Electronic Communications of the EASST

Volume 53 (2012)

Proceedings of the
12th International Workshop on
Automated Verification of Critical Systems
(AVoCS 2012)

Optimized Transformation and Verification of SystemC Methods
Marcel Pockrandt, Paula Herber, Holger Gross, Sabine Glesner

15 pages

Guest Editors: Gerald Lattgen, Stephan Merz

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Optimized Transformation and Verification of SystemC Methods

Marcel Pockrandt', Paula Herber', Holger Gross', Sabine Glesner'

ITechnische Universitiit Berlin, Berlin, Germany

Abstract: Concurrent designs can be automatically verified by transforming them
into an automata-based representation and by model checking the resulting model.
However, when transforming a concurrent design into an automata-based represen-
tation, each method has to be translated into a single automaton. This produces a
significant overhead for model checking. In this paper, we present an optimization
of our previously proposed transformation from SystemC into UPPAAL timed au-
tomata. The main idea is that we analyze whether SystemC methods can be executed
atomically and then we use the results for generating a reduced automata model. We
have implemented the optimized transformation in our SystemC to Timed Automata
Transformation Engine (STATE) and demonstrate the effect of our optimization with
experimental results from micro benchmarks, a simple producer-consumer example,
and from an Anti-Slip Regulation and Anti-lock Braking System (ASR/ABS).

Keywords: HW/SW Co-Verification, Model Checking, SystemC, Timed Automata

1 Introduction

Embedded systems are usually composed of deeply integrated hardware and software compo-
nents, and they are developed under severe resource limitations and high quality requirements.
A field where the conflicting priorities are extremely hard to reconcile is the automotive sector.
Automotive systems are safety-critical, as their failure may result in death or serious injury, the
resource limitations are rigorous due to large quantities of production and the high cost pressure.
At the same time, the quantity of digital hardware and software is heavily increasing, and al-
ready accounts for up to 30% of the overall cost of a car. To meet the high quality standards and
to satisfy the rising quantitative demands, the automatization of quality assurance processes for
such systems is gaining more and more importance. A major challenge is to develop automated
quality assurance techniques that can be used for the integrated verification of complex digital
HW/SW systems.

SystemC [IEE05] is a system level description language, which is widely used for the design
of concurrent HW/SW systems. It is particularly well-suited for system level design, design space
exploration and architecture evaluation. However, existing techniques for formal verification of
SystemC are still immature and lack scalabality.

In previous work [HFGO8, HPG11, PHG11], we have presented an approach for the auto-
mated verification of SystemC designs. The main idea is to transform a given SystemC de-
sign (with informally defined semantics) into a formally well-defined UPPAAL timed automata
model [BDLO0O4]. This enables us to automatically verify safety, liveness, and timing properties
of a given SystemC design using the UPPAAL model checker [BYO04].

1/15 Volume 53 (2012)

Optimized Transformation and Verification of SystemC Methods Eﬁ

However, the scalability of our previously presented approach is limited. In particular, a sig-
nificant overhead both in terms of memory consumption and verification time is produced by
methods, which are translated into automata and thus are considered as concurrent processes in
the UPPAAL timed automata model. The overhead is due to two reasons: first, although Sys-
temC uses a cooperative scheduler, method automata may interleave with event automata, which
increases the number of states in the semantic state-space. Second, by adding a location to the
semantic state those method automata also increase the size of a single semantic state. This
is not only a problem of our SystemC to Uppaal transformation, but also a general problem
of approaches which are based on the translation from concurrent programming languages into
automata-based languages.

In this paper, we carefully examine the conditions under which a given method in a concur-
rent design can be executed atomically. Furthermore, we present an analysis, which determines
whether a SystemC method can be executed atomically. Finally, we present an optimized trans-
formation from SystemC to UPPAAL which exploits these conditions to reduce the size of the
generated UPPAAL timed automata model by using native UPPAAL methods. In the UPPAAL
semantics, methods are considered as atomic operations. As a consequence, the transformation
of methods into native UPPAAL methods instead of translating them into single timed automata
eliminates the overhead of additional locations as well as the overhead from additional inter-
leavings. We will illustrate the effect of this optimization by experimental results from micro
benchmarks, a producer-consumer example, and a larger case study, namely an Anti-Slip Regu-
lation and Anti-lock Braking System (ASR/ABS).

The rest of this paper is structured as follows: In Section 2, we summarize related work.
Then, in Section 3, we briefly introduce SystemC and UPPAAL timed automata. In Section 4,
we review our previously proposed approach for the transformation from SystemC into UPPAAL
timed automata [HFGOS, HPG11, PHG11], which is necessary to understand the analysis and
optimization presented in Section 5. We demonstrate the effect of our optimization in Section 6,
and we conclude in Section 7.

2 Related Work

There have been several approaches to provide a formal semantics for SystemC in order to enable
automatic and complete verification techniques. However, many of them only cope with a syn-
chronous subset of SystemC [MRR03, RHG" 01, Sal03, GKDO06]. In contrast to our approach,
they are not able to cope with dynamic sensitivity or timing. As a consequence, the problem of
concurrently executed methods does not exist in these approaches. The same holds for the work
of Bombieri et al. [BFG10], who presented an approach for model checking TLM 2.0 IPs by syn-
thesizing RTL IP models from them and applying RTL model checkers to the resulting model.
Similarly, approaches which are based on a transformation from SystemC into process algebras
[Man05, GHPS09] or sequential C programs [CMNR 10, CGM " 11] do not face the problem of
concurrently executed methods.

However, there are also some approaches that are based on a mapping from SystemC to some
kind of state machine formalism. For example, Habibi [HT05, HMTO06] proposed program trans-
formations from SystemC into equivalent state machines, Traulsen et al. [TCMMO07] proposed a

Proc. AVoCS 2012 2/15

Eg ECEASST

mapping from SystemC to PROMELA, Zhang [ZVMO07] introduced the formalism of SystemC
waiting-state automata, and Moy et al. [MMMO5] provided a toolbox for the analysis of trans-
actional SystemC designs, which is based on a transformation from SystemC to heterogeneous
parallel input/output machines (HPIOM). In [NHO6], the authors propose to transform SystemC
models into communicating state machines. All of these approaches lack some important fea-
tures, i.e., they do not support time or they use an approximation of the timing behavior and
many of them require a manual transformation from SystemC into the target language. Karls-
son et al. [KEP0OG6] overcome this problem by using a petri-net based representation. However,
this introduces a huge overhead because interactions between subnets can only be modeled by
introducing additional subnets.

To the best of our knowledge, none of the existing approaches considers the idea of analyzing
methods for a potential atomic execution and none of them makes use of the atomic execution of
multiple operations in order to reduce the semantic state space.

3 Preliminaries

In this section, we briefly introduce the preliminaries that are necessary to understand the re-
mainder of the paper. First, we give an overview over the system level design language SystemC.
Then, we briefly introduce UPPAAL timed automata.

3.1 SystemC

SystemC [IEEO5] is a system level design language and a framework for HW/SW co-simulation.
It allows for the modeling and execution of system level designs on various levels of abstrac-
tion, including functional modeling, classical register transfer level hardware modeling and
transaction-based design. SystemC is implemented as a C++ class library which provides the
language elements and an event-driven simulation kernel. From the perspective of the execu-
tion semantics, a SystemC design is a set of communicating processes, triggered by events and
interacting through channels. Modules and ports are used to represent structural information.
SystemC also introduces an integer-valued time model with arbitrary time resolution.

The execution of a SystemC design is controlled by a cooperative scheduler. It controls the
simulation time, the execution of processes, handles event notifications and updates primitive
channels. Like typical hardware description languages, SystemC supports the notion of delta-
cycles. Delta-cycles are used to impose a partial order on simultaneous actions and split the
concurrent execution of processes into two phases. In the first phase, concurrent processes are
evaluated, i.e., their method body is executed. This may include read and write accesses to
primitive channels, which store changes in temporary variables. In the second phase, the actual
channel state is updated. A delta-cycle lasts an infinitesimal amount of time, and a finite number
of delta-cycles may be executed at one point in simulation time. The simulation semantics of a
SystemC design can be summarized as follows: 1. Initialization: each process is executed once,
2. Evaluation: all processes ready to run are executed in arbitrary order, 3. Update: primitive
channels are updated, 4. if there are delta-delay notifications, the corresponding processes are
triggered and steps 2 and 3 are repeated, S. if there are timed notifications, simulation time is

3/15 Volume 53 (2012)

Optimized Transformation and Verification of SystemC Methods Eﬁ

X <= maxtime

X >= mintime

Figure 1: Example Timed Automaton

advanced to the earliest pending timed notification and steps 2 — 4 are repeated, 6. if there are no
timed notifications remaining, simulation is finished. For a more comprehensive description of
the SystemC simulation semantics, we refer to [Gro02, MRR03, RHG"01]. Overall, SystemC
allows for the integrated development of digital hardware and software components, and it sup-
ports synchronous and asynchronous parts of a design. It is established as a premier choice for
the evaluation of design alternatives and high level simulation of integrated HW/SW systems.
Furthermore, a subset of SystemC can be automatically synthesized to hardware.

3.2 UPPAAL Timed Automata

Timed automata (TA) [AD94] are finite-state machines extended by clocks. A TA is a set of
locations connected by directed edges. Two types of clock constraints are used to model time-
dependent behavior: Invariants are assigned to locations and enforce progress by restricting the
time the automaton can stay in this location. Guards are assigned to edges and enable progress
only if they evaluate to true. Networks of TA are used to model concurrent processes, which are
executed with an interleaving semantics and synchronize on channels. UPPAAL [BDL04] is a tool
suite for modeling, simulation, and verification of TA. The UPPAAL modeling language extends
TA by templates, bounded integer variables, binary and broadcast channels, and by urgent and
committed locations. Templates can be used to model parameterized timed automata, which can
then be instantiated with different values (by-value) or variables (by-reference). Binary channels
enable a blocking synchronization between two processes, whereas broadcast channels enable
non-blocking synchronization between one sender and arbitrarily many receivers. Urgent and
committed locations are used to model locations where no time may pass. Furthermore, leaving
a committed location has priority over non-committed locations. The UPPAAL modeling lan-
guage supports a C-like action language, which also enables the use of C-like methods. A small
example UPPAAL timed automaton (UTA) is shown in figure 1. The initial location is denoted
by ©, and request? and ack! denote receiving and sending on channels, respectively. The
clock variable x is first set to zero and then used in two clock constraints: the invariant x <=
maxtime denotes that the corresponding location must be left before x becomes greater than
maxtime, and the guard x >= mintime enables the corresponding edge at mint ime. The
symbols © and © depict urgent and committed locations. The assignment value = f (t)
corresponds to a call of method £, which itself is defined in standard C semantics. Note that the
execution of method f is performed atomically in one semantic step from the committed to the
urgent location.

Proc. AVoCS 2012 4/15

Eg ECEASST

4 SystemC to Timed Automata Transformation

In this section, we summarize our previously presented approach for model checking SystemC
designs, which has been presented in [HFGO8, HPG11, PHG11]. The general idea is to map
the informally defined semantics of SystemC [IEE0S5] to the formally well-defined semantics of
UPPAAL timed automata [BLL"95]. To this end, we have defined a UPPAAL representation for
all relevant executable SystemC language elements, e. g., for assignments, method calls, events,
timed notifications, static and dynamic sensitivities and for the wait-notify mechanism. In doing
so, we have defined a formal semantics for the informally defined SystemC language elements.
Furthermore, we presented a transformation procedure to construct a complete UPPAAL model
from a given SystemC design using these representations. To ease debugging, it keeps the struc-
ture of the original SystemC design transparent to the designer in the UPPAAL model. Finally,
our mapping enables the automatic generation of a UPPAAL timed automata model from a given
SystemC design. This in turn facilitates the application of the UPPAAL model checker. Note that
the UPPAAL tool suite also enables simulation and animation of the generated model and thus
allows the visualization and animation of counter-examples (in UPPAAL) if the verification fails.

In the following, we first state a few assumptions that define the subset of SystemC supported
by our approach. Then, we present our representation of SystemC in UPPAAL, and we briefly
summarize the transformation procedure. Our transformation procedure is implemented in a tool
called STATE (SystemC to Timed Automata Transformation Engine) and is available online at
http://www.pes.tu-berlin.de/state_project.

SystemC enables modeling and simulation of digital hardware and software components on
different levels of abstraction. To this end, SystemC supports a very diverse set of models of
computation. At the same time, as an extension of C++, it inherits the full semantic scale of the
C++ language. As the UPPAAL modeling language is less expressive than SystemC, we impose
some restrictions on SystemC designs that can be transformed into a UPPAAL timed automata
model:

e The SystemC design can be constructed statically, i. e., it does not use dynamic memory
management Or process creation.

o All statements that are used for instantiation and binding must be evaluable at transforma-
tion time.

e We assume that no variables are shadowed (i. e., each variable has a unique identifier in its
scope), and that no method overloading is used.

e The SystemC design may only use data types that can be mapped to int and bool. This
also means that we require that no pointers are used (pointer support is under construction).

The first restriction hardly narrows the applicability of the approach for safety-critical embedded
systems, as dynamic object and process creation are rarely used in such designs. The second and
third restriction can usually be achieved by rewriting without loss of expressivity. The last re-
striction is the most serious restriction in practical applications, but is acceptable as well because
many data types used in SystemC designs can be converted to bounded integers. Furthermore, as

5/15 Volume 53 (2012)

Optimized Transformation and Verification of SystemC Methods EE

Processes

I —

activate delta

advance
time

request

update
P deactivate

I update end
P €
C S update start

Figure 2: Representation of SystemC Designs in UPPAAL

model checking suffers from the state space explosion problem, our approach is best-suited for
abstract models, where only simple data types are used.

If all of the assumptions above are met, we can automatically transform a given SystemC
design into a UPPAAL timed automata model.

Figure 2 shows how we represent SystemC designs in UPPAAL. The general idea is that each
method is mapped to a single timed automata template. Process automata are used to encapsulate
these methods and care for the interactions with events and the scheduler. The scheduler is ex-
plicitly modeled, and we use predefined templates for events and other SystemC constructs such
as primitive channels. The interactions between the processes and the scheduler are modeled by
two synchronization channels, activate and deactivate, which are used by the scheduler to start
(activate) processes, and by the processes to yield control (the SystemC Scheduler is cooper-
ative and non-preemptive). The interactions between processes and event objects are modeled
by wait and notify, with the usual meaning. The interactions between the event objects and the
scheduler are used to synchronize their timing. The scheduler informs the event objects when
a delta-cycle is completed to release delta-delay notifications, and conversely, the event objects
inform the scheduler when time is advanced due to a timed notification. The timed automata
representations for most standard SystemC language construct, such as methods, processes, and
events, are given in [HFGOS8]. They define the execution semantics of SystemC in terms of the
formally defined semantics of UPPAAL timed automata and thus provide a formal semantics for
SystemC. Furthermore, they form the basis for our automatic transformation of SystemC designs
into UPPAAL timed automata.

Transformation of SystemC Designs

In order to enable compositional transformation, that is to make it possible that each SystemC
module can be translated separately, we perform the mapping from SystemC to UPPAAL in three
steps:

1. We define a timed automata representation for each SystemC language construct (e. g.,,
methods, processes, and events).

2. Using these general representations, we translate each given SystemC module into a set of
parameterized timed automata.

Proc. AVoCS 2012 6/15

Eg ECEASST

3. We perform instantiation and binding. This requires to instantiate the parameterized timed
automata, to add variables and channels, and to build the system declaration.

Note that we have to transform each module only once and can use template parameters to
instantiate it arbitrarily often. When we compose a design, we instantiate the modules including
their methods, events and processes and connect them via their parameters. Using this composi-
tional approach, the transformation scales well even for large SystemC designs. The generated
models are structure-preserving and thus easily comprehensible to the designer.

For the transformation of methods, we generate “method automata”, which can be called
by synchronizing on a control channel. In doing so, we preserve the call-return semantics of
SystemC. However, in contrast to SystemC methods, method automata cannot be re-entered. As
a consequence, they have to be instantiated once for each SystemC process that can possibly enter
them. This produces a significant overhead in the consumption of both memory consumption and
CPU time. To overcome this problem, we developed an analysis to find out by which processes
a method is possibly entered, and to determine whether a method can be executed atomically.

In the following sections, we first present our analysis and its results. Then, we present an op-
timized method transformation that makes use of the analysis results in order to reduce memory
consumption and CPU time.

5 Optimized Method Transformation

In our previously presented transformation from SystemC to UPPAAL, methods from the Sys-
temC model are translated one-to-one into UPPAAL timed automata templates. This transfor-
mation is possible for all SystemC methods. However, every method automaton increases the
memory consumption and the verification time of the UPPAAL model. On the one hand, each
method automaton contains multiple locations and variables and therefore increases the size of
semantic states. On the other hand, as method automata increase the number of interleavings,
they also increase the size of the semantic state space. This happens although SystemC uses a
cooperative scheduler because methods interleave with event automata. Our idea to overcome
this problem is to transform certain methods into UPPAAL native methods instead of translat-
ing them into method automata. As those methods are then executed atomically in the sense of
UPPAAL states, this transformation helps alleviate the negative impact of the methods on both
verification time and memory consumption.

5.1 Analysis

In order to determine which SystemC methods in a given design satisfy the assumptions given
above and thus can be executed atomically, we developed an analysis which recursively walks
through the call graph of each process in the design and determines which processes can pos-
sibly be preempted and thus may not be executed atomically. From that we compute the set
PREEMPT of methods that can possibly preempted during execution. As native UPPAAL meth-
ods are invoked during the transition from one location to another, their execution corresponds to
an atomic execution. As a consequence, no time can pass during the execution of native UPPAAL
methods and no synchronization with other processes (over channels) is possible.

7/15 Volume 53 (2012)

Optimized Transformation and Verification of SystemC Methods EE

We conservatively assume that a method can possibly be preempted if one of the following
conditions is met:

1. itis bound to a process (i. e., serves as a starting point for a thread),
2. it contains a wait call,

3. it contains a notify call.

A simplified version of the algorithm for traversing the call graph is sketched in Figure 3.
First, the sets PREEMPT and ATOMIC are initialized with the empty set. Then, for each module
instance, we analyze the preemptability of each method using the function isPreempt. Note
that we perform this analysis per module instance. This is necessary because module instances
may be bound to different methods over ports and sockets. To avoid unnecessary overhead, the
algorithm memorizes for each method whether it has already been analyzed to avoid that the
same method is analyzed multiple times.

The function isPreempt analyzes for a given method of a given module instance whether it
may preempted or not. First, the algorithm checks if the method was already analyzed. Then,
it checks the preemptability conditions given above, namely whether the method uses wait or
notify statements, or whether it is bound to a process. If one of these conditions is fulfilled, the
method is preemptable and the analysis returns true. If not, the algorithms recursively constructs
the call graph of the method in order to find out whether the method can be indirectly preempted
by any method it calls. For each method call, the algorithm determines whether it is a member
method of the given module instance or of one of it members, a method that is bound to a port,
or a method that is called over a socket. Depending on the result, the analysis is continued in the
corresponding module instance.

Finally, we compute the set of atomically executable methods ATOMIC by subtracting the set of
possibly preemptable methods PREEMPT from the set of all methods. By overapproximating the
set of possibly preemptable methods conservatively, we ensure that all methods in the ATOMIC
set can be executed atomically without losing semantics preservation.

5.2 Transformation and Example

The main idea of our optimized transformation is to map all SystemC methods that allow for
atomic execution into UPPAAL native methods. These methods are all elements of the atomic set
computed by our analysis presented above. In Figure 4 we show a SystemC Module MyMod,
containing two methods. The main method is bound to a SC.THREAD and calls the method
foo for calculating some value x out of the parameter p and the class variable c. Our analysis
recognizes main as an element of the PREEMPT set and foo as an element of the ATOMIC set.
Figure 5 shows the previous result of a transformation of the two methods main and foo. Note
that each of the methods is modeled as a full UPPAAL template, containing the local variables of
their SystemC method equivalents. The method call to foo is modeled by copying the parameter z
into a special transport variable (foo$param$p) and by signaling foo via a binary control channel
(foo$ctrl). While the foo automaton calculates the return value, the main automaton is blocked.
Afterwards the return value (foo$return) is assigned to the value x. In general, we use one

Proc. AVoCS 2012 8/15

Eﬁ ECEASST

PREEMPT := 0
ATOMIC := 0
foreach M € ModlInsts do
foreach me getMethods (M) do
if isPreempt(m,M) then
PREEMPT := PREEMPT U m
else
ATOMIC := ATOMIC U m
end if
end for
end for

boolean isPreempt(Method m, ModInst M)
if analyzed (m) then
return getPreemptTag (m)

end if

preempt = false

if usesWait(m) || usesNotify(m) || boundtoProcess(m) then
return ftrue

end if

MC := getMethodCalls (m)
foreach ce MC do
if isMember(c ,M) then
preempt = preempt || isPreempt(c,M)
end if
if isCalledOverPort(c,M) then
ch = getChannel(c)
cM = getChannelMethod (ch)
preempt = preempt || isPreempt(cM,M)
end if
if isCalledOverSocket(c,M) then
s = getSocket(c)
sM = getModInst(s)

preempt = preempt || isPreempt(cm,sM)
end if
// PEQs omitted here for simplification
end for

setPreemptTag (m, preempt)
return preempt

Figure 3: Method Preemption Analysis

9/15 Volume 53 (2012)

Optimized Transformation and Verification of SystemC Methods Eﬁ

SC_MODULE (MyMod) {
int c;
int foo (int p) {
return p + c;

void main() {
int x = foo(z);

}

SC_CTOR (simpleModule) {
SC_THREAD (main);

}
}

Figure 4: Simple SystemC Example

Parameters: init_location

pqag &main$ctrl,
int &c .
chan &fooSctrl, main$ctri!
int &foogparam$p,

int &foo$return

main$ctrl?

Parameters: init_location

chan &foo$ctrl, @
int &foo$param$p,
int &foo$return,

int &c
foo$ctrl! foo$ctrl?
fooS$ctrl? foo$ctrl! foo$return = (p + c) p = (foo$param$p)
x = foo$return foo$param$p =z Q
(a) Template of the main Method (b) Template of the foo Method

Figure 5: Method Transformation without Native Methods

control channel for every method call in order to model the call-return semantics between the
caller and the callee. Additionally, transport variables are used for every method parameter and
return value. All method templates have parameters to get instantiated with the control channels
and transport variables for all methods they call and the control channels and transport variables
needed to call the method itself.

Figure 6a shows the optimized template of the main Method. Instead of using control channels
and transport variables to invoke the method foo and then wait until the foo automaton returns
the calculated value, we call the native method foo with the parameters z and ¢. The native
UPPAAL method foo is shown in Figure 6b. Note that the method is identical to the SystemC
method, except for the additional parameter c¢. This parameter is necessary as we only generate
one method foo for all instances of the module MyMod and therefore need to pass the class
member variable ¢ as well. In general, all methods transformed into native UPPAAL methods get
additional parameters for all class variables used inside of them or inside of other native methods
called by them.

The optimized transformation reduces the amount of locations and variables used in the UPp-
PAAL model. As UPPAAL native methods are not modeled as automata, no locations exists for

Proc. AVoCS 2012 10/15

Eg ECEASST

Parameters: init_location

chan &main$ctrl,
int &c

main$ctrl! main$ctrl?

int MyMod$foo (int p, int &c) {
return p + c;
}

x = MyMod$foo(z,c)

(a) Optimized Template of the main Method (b) Native UPPAAL method foo

Figure 6: Optimized Method Transformation

the method itself. Additionally, we save one location in every template where such a method
is called, compared to our previous transformation. With respect to the variables, all control
channels and all control channels for the transformed methods are not needed anymore. The
decreased amount of locations and variables reduces the semantic state space of the UPPAAL
model and has a positive impact on both verification time and memory consumption.

6 Experimental Results

In this section, we present the results of three case studies to demonstrate the effect of the pre-
sented optimizations. Unless otherwise noted all experiments were run on a 3.0 GHz dual core
Intel CPU with 4 GB ram running a 64bit Ubuntu. All presented results are averaged over 10
runs. For each case study, we compare verification times, the number of states calculated during
model checking and the memory consumption of the model checker.

6.1 Micro Benchmark

The first model we use to evaluate our approach is a micro benchmark consisting of two methods
(one of them optimizable) and one process. The process invokes a non-preemptable method to
test whether the numbers between 1 and an upper bound are prime numbers. The process runs
in an infinite loop and never yields control back to the scheduler. The size of this example is less
than 50 lines of code (LOC). We verified the model for deadlock freedom with different upper
bounds both with and without our method transformation optimization. The transformation took
0.64 seconds in the unoptimized and 0.69 seconds in the optimized version. The results from
model checking are shown in Table 1 and show a drastically reduced amount of states in the
optimized model, resulting in much lower memory consumption and an improved verification
time. Note that in the unoptimized version an upper bound of 100,000 leads to an out of memory
exception (/). Our optimized model can even be verified with an upper bound of 100,000.

6.2 Producer-Consumer

The producer-consumer example consists of a producer and a consumer that communicate through
a first in first out (FIFO) buffer. It uses the SystemC channel concept as well as static, dynamic,

11/15 Volume 53 (2012)

Optimized Transformation and Verification of SystemC Methods EE

Table 1: Results from Model Checking of the Micro Benchmark

Upper bound for prime number calculation
10K 20K 100K
base opt imprv base opt imprv | base opt imprv
CPU time (sec) | 32.6 1.5 9538% | 1235 54 9563 % | ¢ 110.1 -
KStates explored | 8787 41 99.53 % | 32176 82 99.74 % | ¢ 410 -
Memory (MB) 553 55 9901% | 1972 7.7 99.61 % | /4 26.6 -

Table 2: Results from Model Checking of the Producer-Consumer Example

baseline optimized improvement | satisfied
CPU time (sec) 2.1 0.9 57.14 % v
KStates explored | 214535 88073 58.95 % v
Memory (MB) 20.6 10.5 49.03 % v

and timing sensitivity and thus covers many important language constructs of SystemC. Note
that the design is non-deterministic, as the execution order of producer and consumer is not pre-
determined. In this experiment, the producer sends increasing numbers to the consumer. The
consumer then checks for every number whether it is a prime number or not. The size of the
producer-consumer example is approximately 130 LOC and it consists of two modules, two pro-
cesses and one channel. Two methods of the model can be optimized. We verified the model for
deadlock freedom. The transformation took 0.87 seconds in the unoptimized and 0.92 seconds
in the optimized version. The results from model checking are shown in Table 2. The amount
of states is reduced by about 59 % in the optimized model, resulting in 49 % less memory con-
sumption and an improvement of the verification time by 57 %.

6.3 Anti-Slip Regulation and Anti-lock Braking System

The ASR/ABS system monitors the speed of each wheel in a car and regulates the brake pressure
in order to prevent wheel lockup or loss of traction and to improve the driver’s control over the
car. For our experiment, we use an abstract design where processes communicate over FIFOs
and abstract data types are used. The abstract design consists of approximately 500 LOC and
contains 4 modules and 18 processes that communicate over 12 channels. Four methods of the
model can be optimized. The main challenge of the ASR/ABS design lies in its heavily time-
dependent behavior, which leads to a gigantic state space and makes verification very difficult.
As a consequence, it is not possible to fully verify the ASR/ABS case study on a standard PC.
One approach to overcome this problem is to use bit state hashing, as discussed in [HG12]. How-
ever, for evaluating the effect of our optimized method transformation, we just used a simplified
version of the ASR/ABS design where the environment is not open, but constrained to a certain
test trace. The transformation took 6.25 seconds in the unoptimized and 6.42 seconds in the
optimized version. The results from model checking the simplified ASR/ABS design are shown
in Table 3. The amount of states is reduced by about 0.13 % in the optimized model, resulting in
1.58 % less memory consumption and an improvement of the verification time by approximately

Proc. AVoCS 2012 12/15

Eg ECEASST

Table 3: Results from Model Checking of the ASR/ABS

baseline optimized improvement | satisfied
CPU time (sec) | 1574.1 1558.0 1.02 % v
KStates explored | 19486 19461 0.13 % v
Memory (MB) 2901 2855 1.58 % v

1 %. As you can see, the results are not as impressive as they are for the micro benchmarks
and for the producer-consumer example. This is due to the fact that the verification effort of
the ASR/ABS design heavily depends on its timing behavior and hardly on the method execu-
tion. However, a positive effect is still visible, which shows that even for large designs where
method execution is of low importance the optimization causes a measurable improvement of
the verification time and the memory consumption.

7 Conclusion

In this paper, we have presented an approach for the optimized transformation and verification
of SystemC methods. The main idea of our optimized transformation is to analyze the pre-
emptiveness of SystemC methods and then to use native UPPAAL methods instead of method
automata as far as possible. As native UPPAAL methods are executed atomically in the UPPAAL
timed automata semantics, this reduces the semantic state space significantly for non-preempted
methods. The optimization improves our previously proposed approach for the transformation of
SystemC designs into UPPAAL timed automata and their verification using the UPPAAL model
checker [HFGO8, HPG11, PHGI11].

We have shown the effect of our optimization with experimental results from three case stud-
ies: a micro benchmark that repeatedly performs non-preemptive execution of one computa-
tionally expensive method, an extended producer-consumer example where the consumer uses a
non-preemptive method to compute whether consumed items are prime numbers, and an Anti-
Slip regulation and Anti-lock Braking System (ASR/ABS). The micro benchmark has shown
that for designs that mainly consist of computationally expensive methods, the overall effect of
the optimization is enormous with more than 95 % in terms of CPU time and more than 99 % in
terms of memory consumption. For the producer-consumer example, the improvement is about
60 % in terms of CPU time and about 50 % in terms of memory consumption. For the ASR/ABS
case study, the improvement is still more than 1 %.

Overall, we have shown that the verification of concurrent designs can be significantly im-
proved when parts of the systems are identified which can be executed atomically, i. e., without
preemption. Note that this pays off even in the case of SystemC, which already uses a non-
preemptive scheduler. Furthermore, note that we do not sacrifice the semantics and structure
preservation of our previous transformation.

For future work, we plan to extend our approach for the atomic execution of multiple oper-
ations on a more fine-grained level. To this end, we plan to partition methods into parts that
can possibly be preempted and other parts that can be executed atomically. The parts of the
method which can be executed atomically can then be extracted into native UPPAAL methods.

13/15 Volume 53 (2012)

Optimized Transformation and Verification of SystemC Methods EE

This would increase the benefit from the proposed optimization.

Bibliography

[AD94]

[BDLO0O4]

[BFG10]

[BLL*+95]

[BY04]

[CGM™T11]

[CMNRI10]

[GHPS09]

[GKDO6]

[Gro02]

[HFGOS8]

[HG12]

[HMTO6]

R. Alur, D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science
126:183-235, 1994.

G. Behrmann, A. David, K. G. Larsen. A Tutorial on UPPAAL. In Formal Methods
for the Design of Real-Time Systems. LNCS 3185, pp. 200-236. Springer, 2004.

N. Bombieri, F. Fummi, V. Guarnieri. Model Checking on TLM-2.0 IPs through au-
tomatic TLM-to-RTL Synthesis. In VLSI System on Chip Conference (VLSI-SoC).
Pp. 61-66. IEEE Computer Society, 2010.

J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, W. Yi. UPPAAL — a Tool

Suite for Automatic Verification of Real-Time Systems. In Workshop on Verifica-
tion and Control of Hybrid Systems. LNCS 1066, pp. 232-243. Springer, Oct. 1995.

J. Bengtsson, W. Yi. Timed Automata: Semantics, Algorithms and Tools. In Lecture
Notes on Concurrency and Petri Nets. LNCS 3098, pp. 87—-124. Springer, 2004.

A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, M. Roveri. Kratos - A Soft-
ware Model Checker for SystemC. In Gopalakrishnan and Qadeer (eds.), Computer
Aided Verification. LNCS 6806, pp. 310-316. Springer Berlin / Heidelberg, 2011.

A. Cimatti, A. Micheli, I. Narasamdya, M. Roveri. Verifying SystemC: A software
model checking approach. In Formal Methods in Computer-Aided Design (FM-
CAD), 2010. Pp. 51 -59. 2010.

H. Garavel, C. Helmstetter, O. Ponsini, W. Serwe. Verification of an industrial Sys-
temC/TLM model using LOTOS and CADP. In International Conference on For-
mal Methods and Models for Co-Design (MEMOCODE). Pp. 46-55. 2009.

D. GroB3e, U. Kiihne, R. Drechsler. HW/SW Co- Verification of Embedded Systems
using Bounded Model Checking. In Great Lakes Symposium on VLSI. Pp. 43-48.
ACM Press, 2006.

T. Groetker. System Design with SystemC. Kluwer Academic Publishers, 2002.

P. Herber, J. Fellmuth, S. Glesner. Model Checking SystemC Designs Using Timed
Automata. In International Conference on Hardware/Software Codesign and Sys-
tem Synthesis (CODES+ISSS). Pp. 131-136. ACM press, 2008.

P. Herber, S. Glesner. A HW/SW Co-Verification Framework for SystemC. 2012.

A. Habibi, H. Moinudeen, S. Tahar. Generating Finite State Machines from Sys-
temC. In Design, Automation and Test in Europe. Pp. 76-81. IEEE, 2006.

Proc. AVoCS 2012 14 /15

E

ECEASST

[HPG11]

[HTO5]

[IEEO5]

[KEPO6]

[Man05]

[MMMO5]

[MRRO3]

[NHO6]

[PHG11]

[RHG101]

[Sal03]

[TCMMO7]

[ZVMO7]

P. Herber, M. Pockrandt, S. Glesner. Transforming SystemC Transaction Level
Models into UPPAAL Timed Automata. In Formal Methods and Models for Code-
sign (MEMOCODE). Pp. 161 — 170. IEEE Computer Society, 2011.

A. Habibi, S. Tahar. An Approach for the Verification of SystemC Designs Using
AsmL. In Automated Technology for Verification and Analysis. LNCS 3707, pp. 69—
83. Springer, 2005.

IEEE Standards Association. IEEE Std. 1666-2005, Open SystemC Language Ref-
erence Manual. 2005.

D. Karlsson, P. Eles, Z. Peng. Formal verification of SystemC Designs using a
Petri-Net based Representation. In Design, Automation and Test in Europe (DATE).
Pp. 1228-1233. IEEE Press, 2006.

K. L. Man. An Overview of SystemCFL. In Research in Microelectronics and Elec-
tronics. Yolume 1, pp. 145— 148. 2005.

M. Moy, F. Maraninchi, L. Maillet-Contoz. LusSy: A Toolbox for the Analysis
of Systems-on-a-Chip at the Transactional Level. In International Conference on
Application of Concurrency to System Design (ACSD). Pp. 26-35. 2005.

W. Miiller, J. Ruf, W. Rosenstiel. SystemC: Methodologies and Applications. Chap-
ter An ASM based SystemC Simulation Semantics, pp. 97-126. Kluwer Academic
Publishers, 2003.

B. Niemann, C. Haubelt. Formalizing TLM with Communicating State Machines.
Forum on specification and Design Languages, 2006.

M. Pockrandt, P. Herber, S. Glesner. Model Checking a SystemC/TLM Design of
the AMBA AHB Protocol. In IEEE/ACM Symposium on Embedded Systems For
Real-time Multimedia (ESTIMedia). Pp. 66 — 75. IEEE Computer Society, 2011.

J. Ruf, D. W. Hoffmann, J. Gerlach, T. Kropf, W. Rosenstiel, W. Miiller. The Simu-
lation Semantics of SystemC. In Design, Automation and Test in Europe. Pp. 64-70.
IEEE Press, 2001.

A. Salem. Formal Semantics of Synchronous SystemC. In Design, Automation and
Test in Europe (DATE). Pp. 10376-10381. IEEE Computer Society, 2003.

C. Traulsen, J. Cornet, M. Moy, F. Maraninchi:. A SystemC/TLM semantics in
Promela and its possible applications. In /4th Workshop on Model Checking Soft-
ware (SPIN °07). LNCS 4595, pp. 204-222. Springer, Berlin, 2007.

Y. Zhang, F. Vedrine, B. Monsuez. SystemC Waiting-State Automata. In First In-

ternational Workshop on Verification and Evaluation of Computer and Communi-
cation Systems (VECoS 2007). 2007.

15/15

Volume 53 (2012)

	Introduction
	Related Work
	Preliminaries
	SystemC
	Uppaal Timed Automata

	SystemC to Timed Automata Transformation
	Optimized Method Transformation
	Analysis
	Transformation and Example

	Experimental Results
	Micro Benchmark
	Producer-Consumer
	Anti-Slip Regulation and Anti-lock Braking System

	Conclusion

