Electronic Communications of the EASST

Volume 53 (2012)

Proceedings of the
12th International Workshop on
Automated Verification of Critical Systems
(AVoCS 2012)

Formal Specification and Verification of a Coordination Protocol for an
Automated Air Traffic Control System

Yang Zhao Kristin Yvonne Rozier

15 pages

Guest Editors: Gerald Liuttgen, Stephan Merz

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Formal Specification and Verification of a Coordination Protocol for
an Automated Air Traffic Control System

Yang Zhao' * Kristin Yvonne Rozier ?

1 University of California, Riverside, USAzhaoy@cs.ucr.edu
2 NASA Ames Research Center, Moffett Field CA, 94035, UgAistin.Y.Rozier@nasa.gov

Abstract: Safe separation between aircraft is the primary consideration in air traffic
control. To achieve the required level of assurance for this safétgatepplication,

the Automated Airspace Concept (AAC) proposes three levels of codétettion

and resolution. Recently, a high-level operational concept was peapt define

the cooperation between components in the AAC. However, the proposeditta-

tion protocol has not been formally studied. We use formal verificatiomiqales

to ensure there are no potentially catastrophic design flaws remaining in tGe AA
design before the next stage of production.

We formalize the high-level operational concept, which was previousgrdeed
only in natural language, in NuSMV and performodel validationby checking
against LTL/CTL specifications we derive from the system descriptior. white
LTL specifications describing safe system operations and use modddirotpdor
system verification We employspecification debuggingp ensure correctness of
both sets of formal specifications amtbdel abstractiorto reduce model check-
ing time and enable fast, design-time checking. We analyze two counteresample
revealing unexpected emergent behaviors in the operational coneg¢ptigigered
design changes by system engineers to meet safety standards. &nigmrcg@report
illuminates the application of formal methods in real safety-critical systenagve
ment by detailing a complete end-to-end design-time verification processimglud
all models and specifications.

Keywords: model validation, specification debugging, model checking, safety-
critical system

1 Introduction

Safe distance between commercial aircraft must always be guarantpesl/émt potential air-
craft collisions. The Automated Airspace Concept (AACY][is designated to ensure the safe
separation of these aircraft within a given airspace sector. The AAGighaevel generic frame-
work proposed as a candidate for the Next Generation Air Traffic ©b8tstem (NextGen),
which is currently under development at NASA. To mitigate the complexity ofutating air-
craft trajectory resolutions and enable separation assurance in reathien@AC divides the
task of separation assurance between three independent resoligiemsythat handle long-
term, near-term, and urgent predicted loss of separation betweerftaircealdition to juggling

* Work contributing to this paper was supported in part by NASAs Airsgagstems Program and by the National
Science Foundation under Grant CCF-1018057.

1/15 Volume 53 (2012)

mailto:zhaoy@cs.ucr.edu
mailto:Kristin.Y.Rozier@nasa.gov

Formal Specification and Verification of a Coordination Protocol Eﬁ

other tasks, such as fielding trajectory requests from controllers arid. ptles essential that we
verify the interactions between the set of independent components ofAfBeesult in emergent
total-system behaviors that are safe, and that pilots reliably receivethectroutes from the
correct components.

Formal verification has been gradually accepted as an important step irestys diow of
safety-critical systems. Model checking is one of the most widely useaddiorerification meth-
ods. We use the model checker NuSM&/ 9] since it is well-documented[7], open-sourcg
and frequently used in industry,[L6,20,22,28,32]. We need to build aystem modaeif the oper-
ational conceptl2-14,24] in formal semantics and also describe the behaviors required for safe
system operation, thmodel verification specificatiorusing temporal logic. NuSMYV is then
able to prove that the system model conforms to the model verification spéoifior return
counterexamples corresponding to possible executions in the operatmradpt that violate
that specification. Previously, significant effort has been devotedcteasing the automation
and efficiency of the model checking step. However, formalizing safietizal systems that are
not inherently built on formal semantics becomes a bottleneck. We argusytiam model
validation and specification debugging are necessary tools to build cooéidénen formalizing
a high-level conceptual design, because inconsistencies betweendeéand the real system
and erroneous specifications can lead to spurious verification results.

We illuminate a complete end-to-end design-time verification process on theéld-8AC
coordination protocol, presenting our work on formally specifying, véiliga and model check-
ing from three aspects. The first aspect is fienalization methodologyWe detail a process
for deriving a formal model of the AAC operational procedure buildipgm existing literature
and input from human experts via about 100 person-hours of inteswiéthh system architects.
We extractmodel validation specificationsom the operational concept and constrowbdel
verification specificationby codifying the expectations of system designers, extracted via con-
versation, in temporal logic; all models and specifications are available online

The second aspect model and specification debugginghich addresses a practical chal-
lenge in the above model checking procedure: how to ensure that thalipation of the system
model correctly reflects the designer’s intentions. Counterexamplesiedtfirom the model
checker may not reveal problems in the operational concept itself, $tetich correspond to im-
precisions in the system model. Our solution to this problem is to create bothsieensgnodel
and a set of temporal logic properties (our model validation specification) fhe description
of operational concept as two ways of formalizing the designer’s intentie validate our sys-
tem model by model checking this set of specifications, which directly spored to statements
in the designer’s description of how the system is constructed. Note thas tlistinct from
verification, which involves model checking the system model againsifgagions encoding
the system safety requirements that describe how the system shoul@ b&haveported coun-
terexamples pinpoint any inconsistencies between these two and we maneatlfyid/hether
the problem lies in the model or the specification. We exemplify our procespedification
debugging, including LTL satisfiability checking@9] and counterexample-guided specification

1 The source code and documentation are available for download friopt/nusmv.irst.itc.it/
2 Both NuSMV models, all specifications, and the commands we ran to chigek are available at
http://ti.arc.nasa.gov/m/profile/kyrozier/ AAC/AAC.htmi

Proc. AVoCS 2012 2/15

http://nusmv.irst.itc.it/
http://ti.arc.nasa.gov/m/profile/kyrozier/AAC/AAC.html

Eﬁ ECEASST

debugging, to increase confidence in the correctness of our sptaifia This iterative pro-
cess greatly increases our confidence in the consistency betweerstdm syodel, the formal
specifications for both model validation and model verification, and the messgntention.

The third aspectnodel checkingcompletes our system verification process by checking the
system model against the model verification specifications. We detail tw@entemexpected
behaviors of the AAC that were pinpointed by counterexamples and gipassible modifica-
tions to mitigate them. System designers identified these two cases as particulariyating
and changed the system design in response to our counterexampldsoWseuss the lessons
resulting from our experience and provide insights that are instruaiivéné formal specifica-
tion, validation, and verification via model checking of other industrial syste

The remainder of this paper is organized as follows. We highlight relatekl wdGection2.
We introduce the full AAC operational concept and the merits of formaliziimg 8ection3. In
Sectiond, we detail our system modeling techniques and their effects on the verifigatoess.
Section5 discusses our specification debugging techniques. Segpoasents important coun-
terexamples describing unexpected emergent behaviors along with mibaliéct the system
design to combat them. Secti@rconcludes and points out future work.

2 Related Work

The three AAC components that calculate resolution maneuvers havegondeverification
through simulation as well as ongoing component-level verification utilizinm&émethods
[5, 15, 25]. However, there is an important verification aspect that has never dddressed:
the cooperation between components. Verification efforts to date haevemoated on single
components in the AAC; each component has been rigorously evaluateidiradly under the

assumption that if each component of the system behaves correctly thgstem as a whole will
also function as desired. Employing simulation or testing on the AAC as a whalenisdable,

and too time-consuming to provide real-time results. Evaluating different {imtepstem con-
figurations, as we do here, was not previously possible.

Although [23] pointed out weaknesses of model checkers in handling complex datéusés
and arithmetic operations, model checking is still a powerful tool for viergfysafety-critical
protocols and several case studies on model checking various aeeasgstems have been pub-
lished 6, 21, 31]. Our study is carried out early in the design phase before any systela-imp
mentation is available. Our system model and specifications for model validaitmodel
verification are generated directly from natural language, wBilggenerates the system model
from the source code, ané,R1] generate NuSMV models automatically from another formal
language.

Specification debugging has drawn much attenti®riy, 26]. These methods analyze the
consistencycompletenesandsafetyof formal specifications. For example, R6] presented a
platform for formal analysis of hardware requirements called “RAT,folithas been applied in
the analysis of aerospace syster]s Using this framework, instead of creating a system model,
we only need to generate the model validation specification in Seétibas the formal spec-
ification of the operational concept; RAT is able to check this specificatiamagour model
verification specification. However, the consistency between the foiealfication under ver-
ification and the designer’s intention is not guaranteed within this framewdidceover, our

3/15 Volume 53 (2012)

Formal Specification and Verification of a Coordination Protocol Eﬁ

work is able to create a validated system model that can be used as a prdtmtyipe future
system implementation.

We demonstrate the simultaneous creation of the system model and model val&tee@-
fications; our approach is to validate these two parts against each othgmusdel checking.
Previous work §, 6, 23, 31] often requires one or both of these two parts as the input to do
analysis and verification. The chicken-and-egg relationship betweeystem model and the
formal specifications describing system requirements provides a chelidmgn employing for-
mal methods at design-time. We present the process of formalizing both tred wadidation
and model verification specifications, likl], and, as a highlight, we also present our speci-
fication debugging scheme, including LTL satisfiability checking. Little inforrmatibout the
effectiveness of LTL satisfiability checking in practical model checkingvigilable in previous
publications. We are the first to publish the complete details of such an esmtiteerifica-
tion process, including the code for NuSMV models and specifications.n@dels are open
to the public for future research to help shed some light on the problem ofiiéisign-time
formalization.

3 The Automated Airspace Concept

The central task of the AAC is to maintain safe separation and provide coléismidance in the
airspace. The AAC is able to detect a potential loss of separation (LOS) fatilre, referred to
as aconflict and resolve conflicts by generating resolution maneuvers for thefairoralved
and sending these resolutions securely to pilot(s). Pilots are expectethytauaresolutions
in a timely manner. To simplify communication and coordination, it is desirable to implemen
a single system capable of detecting and resolving all possible conflictsadligions. How-
ever, the complexity of this system would be formidable and satisfactorpmesgtimes are not
achievable with currently available hardware. Thus, the AAC incorpsmaisompositional de-
sign, in which different components are responsible for handling steord-near-term conflicts,
and collision avoidance. Figuteillustrates the infrastructure of the AAC.

The strategic separation layer, referred to asAhResolveraddresses conflicts from three
to 20 minutes in the future. The AutoResolver is implemented in software runniagcentral
computer on the ground, taking in the trajectory of each aircraft in theaaespetecting any
conflicts, and outputting resolution maneuvers for any aircraft involvedigm conflicts. There
is no direct data link between the AutoResolver and the aircraft; the comtiwlile charge of

Aircraft 1 Aircraft 2 Aircraft3 ' Ground-based Auto I

. . . ' system Resolver :

Pilot Pilot Pilot ‘ - ' -

> ‘ 1

S | Cockpit Cockpit Cockpit TSAFE [+ Controller .

o N\ o

5 R A
@ |receiver | TCAS receiver | TCAS| |[receiver | TCAS f Data links ;

\ 4

Figure 1: Automated Airspace Concept

Proc. AVoCS 2012 4/15

Eﬁ ECEASST

sending the resolutions generated from the AutoResolver.

The tactical separation layer, known as Fetical Separation Assured Flight Environment
(TSAFB, addresses conflicts projected to occur less than 3 minutes in the fugA¢&ETis also
implemented in software running on a ground computer, but using a diffatgorithm from
the AutoResolver. TSAFE can automate conflict resolution on the tactical lay@ving the
controller to focus more on strategic operation.

Finally, theTraffic Alert and Collision Avoidance System (TCASYequired by the Federal
Aviation Administration mandate to address possible collisions less than 3Qdsdodhe future.
TCAS software runs on each aircraft’'s on-board computer and dgiessshle collisions using a
transponder installed in the aircraft. Thus, TCAS is totally independemt ém-ground systems.

Theoperational concepof the AAC proposed in]3] specifies the authority and responsibil-
ities of the above three systems, controllers and pilots. Figugieows the responsibilities of
the controller and TSAFE for each aircraft that is involved in a conflictc&onflict detection
is limited by the precision of route prediction, conflicts projected more than 20tesrut are
not considered. The AutoResolver detects long-term conflicts, up to 2@esiim the future,
corresponding to time sldtl), and also provides resolutions accordingly to the controller. If
approved by the controller, the resolutions from the AutoResolver willdesmitted to the af-
fected aircraft. TSAFE detects conflicts up to 3 minutes in the future. If the tink€®® is
between 1 and 3 minutes, corresponding to time @pin Figure2, TSAFE will first alert the
controller and wait for approval. In this circumstance, the controller ha® tthoices: approve
the resolution from TSAFE and give control responsibility for the invola@draft to TSAFE,
resolve the conflict manually, or wait without resolving the conflict. In the latte cases, the
controller maintains responsibility for controlling the aircraft involved in theftict. If the con-
troller transfers control to TSAFE, he should not give resolutions to tha&\ied aircraft until
the conflict has been resolved. However, if the time to LOS falls below theFESAreshold
of 1 minute, as defined irlp], TSAFE will take control of the aircraft involved in the conflict
from the controller, without having to wait for controller approval, anddseesolutions to these
aircraft automatically. This case corresponds to time @optn Figure2. After the conflict is
resolved, TSAFE will return control of the aircraft involved to the coltémas shown in time
slot (4) in Figure2. Without the help of ground-based systems, TCAS is able to detect possible
collisions that are projected in under 30 seconds and give resolutmmstjtating the last layer
of protection against collisions. TCAS does not wait for any approvata the ground or notify
other systems, but directly advises the pilot.

@w - @ @ |)

Eree of ' Controller and' Controller ' TSAFE ' ' TSAFE ' Eree of
Conflict . AutoResolver. or TSAFE | takes control | hand off | conflict
. control controls ey the control:
~20 min: ~3 min: ~1 min: ~30 sec: s If TSAFE
AutoResolver' TSAFE' TSAFE' TCAS' Timeofthe — regolves the '
boundary boundary threshold | boundary' ~ Predictedtos conflict’

Figure 2: Operational concept for each aircraft

5/15 Volume 53 (2012)

Formal Specification and Verification of a Coordination Protocol Eﬁ

The operational concept defines a total order on resolution prioritpifots: TCAS reso-
lution>TSAFE resolution- controller (with the AutoResolver) resolution. Pilots are required
to execute the resolution maneuvers following this priority list if more than oselugon is
received.

4 Formalization methodology

The system model and formal specification (for both validation and veidigaare two sides
of our formalization. To achieve efficient, design-time feedback using nawalking, we also
consider an abstract model, which conserves all possible executianipdtie original model.
We provide specifications and report model checking results for bothlmode

4.1 Model of the AAC

Our model assumes the followingt) All conflicts will eventually trigger AutoResolver, TSAFE,
and/or TCAS alerts, i.e. while we do not assume completeness for any onoent, we as-
sume there is no conflict that will go undetected by all three compon@)t$CAS, TSAFE, and
the AutoResolver have been independently verified and thereforgsagyixge correct resolutions
(“correct resolution assumption”). As long as the resolution advisoryaswed by the pilot, the
detected conflict will be correctly resolve®) We assume humans atempetent operatorsA
controller will never give an incorrect resolution or fail to give a reioluwhen one is expected.
Pilots are aware of the AAC component systems and the priority of diffeesptutions received
and are always able to respond correctly, in the required time frédhdhere are no hardware
failures or lost messages. We do not consider hardware failure lglitlea and human error
models in the system model. Since the AAC components have been individudfigdsand the
humans-in-the-loop rigorously trained, we do not consider casesewehgomated algorithms
and humans simultaneously behave incorrectly, but instead focus oyingtrihe protocol for
transmission and execution defined in the operational concept.

As shown in Figure3, the AAC is modularized into four componenircraft, TSAFE Con-
troller, and theEnvironment Arrows show the important input/output variables interconnecting
the modules. Note that there could be several instances of the aircraftapdtilA2, - - -, in our
model; we picture a single instance to simplify the figure. The resolution trariemsdsetween
TSAFE, the controller, and aircraft are abstracted as the Boolearlesiad SAFEcommand”
and “CTRcommand” with suffixesl/_2/_3 to indicate the destination aircraft for these resolu-
tions. We omit the suffixes when they are not necessary. For exampéhled TSAFE commandl”
is an output of th& SAFEmodule and an input to aircraftl. If TSAFE transmits a resolution
to aircraftAl, TSAFEcommandl is set tol, andAircraft 1 module will react accordingly.

SAFE_cmd_done

TCAS/TSAFE/CTR_cmd_done

TSAFE_Aler TSAFE TSAFE_command
TSAFE_cmd_don
Environment I Aircraft :I
Controller
AR_Conflict (Autoresolver)

Figure 4: FSM for variable TSAFRIert
TCAS_command

Figure 3: Interconnection between modules
Proc. AVoCS 2012 6/15

Eﬁ ECEASST

In the real system, the inputs to TSAFE and the AutoResolver are the atrajattories and
flight plans. We can abstract these inputs using the variableCalict and TSAFEAlert
to indicate “whether there is an AutoResolver/TSAFE alert.” While @&nflict is a Boolean
variable, there are three possible values for the variable TSAIEE: Non, AT and BT, corre-
sponding to no LOS detected, LOS detected with time to LOS above and belowdsadHd.
Since TSAFE and the AutoResolver construct pairwise conflict lists, thegch a variable for
each pair of aircraft with different suffixes. For example, “TSARErt_12=BT” means there
is a LOS within the threshold time between aircratt andA2. These variables are maintained
in the Environmenimodule, which is not a part of the AAC, and mimics all possible conditions
of conflicts in the real system. After thdrcraft module sets “TCAS/TSAFE/CTRmd.done”
flag, meaning a corresponding resolution has been executed by the @learihbles regarding
the resolved conflict are reset.

Figure4 is the finite state machine (FSM) for variable TSAREert, illustrating transitions
between the three possible values. When TSARi done =1, meaning aircraft involved in
the TSAFE alert have executed the resolution, TSA®E&rt is reset to “Non.” All the other non-
self-loop transitions reflect possible effect of time elapsing, either a L&a8re or time to LOS
falls below the threshold. Similar FSMs are built for variables_ ARrt and TCAScommand
to mimic the conflict detected by the AutoResolver and TCAS, and the only elifteris that
these variables only have true or false values. The cross-prodtlees¥ FSMs constitutes the
possible conflict conditions and transitions between them. In our model, wetize the real-
time execution of the system into sequences of transitions between possifidgications of the
AAC system and conditions of the environment.

The Aircraft module models the TCAS system and the behaviors of the pilot. All aircraft
in compliance with the AAC can be modeled as homogeneous aircraft modideb. niodule
maintains a priority list of received but not executed resolutions basdtieopriority TCAS
resolution> TSAFE resolution> controller’s resolution, and each pilot can execute only one
resolution in each time frame. At one time, there can only be one TCAS/TSAREdder
resolution active, so this list is always finite with a maximum length of three. Dub&eio
resolution algorithms, the AutoResolver resolves the one most imminent pacongiéct at a
time, while TSAFE resolves all detected pairwise conflicts simultaneously. Tdifittine logic,
we assume the same pair of aircraft cannot appear on both the Auto®emaivTSAFE conflict
lists at the same time. If this happens, we can safely remove the conflict feoAutoResolver
conflict list. Based on our correct resolution assumption, a resolutiomotaause a conflict
more imminent than the one it is resolving, when a resolution is executed, thef s@tsraft in
conflict leave the conflict list. If the conflict detected by the AutoResolwerthat detected by
TSAFE involve two disjoint sets of aircraft, this is equivalent to resolvinky time AutoResolver
conflict and only the TSAFE conflict separately and independently. We atsssaccount for the
cases where the same aircraft is involved in both TSAFE and AutoResluéicts. To avoid
the state space explosion problem, we need to build the AAC model containimginimaum
sufficient number of aircraft instances. We agree with system desighat it is possible to
reason about all meaningful corner cases of the real system utitfziegaircraft.

TheTSAFEmodule models the behaviors of TSAFE with its dedicated data link. For a TSAFE
conflict between aircraftl andA2 (TSAFEAlert_12 = AT or BT), the TSAFE algorithm may
generate a resolution for onA1l (TSAFEcommandl= 1), only A2 (TSAFEcommand2= 1),

7115 Volume 53 (2012)

Formal Specification and Verification of a Coordination Protocol Eﬁ

or both (TSAFEcommandl= 1 A TSAFE.command2= 1); in our model one of these three
cases is chosen nondeterministically. The AutoResolver does not teeneoperative resolu-
tions, so we nondeterministically generate a resolution for one of the twafiinovolved in a
conflict. Since AutoResolver resolutions must be sent by a controller,tegrate its functional-
ity into theControllermodule. When TSAFE or the AutoResolver alerts arise irdindronment
module, these two modules react as defined in the operational concepitpotresolutions for
the involved aircraft. Our full-scale model contains 97 Boolean varialvielsiding the variables
indicating conditions of conflicts, TCAS/TSAFE/AutoResolver(controllaesolutions, resolu-
tions received by aircraft and hand-shaking signals between modules @ommunication.

4.2 Specifications

We write two sets of specifications: model validation specifications to enseiradlel follows
the system design description, and verification specifications capturmgrgent behaviors that
should be avoided in the AAC system. Our specification sets are expnesisgdnvariant dec-
larations and LTL and CTL formulas. For the most part, we use LTL formuwidsch more
aptly describe the temporal behaviors for all paths; LTL most intuitivelywag all of our sys-
tem requirements and most of our checks of the system model design. eA&Tusformulas
to check that distinct behaviors occur on distinct paths at the same time, ighialuable for
checking that we have modeled multiple disparate paths when validating aemsgsdel de-
sign. Tablel lists the specifications we verified. Formulas are identified with IDs in the first
column, where “LTL,” “CTL,” and “INV” distinguish LTL, CTL, and pug invariant formulas
respectively. The specifications coalesce properties from two souttee properties for model
validation are from 13], and the properties for verification are generated from discussidhs w
AAC designers. For model validation properties, which should correeflgat the intentions of
the designers, we quote the original sentences frbship the second column to demonstrate
how we converted the natural language system design into formal tempgi@l \erification
properties are primarily generated from the discussion with the desigratsye provide brief
descriptions in the second column. Note that the actual formulas used in bd#i wadidation
and verification (available online) are more complex than those listed in Tafereadability,
we omit some details and only show the idea behind each formula.

4.3 Model abstraction

Ouir full-scale model takes more than 9 hours on an Intel Xeon 2.53GHgstation with 36GB
RAM to verify all properties in Tablel. Considering that we will need to modify the model
and rerun the verification as the structure of the AAC or its operationaegirevolve, this run
time is not satisfactory. Faster response times are required to be useésigmdime as system
designers check proposed AAC modifications. Therefore, we employp@esmodel abstrac-
tion [10] to speed up the verification process. Constructing both models requpedxamately
three man months.

We abstract out the transition relation for variables related to the threafaiscrd instead
assign them randomly in each cycle. In NuSMYV, this abstraction simply renadvemtements
under the keywords “TRANS” and "ASSIGN?” in th&ircraft module. The set of possible exe-
cutions in the abstract model is a strict super-set of the possible exegiitithre original model.
Since the abstract model has the same set of variables in the concrete madehptibetween

Proc. AVoCS 2012 8/15

GT/6

(2102) £5 awn|oA

ID Model Validation Specifications from [13] Formula Abs. | Cpl.
LTL-1 | “With TSAFE alert, if the time to LOS in TSAFE alert exceeds ae#hold, | G((CTR_control & X TSAFE Alert £ Non) — X CTR_control)) T T
controllers retain responsibility for formulating resaduts and taking action tq
resolve conflicts. ”
INV-1 | “The next step is to send the TSAFE Alert information into ategsfor gener-| TSAFEAlert — TSAFE res T T
ating resolution manoeuvres and ... ”
CTL-1 | “As long as the time to loss of separation remains (above tbtdshthe con-| AG (TSAFE.Alert=AT — E (ITSAFE_sntcmd U controllercmd) | NA T
troller can choose from the following three options: 1. BihiTSAFE Reso-
lution from issuing a resolution advisory for the currentftict;” “(The con-
troller) takes responsibility for resolving the conflict nuatly without the help
of TSAFE resolution.”
“2. command TSAFE Resolution to issue a resolution advisotigaircraft;” | AG (TSAFE.Alert = AT — EX TSAFE.sntcmd)
“3. take no action at the current time.” AG (TSAFE Alert = AT — EG !TSAFE_sntcmd)
LTL-2 | “If the controller chooses the second option, TSAFE immedliatends a reso{ G (TSAFE.sntcmd— X TSAFE.cmd) T T
lution advisory to the aircraft. ”
“... in the events that the time to LOS in TSAFE alert falls belihreshold,
without the controller having chosen the first or secondawptiesponsibility for| G(TSAFE.res & TSAFEAlert = BT — X TSAFE.cmd)
LTL-3 | resolving the conflict defaults automatically to TSAFE Resioh.” G(TSAFEAlert = BT & CTR_control)— X !CTR_control T T
LTL-4 | “A message on the controllers monitor indicates when theairbas cleared thg G (ac. TSAFEcmd.done— X CTR_control) T T
conflict and control of the aircraft is handed off to the cotiér. ”
LTL-5 | “Asin TCAS, pilot compliance within a specified time period Mike required.” | G(ac.TCAScmd & !ac.TSAFEcmddone — (lac.TSAFE F T
“Pilots need to be trained to respond to TSAFE and to undeudtze difference| cmd.doneU ac. TCAScmd.done))
in the conditions that trigger either a TSAFE or TCAS alert.”

ID Model Verification Specifications Formula Abs. | Cpl.
LTL-6 | All TSAFE alert will be resolved finally. G (TSAFE.alert/ Non — F (TSAFE alert=Non)) F T
LTL-7 | If TSAFE takes control of aircraft, it will finally hand comtroff to the controller. | G (TSAFE.control— F ITSAFE_control) F T
LTL-8 | If the controller hands the control of an aircraft to TSAFRistaircraft will not | G ((controller.CTRcontrol1 & 'acl.CTRcommanddone) F F

executes the command from the controller. — ((Yfacl.CTRcommanddone U controller.CTRcontrol1) ||F
acl.TSAFEcommanddone))
INV-2 | AutoResolver or TSAFE controls an aircraft exclusively. (TSAFEcontrol — ICTR.control) & (CTRcontrol — T T
ITSAFE_control)
LTL-9 | The elder TSAFE resolutions will always be executed ahedaktef ones. G ((acl.TSAFEcommand & !ac2.TSAFEommand) — F F

(fac2.TSAFEcommanddoneuU acl. TSAFEcommanddone))

Table 1: Specifications for model validation from the AAC operational ephand for model verification via model checking

1SSv303

Formal Specification and Verification of a Coordination Protocol Eﬁ

the states in the abstract model and the concrete model is clear. As a spseialf Corollary
5.7 in [10], the following theorem holds in our abstract and concrete models.

Theorem [10]: If an invariant or LTL property is true for the abstract model, it must aksd¢rie
for the concrete model.

In other words, this abstraction is sound but not complete and only truéses the ab-
stract model are conserved in the original model. Note that this theoresmabdold for CTL
properties with path predicate The abstract model takes only about half an hour to verify all
properties. The verification results for the abstract and concrete madelsted in Columns
“Abs.” and “Cpl.” of Tablel respectively; “T” and “F" designate true and false. We only need to
use the concrete model to verify properties that are false for the atstoalel, saving run time
and providing a valuable tool for model and property debugging.

5 Specification debugging

When model checkers identify counterexamples where the model dogstishy the model vali-
dation specification, it means the system model and the specification arsisieat and at least
one of them violates designer’s intention. However, it is unclear whethentionsistency is due
to an error either in the system model (if it is different from the real systemin the formal
specification. Debugging must be conducted on both the model and thécstien of the op-
erational concept. Writing correct formal specifications is difficult. amuehs not a automated,
systematic approach to specification debugging. We adapt two specificaiimyging tech-
niques to increase our confidence in our formal specification. LTL sdiility checking B0
finds erroneous specifications that will always be trivially satisfied orveller be satisfied, re-
gardless of the details of the model. Counterexample-guided specificaboggieg B1] aids
us in fixing imprecise specifications that generate false negative results.

5.1 LTL satisfiability checking

Some errors may not be detected when the model-checking result is pasijivarantee that the
model satisfies the specification does not necessarily answer the estibgy namely, whether
the system has the intended behavior. If a specificatiwalid, or true inall models, then model
checking this specification always results in a positive answer and thigésnte due to an error
in the specification itself. Similarly, if a specificationugsatisfiableor true inno model, then
this is also certainly due to an error. Even if each individual specificatiomiirset is satisfiable,
their conjunction may be unsatisfiable. Recall that a logical fornguis valid iff its negation
¢ is not satisfiableZ9].

We utilize the observation that LTL satisfiability checking can be reduced taehutubck-
ing [29]. Consider a formula over a seProp of atomic propositions and a model that is
universal meaning thaM contains all possible traces oMerop. Theng¢ is satisfiable precisely
when the modeM doesnot satisfy—¢. For all LTL and invariant properties, we employ the
PANDA tool [3(] as a front-end to NuSMV to check the satisfiability of each property, tha-ne
tion of each property, and the conjunction of all properties. Note thatameat perform the
same test for CTL properties since CTL satisfiability checking is significaatigidr than model
checking: with respect to formula size, model checking is NLOGSPAG®ptete for CTL [L§]
while satisfiability is EXPTIME-complete for CTLI[].

When employing satisfiability checking, we enhance the methagljrbly further considering

Proc. AVoCS 2012 10/15

@ ECEASST

the fairness constraints in the system model, defined by “FAIRNESS'UBTICE” keywords
in NuSMV. Fairness, constraining the verification only to executions whamge events happen
infinitely often, is often used to guarantee the valid progress of the systemerlhe (weak)
fairness constrainy, each LTL formulap would be treated aGFy — ¢. Even when PANDA
identifies thatp is not valid, an overstrict fairness constraintvill causeGF(— ¢ to be valid,
concealing the potential meaningful counterexampleg.tdn a model checker like NUSMV,
fairness statements are defined implicitly outside the specifications; this adimsirbas not
drawn much attention in previous work on satisfiability checking. PANDA ieffity encodes
the negation of each LTL specification as a NuSMV symbolic automaton. Weckle fairness
in LTL satisfiability checking by incorporating all of the fairness constraimtthe AAC model
into the PANDA output. We conduct satisfiability checking via model checkgajrest a univer-
sal NuSMV model. If a formula proves to be satisfiable, we conclude thasétisfiable under
the fairness constraints.

In our experience, this enhancement helped us find an error while klfdffulas proved
satisfiable without the added fairness constraints. Since TSAFE alers raeely in practice
(once or twice in an average day), we intended to distinguish consed8&€E alerts using
the following fairness constraint:

FAIRNESS (T SAFEAlert = Non);

By LTL satisfiability checking with added fairness, we discovered that-6Tlhecomes valid
under this constraint. We found that this fairness constraint is too strighsttures meaningful
counterexamples to LTL-6. We rewrote it as:

FAIRNESS (T SAFEAlert! = AT);

which also suffices to guarantee the progress of the model.

We debugged our specification set until all specifications (both individaaliyas a set), and
their negations were satisfiable. The performance of our LTL satisfiabilégls was consistent
with the data in BQ]; all of the checks required less than a minute to complete.

5.2 Counterexample-guided specification debugging

When a model checker returns a negative result, the reason may beedhgietification is
imprecise and thus fails to express the system execution we want to checkatvwnanually
trace spurious counterexamples back to imprecision in the specificationite ¥k practice
aids in eliminating spurious counterexamples, it also relies heavily on vegife€lligence. We
detail the evolution of the formula LTL-8 to show how we performed counrtergle-guided
specification debugging.

Formula LTL-8 states that “If the controller hands off the control of agrait to TSAFE,
this aircraft will not execute commands from the controller,” which we firgite an invariant
I(!CT Rcontrol&ac.CTRcmd.dong. NuSMV returns a counterexample, pictured in Figbre
In this case, a resolution is sent to Aircraft 1, after which the controliersgihe control of Air-
craft 1 to TSAFE. However, this counterexample is spurioii]; $tates that a “TSAFE advisory

3 We do not address strong fairness (defined by “COMPASSION” inMiiSsince it does not appear in our model,
but our method also applies to strong fairness.

11/15 Volume 53 (2012)

Formal Specification and Verification of a Coordination Protocol Eﬁ

TSAFE detects a conflict TSAFE detects a conflict between Aircraft 1
between Aircraft 1 and 2 and 3, time to conflict is below threshold
Controller gives TSAFE the
TSAFE H H control of Aircraft 1
Controller approves / Controller hands the 1 SAFE TSAFE notifies
TSAFE ;10 resofll_/e i, control of Aircraft 1 controller and
the conflic to TSAFE. i
Controller Controller con}rols Fhe Aircraft 1,
: Aircraft 1 executes : : Aircraft 1 executes
Controller sends i, the resolution from Controller sends the resolution from
. resolution controller. &resolunon. ller.
Aircraft 1 ! N Aircraft 1 controller
TSAFE sends
resolution L

Figure 5: Counterexample to the original fd¥craft3
mula of LTL-8 Figure 6: Counterexample to LTL-8

would supersede the most recently issued controller clearance.” AR®FE obtains the con-
trol of Aircraft 1, its resolution will supersede the controller’s resolutidhus, Figures shows
a valid execution in the AAC. We need to refine the specification to find anyasios where
after the controller gives control to TSAFE, the controller’s resolution still be executed, not
superseded by the TSAFE resolution. Thus, we rewrite the original farasuLTL-8 in Tablel
and NuSMV returns a meaningful counterexample, described in the ectidrs.

6 Counterexamples

We elaborate on the counterexamples returned for formulas LTL-8 ahebldnd discuss the
corresponding fixes they inspired in the AAC system design.

Formula LTL-8 specifies that after a controller has transferred cootrah aircraft, that air-
craft should not execute a resolution from its previous controller. Meweounterexamples are
generated for some cases when a controller’s resolution is sejusbbeforeransfer of control.
One such counterexample depicts the following sequence of events:

1. TSAFE detects a conflict between Aircraft 1 and Aircraft 3 with a time to L@®w the
TSAFE threshold, indicating TSAFE should take control of both Aircradntl 3 automatically
in the next time step. TSAFE generates a maneuver for Aircraft 3 as thiaties.

2. TSAFE notifies the controller that it will take control of Aircraft 1 and 3 alsdlo send a
resolution to Aircraft 3, but just before TSAFE takes control of Aiftfa the controller sends a
command to Aircraft 1.

3. Aircraft 1 receives the resolution from the controller; the pilot exectitissresolution since
no higher-priority resolution was received.

Aircraft 1 executes the controller’s resolution despite the transfermfaloto TSAFE. Since
this resolution does not take the urgent TSAFE alert into considerationyipotantially cause
a conflict between Aircraft 1 and 3. This counterexample reflects twbl@mes in the AAC
protocol. First, aircraft control transfers are only defined betweBAHE and the controller.
There is no aircraft notification of control transfers; the resolutioriketl by Aircraft 1 appears
valid despite the transfer of control to TSAFE. Second, per the TSA&®B@ol, aircraft involved
in a conflict do not receive notice of the conflict resolution if they areraquired to change
course to resolve the conflict. Since Aircraft 1's pilot is not aware oftthesfer of control to

Proc. AVoCS 2012 12 /15

Eﬁ ECEASST

TSAFE and does not receive a higher-priority resolution from TSAR&controller's command
effectively overrides TSAFE’s control without violating the pilot's commaprbrity ranking
protocol. In response to this counterexample, AAC system designeesl ade@quirement that a
“hold current route” command be sent as a part of such a TSAFE tesuliNow, in the above
scenario, Aircraft 1 would receive the controller's command followe@ Blgold current route”
resolution from TSAFE, superseding the controller's command and iegssaife separation as
Aircraft 3 executes the TSAFE maneuver.

A counterexample to LTL-9 depicts the following scenario:

1. TSAFE detects a conflict between Aircraft 1 and 3 with a time to LOS below tH&ES
threshold. TSAFE sends a maneuver for Aircraft 1 as a resolution.

2. Next, TCAS raises an alert in Aircraft 1. Aircraft 1 must immediately exetoeeT CAS
resolution.

3. TSAFE detects a new conflict between Aircraft 1 and 2 and, seeing thatf 1 has not
executed the previous TSAFE resolution, attempts to resolve both the cbeflicen Aircraft 1
and 2 and that between Aircraft 1 and 3 with a new resolution involving akthircraft. TSAFE
then generates a cooperative maneuver for Aircraft 2 and 3, buétiroaft 1.

In this circumstance, the first resolution sent to Aircraft 1 is expired bodld now be ignored
but, since the replacement resolution did not include a maneuver for fitciadoes not know
to ignore the expired resolution. After completing the TCAS resolution, it drscilne next
highest-priority command, which happens to be the expired TSAFE resaluliois problem
pinpoints a gap in the protocol definition for the synchronization of multipleloéi®ns. The
current AAC protocol does not define when and how a new TSAF&utsn can override a
previous resolution that was sent but did not resolve the targeted ¢ofdtiexample, due to a
delay caused by a TCAS resolution. Since the new TSAFE resolution magnbtosa different
aircraft from the previous one, system designers added a requirdarem notification from
TSAFE to invalidate the expired TSAFE resolution. Through experimentingmtiifications
to our AAC model, we also found that we can eliminate this counterexample t®@LAy. only
allowing TSAFE to send a new resolution aftesudficiently longnterval following the previous
resolution, where sufficiently long is defined to equal the projected timerezhjior the affected
aircraft to execute the previous TSAFE resolution.

7 Conclusions and future work

We detail all of the facets of adapting classical model checking to a reasace system, in-
cluding deriving the formal model and a set of specifications from ndamguage descriptions.
To ensure the model checking results are meaningful, we have to enatibeth the model and
specifications correctly reflect the intentions of the designers, thus wioyempdel validation
and property debugging technigques. We demonstrate the utility of enhaddidingatisfiability
checking by taking the fairness constraints of the system model into coasihe We argue that
specification debugging in real applications deserves more attention i figsearch efforts,
and the utility of asystem formalization, model and specification debuggamgl verification
trilogy for model checking real systems under development.

In this paper we assume there are no hardware failures or lost mesgagbs AAC design
develops and hardware details are decided by AAC designers, we plaketthe failure rates

13/15 Volume 53 (2012)

Formal Specification and Verification of a Coordination Protocol Eﬁ

of the chosen components into consideration, i.e. by extending our workbalgilistic model
checking using PRISM1[9]. Previous work has reported on analyzing the safety of air traffic
control systems using simulatiof][or fault trees []. By extending the model we designed in
this paper, we can carry out safety analysis using PRISM to capture/tiaenic interactions in
the AAC.

Bibliography

[1] J. Andrews, Welch J., and Erzberger H. Safety analysiadoanced separation conces. Traffic
Control Quarterly 14(1), 2006.

[2] R Bloem, R Cavada, | Pill, M Roveri, and A Tchaltsev. RAT:Tol for the Formal Analysis of
Requirements. IICAV, volume 4590, pages 263—-267. Springer, 2007.

[3] D. Blum, D. Thipphavong, T. Rentas, Y. He, X. Wang, and MHEag-Cornell. Safety analysis of
the advanced airspace concept using Monte Carlo simuladiigxA Meeting Papers on Disd5(9),
2010.

[4] M. Bozzano, A. Cimatti, J. Katoen, V. Nguyen, T. Noll, ahd Roveri. The COMPASS approach:
correctness, modelling and performability of aerospastesys. ISAFECOMP, 5775, LNCPages
173-186. Springer, 2009.

[5] D.Bushnell, D. Giannakopoulou, P. Mehlitz, R. Paidlnd C. Pasareanu. Verification and validation
of air traffic systems: Tactical separation assuranc¢EHE Aerospace Confpages 1 —10, 2009.

[6] Y. Choi. From NuSMV to SPIN: Experiences with model chimeckflight guidance system&MSD,
30(3):199-216, 2007.

[7] Y. Choi and M. Heimdahl. Model checking software requient specifications using domain re-
duction abstraction. IFEEE ASE pages 314-317, 2003.

[8] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglié/. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Mo@élecking. INCAV, LNCS 2404,
pages 359-364. Springer, 2002.

[9] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri.u$MV: A new symbolic model checker.
STTT Int'l J, 2(4):410-425, 2000.

[10] Edmund M. Clarke, Orna Grumberg, and David E. Long. Maiheecking and abstractionrACM
Trans. Program. Lang. SystL6(5):1512—-1542, 1994.

[11] E.A. Emerson and J.Y. Halpern. Decision proceduresexmiessiveness in the temporal logic of
branching timeJ. of Computer and System Sg80:1-24, 1985.

[12] H. Erzberger. Automated conflict resolution for airftimcontrol. Ininternational Congress of the
Aeronautical Science2004.

[13] H Erzberger and K Heere. Algorithm and operational emidor resolving short-range conflicts.
Proc. IMechE G J. Aerosp. En@24(2):225-243, 2010.

[14] H. Erzberger, T. Lauderdale, and Y. Chu. Automated écnfésolution, arrival management and
weather avoidance for ATM. Imternational Congress of the Aeronautical Scien@gxL0.

[15] D. Giannakopoulou, D. Bushnell, J. Schumann, H. Egeerand K. Heere. Formal testing for
separation assuranc&MAI, 63:5-30, 2011.

Proc. AVoCS 2012 14 /15

@ ECEASST

[16] M. Gribaudo, A. Horvath, A. Bobbio, E. Tronci, E. Ciamarla, and M. Minichino. Model-
checking based on fluid Petri nets for the temperature cosystem of the ICARO co-generative
plant. Technical report, SAFECOMP, 2434, LNCS, 2002.

[17] C Heitmeyer, R. Jeffords, and B. Labaw. Automated cstesicy checking of requirements specifi-
cations.ACM Trans. Softw. Eng. Methodoh(3):231-261, July 1996.

[18] O. Kupferman, M.Y. Vardi, and P. Wolper. An automatadahetic approach to branching-time model
checking.J. ACM 47(2):312—-360, Mar 2000.

[19] M. Z. Kwiatkowska, G. Norman, and D. Parker. Probakiissymbolic model checking with
PRISM: a hybrid approactSTTT 6(2):128-142, 2004.

[20] S. Miller. Will this be formal? INTPHOLs 5170Qpages 6—11. Springer, 2008.

[21] S. Miller, A. Tribble, and M. Heimdahl. Proving the skgalIn FME, volume 2805 oL NCS pages
75-93. Springer, 2003.

[22] S. P. Miller, A. C. Tribble, M. W. Whalen, M. Per, and E. iadahl. Proving the shallsSTTT
8(4-5):303-319, 2006.

[23] C. Mufioz, G. Dowek, and V. Cari®. Modeling and verification of an air traffic concept of ager
tions. INISSTAISSTA '04, pages 175-182. ACM, 2004.

[24] R. Paielli, H. Erzberger, D. Chiu, and K. Heere. Tadtaanflict alerting aid for air traffic controllers.
AIAA J. Guid. Control Dyn.32(1):184-193, 2009.

[25] R.Paielli, H. Erzberger, D. Chiu, and K. Heere. Tadtamnflict alerting aid for air traffic controllers.
J Guid Contr Dynam32(1):184-193, 2009.

[26] 1. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, ahdCimatti. Formal analysis of hardware
requirements. IDAC '06, pages 821-826, New York, NY, USA, 2006. ACM.

[27] A. Cimatti R. Cavada, C. Jochim, G. Keighren, E. Oliyedt. Pistore, M. Roveri, and A. Tchaltsev.
NuSMV2.4 user manual. Technical report, CMU/ITC-irst, 300

[28] F. Raimondi, A. Lomuscio, and M. J. Sergot. Towards niadeecking interpreted systems. In
FAABSO02, LNAI 269%ages 115-125. Springer, 2002.

[29] K.Y.Rozier and M.Y. Vardi. LTL satisfiability checkingSTTT 12(2):123-137, 2010.

[30] K.Y. Rozier and M.Y. Vardi. A multi-encoding approacbrfLTL symbolic satisfiability checking.
In FM, volume 6664 of NCS pages 417-431. Springer, 2011.

[31] R. Siminiceanu and G. Ciardo. Formal verification of M&SA Runway Safety Monitor.STTT
9(1):63-76, 2007.

[32] A. Tribble and S. Miller. Software safety analysis ofiglfiit management system vertical navigation
function-a status report. IDASG pages 1.B.1-1.1-9 v1, 2003.

15/15 Volume 53 (2012)

	Introduction
	Related Work
	The Automated Airspace Concept
	Formalization methodology
	Model of the AAC
	Specifications
	Model abstraction

	Specification debugging
	LTL satisfiability checking
	Counterexample-guided specification debugging

	Counterexamples
	Conclusions and future work

