can manually
trace spurious counterexamples back to imprecision in the specifications. While this practice
aids in eliminating spurious counterexamples, it also relies heavily on verifier’s intelligence. We
detail the evolution of the formula LTL-8 to show how we performed counterexample-guided
specification debugging.

Formula LTL-8 states that “If the controller hands off the control of an aircraft to TSAFE,
this aircraft will not execute commands from the controller,” which we firstwrote an invariant
!(!CTRcontrol&ac.CTRcmd done). NuSMV returns a counterexample, pictured in Figure5.
In this case, a resolution is sent to Aircraft 1, after which the controller gives the control of Air-
craft 1 to TSAFE. However, this counterexample is spurious; [13] states that a “TSAFE advisory

3 We do not address strong fairness (defined by “COMPASSION” in NuSMV) since it does not appear in our model,
but our method also applies to strong fairness.
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mula of LTL-8
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Figure 6: Counterexample to LTL-8

would supersede the most recently issued controller clearance.” After TSAFE obtains the con-
trol of Aircraft 1, its resolution will supersede the controller’s resolution. Thus, Figure5 shows
a valid execution in the AAC. We need to refine the specification to find any scenarios where
after the controller gives control to TSAFE, the controller’s resolution willstill be executed, not
superseded by the TSAFE resolution. Thus, we rewrite the original formula as LTL-8 in Table1
and NuSMV returns a meaningful counterexample, described in the next section.

6 Counterexamples

We elaborate on the counterexamples returned for formulas LTL-8 and LTL-9 and discuss the
corresponding fixes they inspired in the AAC system design.

Formula LTL-8 specifies that after a controller has transferred controlof an aircraft, that air-
craft should not execute a resolution from its previous controller. However, counterexamples are
generated for some cases when a controller’s resolution is sent outjust beforetransfer of control.
One such counterexample depicts the following sequence of events:

1. TSAFE detects a conflict between Aircraft 1 and Aircraft 3 with a time to LOS below the
TSAFE threshold, indicating TSAFE should take control of both Aircraft 1and 3 automatically
in the next time step. TSAFE generates a maneuver for Aircraft 3 as the resolution.

2. TSAFE notifies the controller that it will take control of Aircraft 1 and 3 andalso send a
resolution to Aircraft 3, but just before TSAFE takes control of Aircraft 1, the controller sends a
command to Aircraft 1.

3. Aircraft 1 receives the resolution from the controller; the pilot executesthis resolution since
no higher-priority resolution was received.

Aircraft 1 executes the controller’s resolution despite the transfer of control to TSAFE. Since
this resolution does not take the urgent TSAFE alert into consideration, it may potentially cause
a conflict between Aircraft 1 and 3. This counterexample reflects two problems in the AAC
protocol. First, aircraft control transfers are only defined between TSAFE and the controller.
There is no aircraft notification of control transfers; the resolution received by Aircraft 1 appears
valid despite the transfer of control to TSAFE. Second, per the TSAFE protocol, aircraft involved
in a conflict do not receive notice of the conflict resolution if they are notrequired to change
course to resolve the conflict. Since Aircraft 1’s pilot is not aware of thetransfer of control to
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TSAFE and does not receive a higher-priority resolution from TSAFE,the controller’s command
effectively overrides TSAFE’s control without violating the pilot’s commandpriority ranking
protocol. In response to this counterexample, AAC system designers added a requirement that a
“hold current route” command be sent as a part of such a TSAFE resolution. Now, in the above
scenario, Aircraft 1 would receive the controller’s command followed bya “hold current route”
resolution from TSAFE, superseding the controller’s command and ensuring safe separation as
Aircraft 3 executes the TSAFE maneuver.

A counterexample to LTL-9 depicts the following scenario:

1. TSAFE detects a conflict between Aircraft 1 and 3 with a time to LOS below the TSAFE
threshold. TSAFE sends a maneuver for Aircraft 1 as a resolution.

2. Next, TCAS raises an alert in Aircraft 1. Aircraft 1 must immediately executethe TCAS
resolution.

3. TSAFE detects a new conflict between Aircraft 1 and 2 and, seeing that Aircraft 1 has not
executed the previous TSAFE resolution, attempts to resolve both the conflictbetween Aircraft 1
and 2 and that between Aircraft 1 and 3 with a new resolution involving all three aircraft. TSAFE
then generates a cooperative maneuver for Aircraft 2 and 3, but notAircraft 1.

In this circumstance, the first resolution sent to Aircraft 1 is expired and should now be ignored
but, since the replacement resolution did not include a maneuver for Aircraft 1, it does not know
to ignore the expired resolution. After completing the TCAS resolution, it executes the next
highest-priority command, which happens to be the expired TSAFE resolution. This problem
pinpoints a gap in the protocol definition for the synchronization of multiple resolutions. The
current AAC protocol does not define when and how a new TSAFE resolution can override a
previous resolution that was sent but did not resolve the targeted conflict, for example, due to a
delay caused by a TCAS resolution. Since the new TSAFE resolution may be sent to a different
aircraft from the previous one, system designers added a requirement for a notification from
TSAFE to invalidate the expired TSAFE resolution. Through experimenting withmodifications
to our AAC model, we also found that we can eliminate this counterexample to LTL-9 by only
allowing TSAFE to send a new resolution after asufficiently longinterval following the previous
resolution, where sufficiently long is defined to equal the projected time required for the affected
aircraft to execute the previous TSAFE resolution.

7 Conclusions and future work
We detail all of the facets of adapting classical model checking to a real aerospace system, in-
cluding deriving the formal model and a set of specifications from natural language descriptions.
To ensure the model checking results are meaningful, we have to ensure that both the model and
specifications correctly reflect the intentions of the designers, thus we employ model validation
and property debugging techniques. We demonstrate the utility of enhancingLTL satisfiability
checking by taking the fairness constraints of the system model into consideration. We argue that
specification debugging in real applications deserves more attention in future research efforts,
and the utility of asystem formalization, model and specification debugging, andverification
trilogy for model checking real systems under development.

In this paper we assume there are no hardware failures or lost messages. As the AAC design
develops and hardware details are decided by AAC designers, we plan totake the failure rates
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of the chosen components into consideration, i.e. by extending our work to probabilistic model
checking using PRISM [19]. Previous work has reported on analyzing the safety of air traffic
control systems using simulation [3] or fault trees [1]. By extending the model we designed in
this paper, we can carry out safety analysis using PRISM to capture the dynamic interactions in
the AAC.
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