
Electronic Communications of the EASST
Volume 53 (2012)

Proceedings of the
12th International Workshop on

Automated Verification of Critical Systems
(AVoCS 2012)

E-SPARK: Automated Generation of Provably Correct Code from
Formally Verified Designs

Rajiv Murali and Andrew Ireland

15 pages

Guest Editors: Gerald Lüttgen, Stephan Merz
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

E-SPARK: Automated Generation of Provably Correct Code from
Formally Verified Designs

Rajiv Murali1 and Andrew Ireland2

1 Rm339@hw.ac.uk 2 A.Ireland@hw.ac.uk
School of Mathematical and Computer Sciences,

Heriot-Watt University,
Edinburgh, EH14 4AS, UK.

Abstract: An approach to generating provably correct sequential code from for-
mally developed algorithmic designs is presented. Given an algorithm modelled
in the Event-B formalism, we automatically translate the design into the SPARK
programming language. Our translation builds upon Abrial’s approach to the devel-
opment of sequential programs from Event-B models. However, as well as gener-
ating code, our approach also automatically generates code level specifications, i.e.
SPARK pre- and post-conditions, along with loop invariants. In terms of the SPARK
proof tools, having the loop invariants increases verification automation. A proto-
type, known as E-SPARK, has been implemented as a plugin for the Rodin Platform
(Event-B toolkit), and tested on a range of examples, i.e. searching, sorting and
numeric calculations.

Keywords: Event-B, Rodin, SPARK, Automatic Code Generation

1 Introduction

In terms of verification, critical software systems demand strong guarantees which formal meth-
ods can deliver via mathematical proof. However, without a high degree of proof automation the
accessibility of a formal method will be limited. Here we consider proof automation within the
context of correctness-by-construction (CxC) – software development where formal methods are
used throughout the development process [JOW06].

Specifically we focus on the Event-B formalism [Abr10] and the SPARK Approach [Bar03]
to developing critical software systems. Event-B promotes a refinement style of formally mod-
elling, where verification involves proving properties of a design, as well as verifying the cor-
rectness of each refinement step. SPARK is a programming language derived from Ada, which
is supported by a range of static analysis tools, including formal verification.

The approach we present here automatically generates provably correct sequential code, i.e.
SPARK, from formally developed algorithmic designs modelled in the Event-B formalism. The
translation builds upon Abrial’s method for developing sequential programs from the Event-B
models [Abr10]. However, as well as generating SPARK code, our approach also automatically
generates code level specifications, i.e. SPARK pre- and post-conditions, along with loop invari-
ants. A prototype of our approach, known as E-SPARK, has been implemented as a plugin for
the Rodin Platform (Event-B toolkit).

1 / 15 Volume 53 (2012)

mailto:Rm339@hw.ac.uk
mailto:A.Ireland@hw.ac.uk

E-SPARK: Automated Generation of Provably Correct Code from Formally Verified Designs

As well as the productivity gains of automated code generation, a key benefit of our approach
is that the specification effort at the design level (Event-B) is automatically reused at the code
level (SPARK) in order to increase proof automation, e.g. without loop invariants, a significant
level of proofs will fail.

The contribution of the paper are three fold:

• A mechanisation of Abrial’s method for the SPARK programming language – imple-
mented as a Rodin plugin.

• A translation from Event-B formalism into the SPARK proof annotation language.

• Initial experimental results, i.e. searching, sorting and numeric calculations.

The remainder of the paper is structured as follows. In Section 2, we present background
material on SPARK and Event-B. This sets the scene for Section 3 where we describe the core of
our approach. The implementation details of E-SPARK are outlined in Section 4 and the results
are discussed in Section 5. Related and future work is described in Section 6 and our conclusions
are given in Section 7.

2 Background

2.1 The SPARK Approach

The SPARK programming language [Bar03] was designed for safety and security critical appli-
cations, and has been used in developing software industrial scale projects for over twenty years
[Bar11].

SPARK is derived from the Ada programming language. In order to make static analysis fea-
sible, and applications robust, SPARK excludes many Ada constructs, e.g. pointers and aliasing.
Moreover, it also restricts the way in which the language can be used, e.g. functions cannot have
side-effects and recursion is excluded.

In support of static analysis, SPARK also includes a language of annotations, i.e. program and
proof annotations. Both allow a programmer to specify the intended behaviour of their code. In
the case of program annotations, specifications define information flows which can be checked
automatically against the code using the SPARK Examiner - a static analysis tool. The proof
annotations support traditional assertion based formal verification, and include pre- and post-
conditions as well as loop invariants. In support of formal verification, the Examiner contains a
verification condition generator (VCG) while proof tools are also provided in order to discharge
verification conditions (VCs), i.e. the Simplifier (automatic) and the SPADE Proof Checker
(interactive). The SPARK Approach supports two kinds of formal verification:

Partial correctness: proving that whenever the pre-conditions to a subprogram hold, and as-
suming that the subprogram terminates, then the post-condition will hold on termination1.

Exception freedom: proving that no exceptions will be raised at run-time, e.g. buffer overflows
and arithmetic overflows.

1 Note that SPARK does not support total correctness, i.e. proving termination as well as partial correctness.

Proc. AVoCS 2012 2 / 15

ECEASST

In our work we have focused for now on the proof annotations and formal verification.
Finally, we present in more detail some aspects of the SPARK languages that are relevant to

the presentation of our work:

• Like Ada, a SPARK program is defined in terms of a package specification and a package
body – representing the interface and implementation components respectively.

• Subprograms take the form of procedures and functions – currently we only deal with
procedures. The interface to a procedure is defined in terms of imported and exported
variables, which are denoted by global variables or formal parameters. In the case of
formal parameters, the modes in and out and used to indicate imported and exported
variables respectively. For instance, an in parameter is read-only, while an out parameter
is unititialized and allows the corresponding actual parameter to be updated. In order for
an actual parameter to be read and updated, the corresponding formal parameter is tagged
as in out.

• A key feature of SPARK is the notion of a subtype, which allows a programmer to tightly
constrain their program variables. For example, the range of integers 1 . . .10 can be defined
as a subtype of Integer as follows:

subtype T is Integer range 1 .. 10;

• Annotations are special comments, i.e. while “--” denotes the start of a comment, in
SPARK “--#” denotes the start of an annotation. To illustrate, consider the following pre-
and post-condition style specification for a procedure that safely increments the parameter
X of subtype T:

--# pre X > 0 and X < 10;
--# post X > 0 and X <= 10;

In the case of loop invariants, an assertion is included at the start of a loop construct, e.g.

...
loop
--# assert X > 0 and X <= 10 ;

exit when X = 10 ;
...

loop end;

Note that while SPARK supports a range of iterative constructs, we focus on the most
general, i.e. the loop construct.

3 / 15 Volume 53 (2012)

E-SPARK: Automated Generation of Provably Correct Code from Formally Verified Designs

2.2 Event-B

Event-B is a refinement based formal method that is used in the design of discrete systems.
Designs are represented as models, which are constructed from contexts and machines. A context
models the static aspects of a system while a machine models the dynamic aspects. A context
contains constants and associated axioms while a machine contains variables and invariants.
The variables denote the state of the system, while properties of the system state are represented
by invariants. Machines also contain events, which define the state transitions associated with
the system. The most basic form of an event is given below:

< identi f ier >, when < guards > then < actions > end

The applicability of an event is determined by the guards. The actions take the form of as-
signments that update the state variables and are performed simultaneously. Where an event
represents a refinement of another event, the keyword refines is used to indicate this rela-
tionship. In terms of formal verification, proof obligations (POs) are generated to ensure the
correctness of each refinement step, as well as the internal correctness of each model, e.g. all
events must preserve the invariants.

In our work we also make use of the status of an event, which is optional and by default
is set to ordinary. An event can also have status anticipated or convergent – which
relates to the termination of an event, i.e. the event will not always be applicable. If tagged
as anticipated, then the developer is indicating their intention to refine an event so that it
will terminate, where the subsequent terminating event is tagged as convergent. Both events
require a variant, and in the case of a convergent event, a termination PO is generated.

The Rodin Platform [ABHV06] is an industrial-strength tool-set that supports Event-B formal-
ism. Rodin is Eclipse-based, so is extensible and provided significant support in the development
of our E-SPARK plug-ins.

As mentioned above, we have focused on the development of sequential programs, following
Abrial’s method. Below we highlight the three phases of Abrial’s method, drawing upon the
Array Partition example given in Figures 1 and 2:

Specification Phase: At the start of a development process, we will have an initialization event,
potentially some anticipated events, e.g. progress, but crucially the initial machine will
contain a guarded event that specifies the post-condition of the algorithm. In the case of
the Array Partition example, the event final plays this role (see Figure 1).

Development Phase: Events are incrementally introduced until the complete algorithm is rep-
resented. In the Array Partition example only one refinement step is required, which intro-
duces the events progress 1, progress 2 and progress 3 . (see Figure 2).

Merging Phase: The final phase involves merging the events, within the most concrete machine,
into imperative code. This process is underpinned by Abrial’s merging rules, i.e. M IF,
M WHILE, M ELSIF and M INIT. We delay the presentation of the rules until Section 3,
where we show how they have been tailored for the generation of SPARK code.

Proc. AVoCS 2012 4 / 15

ECEASST

 constants: n, f, x

 progress ≙
 status
 anticipated
 then
 k :∈ ℕ
 g :∈ ℕ ↔ ℕ
 end

 final ≙
 status
 ordinary
 when
 k ∈ 0 .. n
 g ∈ 1 .. n → ℕ
 ran(g) = ran(f)
 ⩝ m . m ∈ 1 .. k ⇒ g(m) ≤ x
 ⩝ m . m ∈ k+1 .. n ⇒ g(m) > x
 then
 skip
 end

 axm0_1: n ∈ ℕ
 axm0_2: f ∈ 1 .. n → ℕ
 axm0_3: x ∈ ℕ

 variables: k, g

 inv0_1: k ∈ ℕ
 inv0_2: g ∈ ℕ ↔ ℕ

 INITIALISATION ≙
 k :∈ ℕ
 g :∈ ℕ ↔ ℕ

Context

Machine_0

Figure 1: Array Partition: Event-B Initial Model

 variables: k, g, j

 inv0_1: j ∈ 0 .. n
 inv0_2: k ∈ 0 .. j
 inv0_3: g ∈ 1 .. n → ℕ
 inv0_4: ran(g) = ran(f)
 inv0_5: ⩝ m . m ∈ 1 .. k ⇒ g(m) ≤ x
 inv0_6: ⩝ m . m ∈ k+1 .. j ⇒ g(m) > x

 INITIALISATION ≙
 k := 0
 j := 0
 g := f

 final ≙
 status
 ordinary
 when
 j = n
 then
 skip
 end

 progress_1 ≙
 refines
 progress
 status
 convergent
 when
 j ≠ n
 g(j + 1) > x
 then
 j := j + 1
 end

 progress_2 ≙
 refines
 progress
 status
 convergent
 when
 j ≠ n
 g(j + 1) ≤ x
 k = j
 then
 k := k + 1
 j := j + 1
 end

 progress_3 ≙
 refines
 progress
 status
 convergent
 when
 j ≠ n
 g(j + 1) ≤ x
 k ≠ j
 then
 k := k + 1
 j := j + 1
 g := g ⩤ {k + 1 ↦ g(j+1)} ⩤ { j+1 ↦ g(k+1)}
 end

Machine_1

Figure 2: Array Partition: Event-B Final Refinement

5 / 15 Volume 53 (2012)

E-SPARK: Automated Generation of Provably Correct Code from Formally Verified Designs

3 Translation: Event-B to SPARK

As discussed in Section 1 our aim is to produce provably correct SPARK code from Event-B
models. The Array Partition model shown in Figures 1 and 2 is translated to the SPARK code
seen in Listings 1 and 2. This translation is discussed in the following subsections, with the
context translation in Subsection 3.2 and machine translation in Subsection 3.3.

Listing 1: Array Partition: SPARK Package Specification
1 package ArrayPartition
2 is
3 --Note To User: Please reassign required value for constant n.
4 n: constant Natural:= 10;
5
6 subtype f_pointer_Type is Integer range 1 .. n;
7 Type f_Array_Type is array (f_pointer_Type) of Natural;
8 subtype j_Type is Integer range 0 .. n;
9

10 procedure ArrayPartition_Procedure(x: in Natural; f: in f_Array_Type; g:
out f_Array_Type; k: out j_Type);

11 --# post (For all m in f_pointer_Type range 1..k => (g(m) <= x))
12 --# and (For all m in f_pointer_Type range k+1..n => (g(m) > x));
13
14 end ArrayPartition;

Listing 2: Array Partition: SPARK Package Body
1 package body ArrayPartition is
2 procedure ArrayPartition_Procedure(x: in Natural; f: in f_Array_Type; g:

out f_Array_Type; k: out j_Type)
3 is
4 j: j_Type;
5 swap_g: Natural;
6 begin
7 k := 0; j := 0; g := f; --INITIALISATION Event
8 loop
9 --# assert (For all m in f_pointer_Type range 1..k => (g(m) <= x))

10 --# and (For all m in f_pointer_Type range k+1..j => (g(m) > x))
11 --# and k>=0 and k<=j and j>=0 and j<=n;
12 exit when not (j /= n); --Final Event
13 if g(j+1) > x then --Progress_1 Event
14 j := j + 1;
15 elsif k = j then --Progress_2 Event
16 k := k + 1; j := j + 1;
17 else --Progress_3 Event
18 swap_g := g(j+1);
19 g(j+1) := g(k+1);
20 g(k+1) := swap_g;
21 k := k + 1; j := j + 1;
22 end if;
23 end loop;
24 end ArrayPartition_Procedure;
25 end ArrayPartition;

Proc. AVoCS 2012 6 / 15

ECEASST

3.1 Basic Translations

Below we define some basic elements of our translation, which relate to both the context and
machine components of a model.

Definition 1 (Translating Enumeration Sets) Enumerated sets are defined within the context
of a model. An enumerated set S, with elements E1,E2, . . . ,En, is translated into the SPARK
enumeration type as follows:

S = {E1,E2, . . .En} type S type is (E1,E2, . . . ,En)

Note that the subtype is translated as a global declaration that appears within the package speci-
fication. Note also that the name given to the enumerated type, i.e. S type, is derived from the
identifier associated with the enumerated set.

Definition 2 (Translating Set Membership) In Event-B the type of a constant or a variable is
given via set membership, and may take the form of an axiom or an invariant. We translate
the predefined sets N, Z and BOOL directly into the SPARK types Integer, Natural and
Boolean respectively. Note that if the type corresponds to an enumeration set then Definition
(1) is applicable.

Definition 3 (Translating Intervals) In Event-B, an interval takes the form a..b, where a and b
denote the lower and upper bounds of the interval respectively. Intervals can be used to define
constants and variables, as well as function domains (see Definition 4). Our translation of an
interval makes use of the subtype, i.e.

a..b subtype n Type is BaseType range a..b;

where BaseType is either Integer or Natural depending upon the context. Note that the
bounds a and b must be constants or literal values. This restriction is imposed by SPARK, which
requires that all memory must be statically allocated.

Definition 4 (Translating Total Functions) A total function in Event-B, where the domain takes
the form 1..N, is translated into a SPARK array. Note that the translation of the function domain
gives rise to a subtype (see Definition 3). For example, given a function type of the form f ∈
1..b→ N, its translation into an array type is defined as follows:

f ∈ 1..b→ N type f type is array S of Natural;

where S denotes the subtype generated for the interval 1..b. Currently we restrict the co-domain
to be N, Z, BOOL or an enumerated set.

A key feature of our approach is that we generate code level assertions, as well as code. Table 1
summarises the translations we use in mapping Event-B formulas onto SPARK assertions.

7 / 15 Volume 53 (2012)

E-SPARK: Automated Generation of Provably Correct Code from Formally Verified Designs

Event-B Formulas SPARK Assertions
n ∈ x..y x ≤ n and n ≤ y

∀m ·m ∈ x..y⇒ (< predicate >) For all m in <subtype name> range
x..y ⇒ (<predicate>)

∃m ·m ∈ x..y⇒ (< predicate >) For some m in <subtype name> range
x..y ⇒ (<predicate>)

z = min(f [x..y]) For all m in <subtype name> range
x..y ⇒ (z ≤ f(m))

z = max(f [x..y]) For all m in <subtype name> range
x..y ⇒ (z ≥ f(m))

Table 1: Translation of Event-B formulas into SPARK assertions

3.2 Context Translation

In this Section we discuss the context translation describing it first in the code level perspective
and then the assertion level perspective in Subsections 3.2.1 and 3.2.2 respectively.

3.2.1 Code level perspective

Constants defined within the context of a model are either translated into SPARK constants or
imported variables with respect to the procedure that is generated via the translation of the ma-
chine component. The associated type information is derived as described above in Section 3.1.

For instance, in the Array Partition example the context contains three constants, i.e. x, f
and n. The constants x and f are translated as read-only formal parameters of the procedure
ArrayPartition Procedure (see line 10 of Listing 1), while n becomes a constant (see
line 4 of Listing 1). In terms of type declarations:

• x:Natural follows from axm0 1: x ∈ N (Definition 2);

• The array type f Array Type follows from axm0 2: f ∈ a..b→ N (Definition 4), and
gives rise to the subtype f pointer Type (Definition 3);

• n:constant Natural:=10; follows from axm0 1: n ∈ N (Definition 2), but re-
quires user input in order to establish the value 10, as will be explained in Section 4.

3.2.2 Assertion level perspective

Apart from providing type information, axioms specify conditions that act as hypothesis in all
proof obligations in Event-B. We derive pre-condition annotation of the generated procedure
from axioms that are translatable to SPARK proof context, as in Table 1. In the Array Partition
example, there are no axioms that are translatable to SPARK proof annotations, and so the pre-
condition is assumed true.

Proc. AVoCS 2012 8 / 15

ECEASST

3.3 Machine Translation

In this Section we discuss the machine translation describing the code level perspective and event
scheduling in Subsection 3.3.1 and Subsection 3.3.2 respectively, and finally the assertion level
perspective in Subsection 3.3.3.

3.3.1 Code level perspective

As mentioned earlier, the events associated with a machine are translated into a single SPARK
procedure. Note that all variables defined within a machine are by default translated into local
variables in SPARK. However, variables that appear in the SPARK post-condition annotation
(discussed in Subsection 3.3.3) are automatically translated into exported variables. These vari-
ables denote the expected result(s) of running an algorithm.

In the Array Partition example, the types for the program variables j, g and k are derived
from the invariants inv0 1, inv0 2 and inv0 3 respectively:

• Machine variable g is a total function. Given that it has the same type as axm0 1, the
translation uses the existing array type f array type in the declaration of g.

• Machine variable j is defined by the interval 0..n, and is thus translated into the global
subtype declaration j type (Definition 3).

• Machine variable k is defined by the interval 0.. j. Note that the upper bound j is also a
variable. Because bounds must be defined in terms of either constants or literal values, the
upper bound of k is derived from the type of j (upper bound).

Note that the program variables g and k occur within the post-condition of procedure Array-
Partition Procedure. As a consequence, they translated into exported variables. The remaining
variable, i.e. j is declared locally within the procedure.

Recall that actions represent simultaneous assignments. The translation of actions may there-
fore introduce the need for temporary program variables. For instance, in the Array Partition
example, machine variable g in event progress 3 is simultaneously updated, and therefore
gives rise to a temporary variable, i.e. swap g – see line 5 of Listing 2.

3.3.2 Event Scheduling

A key aspect of the translation involves determining how the events in the final refinement are
mapped onto imperative constructs i.e. if-then, if-then-else and while statements. As mentioned
earlier, we use Abrial’s merging rules, i.e. M IF, M WHILE, M ELSIF and M INIT, adopted for
SPARK. The SPARK versions of the M IF and M WHILE rules are given in Table 2. Note that
the application of M IF and M WHILE to Event A and Event B generates pseudo-events
mergedAB if and mergedAB while respectively.

Abrial associates the following side conditions with rules M IF and M WHILE in order to
disambiguate their application:

• M IF rule: requires that Event A and Event B are introduced at the same level within a
development.

9 / 15 Volume 53 (2012)

E-SPARK: Automated Generation of Provably Correct Code from Formally Verified Designs

Event A Event B mergedAB if Event mergedAB while Event
when

P
Q

then
S

end

when
P
qQ

then
T

end

when
P

then
if Q then

S;
else

T;
end if;

end

when
P

then
loop
--#assert P;
exit when not Q;
S;

end loop;
T;

end

Table 2: M IF and M WHILE merging rules [Abr10] tailored for SPARK program constructs

• M WHILE rule: requires that Event A (loop body) is convergent at the level below which
Event B was introduced.

Note that in order to apply the merging rules, the translation needs to keep track of the levels
at which the events are introduced. Note that the M ELSIF rule is treated the same as the M IF
rule, except that it requires one of the merging events, i.e. A or B, to be a pseudo-event, generated
via a application of the M IF rule.

These three rules are applied exhaustively until a single non-guarded event remains. At this
stage, the M INIT rule is applied, merging the initialisation event with the remaining non-
guarded event to form the final program.

 progress_1 ≙
 status
 convergent
 when
 j ≠n
 g(j+1) > x
 then
 A
 end

 progress_2 ≙
 status
 convergent
 when
 j ≠n
 g(j+1) ≤ x
 k = j
 then
 B
 end

 progress_3 ≙
 status
 convergent
 when
 j ≠n
 g(j+1) ≤ x
 k ≠ j
 then
 C
 end

 final ≙
 status
 ordinary
 when
 j ≠n
 then
 skip
 end

Level 1Level 0

M_IF rule

Figure 3: Concrete events in the final refinement of Array Partition Example

In the Array Partition example, the final machine is composed of progress 1, progress 2,
progress 3 and final (see Figure 3), excluding the initialisation event. The rules are ap-
plied in the following order M IF, M ELSIF, M WHILE and finally M INIT. The application to
the Array Partition example is described below:

Proc. AVoCS 2012 10 / 15

ECEASST

• M IF Rule: Events progress 2 and progress 3 (see Figure 3) match the M IF rule,
where P denotes j 6= n and g(j + 1) ≤ x while Q denotes k = j. The side condition is
satisfied as the events are both introduced at level 1. The events are merged to form the
pseudo-event mif progress.

mif progress, when P then if Q then B; else C; end if;end

The merged pseudo-event mif progress is introduced back into the same level (see
Figure 4) as its parents. There are no more events that satisfy the application of the M IF
rule, the translation moves to the next rule M ELSIF.

 progress_1 ≙
 status
 convergent
 when
 j ≠n
 g(j+1) > x
 then
 A
 end

 final ≙
 status
 ordinary
 when
 j ≠n
 then
 skip
 end

Level 1Level 0

M_ELSIF rule

 mif_progress ≙
 status
 convergent
 when
 j ≠n
 g(j+1) ≤ x
 then
 if k = j then B; else C; end if;

 end

Figure 4: Remaining events after the application of the M IF rule

• M ELSIF Rule: The new merged pseudo-event mif progress and progress 1match
the M ELSIF Rule, where P denotes2 j 6= n and Q denotes g(j+ 1) > x. The events are
merged to form pseudo-event melsif progress, which is introduced back into level
of its parent events, as shown in Figure 5a. Note that in both M IF and M ELSIF merging
rules, the status of the parent events dictates the status of the merged event. For instance,
the merged event mif progress has the status convergent of its parent events.

• M WHILE Rule: The events melsif progress and final are merged to produce
mwhile progress. Note that the events satisfy the side condition of the rule which
requires the first event, melsif progress (loop body) to be convergent at one refine-
ment level below that of event final. Note also that there are no common guard P for the
merged pseudo-events. The merged event is introduced at the level of the non-convergent
parent event (see Figure 5b).

At this stage the M INIT rule merges the initialisation event with the unguarded pseudo-event
mwhile progress, which gives the final program (see lines 7 to 21 of Listing 2).

2 Note that we check the equivalence of formula, such as guards, semantically where matching is not possible.

11 / 15 Volume 53 (2012)

E-SPARK: Automated Generation of Provably Correct Code from Formally Verified Designs

 final ≙
 status
 ordinary
 when
 j ≠n
 then
 skip
 end

Level 1Level 0

M_WHILE

 melsif_progress ≙
 status
 convergent
 when
 j ≠n
 then
 if g(j+1) > x then
 A;
 elsif k = j then
 B;
 else
 C;

 end if;

 end

(a) Events left after M ELSIF rule

 mwhile_progress ≙
 status
 ordinary
 then
 loop

 exit when not j /=n;
 if g(j+1) > x then
 A;
 elsif k = j then
 B;
 else
 C;
 end if;

 end loop;

 end

Level 0

(b) Event left after M WHILE rule

Figure 5: Scheduling events using merging rules

3.3.3 Assertion level perspective

In terms of assertions, a machine provides us with the post-condition and loop invariants for an
algorithm. While the post-condition is embedded within the initial machine, the loop invariants
are obtained from the machine invariants given in the refined models. The translation of machine
invariants into SPARK assertions are given in Table 1, while the resulting loop invariants are em-
bedded within the corresponding loop-construct. In the Array Partition example, the invariants
inv0 1, inv0 2, inv0 5 and inv0 6 (see Figure 2) are translated into the loop invariant shown in
Listing 2 (see lines 9 to 11)

4 E-SPARK

Our mechanisation of Abrial’s method, E-SPARK, is implemented as a Rodin plug-in. Being
an Eclipse based platform, Rodin makes it relatively easy to access the details of an Event-
B development. Once installed, the plug-in is executed via an extended user interface of the
machine file, see Figure 6.

E-SPARK automatically accesses machine and context files for a given concrete machine.
Each machine component has a sees and refines clause, which define the context and machine
files that it is related to, apart from the initial model which may only have a sees clause. The tool
uses this information to traverse through past refinements and collect all context and machine
modelling elements accordingly. Note that the levels and status of events are also stored. This
information is required in order to apply the merging rules, as explained in Subsection 2.2.
Once the properties of the model are collected, the plug-in initiates the translation phase of the
context and machine component accordingly. Context translation as discussed in Subsection 3.2

Proc. AVoCS 2012 12 / 15

ECEASST

Rodin Toolset

SPARK

E-SPARK Plug-in

Model
Properties

Context
Translation

Machine
Translation

Event
Sheduling

Build
Phase

org.eclipse.ui

Concrete
Machine

Abstract
Machine

Context
Component

Refines

Sees

SPARK

Figure 6: E-SPARK plug-in

derives the constants, their type declarations and associated pre-condition specification. Note
constants in Event-B that are translated to SPARK constants have their value derived from the
user during translation. The machine translation phase is similar, it derives the variables and
their type declaration, including the invariant properties, as discussed in Subsection 3.3. The
translation then proceeds with event scheduling, merging the events of the concrete machine to
a single sequential SPARK program (procedure), as discussed in Subsection 3.3. E-SPARK also
generates traceability comments during the event scheduling process – to help the user better
understand the generated code. Code level specifications, i.e. SPARK pre- and post-conditions,
along with loop invariants are then generated at the logical annotation phase. The final phase of
translation provides a template that builds the translated components within package body and
package specification files.

5 Results

The results of our initial experiments with E-SPARK are given in Table 3. We focused on search-
ing and sorting algorithms, and numeric calculations. Given the relevant Event-B developments,
E-SPARK successfully generated provably correct SPARK code for each of the examples. At
the SPARK level, all the verification conditions (VCs) were discharged automatically using the
SPARK proof tools, i.e. Simplifier and Victor. Note that in the results table we have separated
the partial correctness (PC) VCs from the exception freedom (EF) VCs. Without the reuse of
invariants, that E-SPARK facilitates, none of partial correctness verifications would succeed.

13 / 15 Volume 53 (2012)

E-SPARK: Automated Generation of Provably Correct Code from Formally Verified Designs

Event-B Model No. of SPARK Constructs SPARK VCs
if-then if-then-else loop PC VCs EF VCs

Array Partition 1 1 1 3 13
Array Reversing 1 0 1 3 7

Division Algorithm 0 0 1 3 4
Maximum Value 1 0 1 4 6

Polish Flag 1 0 1 5 10
Simple Sort 1 0 2 7 14
Summation 0 0 1 3 4

Table 3: Results of E-SPARK

6 Related Work and Future Work

A number of approaches to generating code from Event-B models have been explored. How-
ever, given that Event-B is not restricted to modelling sequential systems, most approaches have
targeted concurrent code [Wri09, MS11, EB11]. In terms of the generation of sequential code,
we do not know of any other mechanisation of Abrial’s method, or any system that generates
SPARK code from Event-B models. We are aware of work by Iliasov [Ili11] who argues for the
value of certifying code generators, using the translation of Event-B to imperative code as an
illustrative example – this work also relates to ClawZ and AutoCert discussed below.

In her AVoCS-11 keynote address [Bar11], Barnes reported on a number of industrial scale
software development projects which combined specifications written in the Z notation [Spi89],
with refinement to SPARK code. While this combination has proved very successful, there
remains so called “semantic gaps” [Ros05] – what Barnes refers to as “taking small semantic
steps between stages of the lifecycle” [Bar11]. Our approach has made progress towards bridging
one of these gaps, i.e. mechanising the transformation between specification and code. Although
this transformation has not been formally verified, its correctness is dependent upon a relatively
small set of transformations from which the correctness of the generated code follows by proof.

We follow the approach taken by ClawZ [ACOS00], where one does not rely upon the cor-
rectness of the auto coder – instead a code level correctness proof is constructed each time the
auto coder runs. In the case of ClawZ, the design level models are represented as Simulink di-
agrams and the generated code is SPARK. Event-B is a much richer modelling formalism than
Simulink. Another significant example of this style of verification is the AutoCert [DF09] code
analysis system developed at NASA. However, AutoCert works with requirements rather than
design models, and is independent of the code generator.

The idea of proving the “correction of generated code”, rather than proving the “code genera-
tor correct” has interesting implications for the safety-critical sector. That is, if one can indepen-
dently verify that the generated code correctly implements design requirements, then the burden
of tool qualification imposed by the safety-critical sector could be significantly reduced.

In terms of future work we have a number of plans:

• Further experimentation and testing of our E-SPARK plugin.

• Extend E-SPARK to include the generation of information flow annotations.

Proc. AVoCS 2012 14 / 15

ECEASST

• Include traceability between formal model and generated code.

7 Conclusion
We have described our E-SPARK plugin, a mechanization of Abrial’s method for translating
sequential algorithms modelled in Event-B into imperative code. By targeting the SPARK pro-
gramming language we were able to generate code level specifications from Event-B models.
This reuse of Event-B specifications reduces the semantic gap between the formal modelling and
the code. In addition, it gives rise to proof automation gains at the code level.

Acknowledgements

The first author was supported by an Industrial CASE studentship funded by EPSRC and BAE Systems (EP/J501992),

while the second author was partially supported by EPSRC grant EP/J001058. We also thank the anonymous AVoCS-

12 reviewers for their constructive feedback.

Bibliography

[ABHV06] J. R. Abrial, M. Butler, S. Hallerstede, L. Voisin. An open extensible tool environ-
ment for Event-B. 2006.

[Abr10] J. R. Abrial. Modeling in Event-B: system and software engineering. Cambridge
Univ Pr, 2010.

[ACOS00] R. Arthan, P. Caseley, C. O. O’Halloran, A. Smith. ClawZ; Control laws in Z. 2000.

[Bar03] J. G. P. Barnes. High integrity software: the SPARK approach to safety and security.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[Bar11] J. E. Barnes. Experiences in the Industrial use of Formal Methods. 2011.

[DF09] E. Denney, B. Fischer. A Verification-Driven Approach to Traceability and Docu-
mentation for Auto-Generated Mathematical Software. 2009.

[EB11] A. Edmunds, M. Butler. Tasking Event-B: An Extension to Event-B for Generating
Concurrent Code. 2011.

[Ili11] A. Iliasov. Generation of certifiably correct programs from formal models. 2011.

[JOW06] C. B. Jones, P. O’Hearn, J. Woodcock. Verified Software: A Grand Challenge. 2006.

[KHCP00] S. King, J. Hammond, R. Chapman, A. Pryor. Is Proof More Cost Effective Than
Testing? 2000.

[MS11] D. Méry, N. K. Singh. Automatic code generation from event-B models. 2011.

[Ros05] P. E. Ross. The exterminators [software bugs]. 2005.

[Spi89] J. M. Spivey. The Z Notation. 1989.

[Wri09] S. Wright. Automatic generation of C from Event-B. In Workshop on integration of
model-based formal methods and tools. 2009.

15 / 15 Volume 53 (2012)

	Introduction
	Background
	The SPARK Approach
	Event-B

	Translation: Event-B to SPARK
	Basic Translations
	Context Translation
	Code level perspective
	Assertion level perspective

	Machine Translation
	Code level perspective
	Event Scheduling
	Assertion level perspective

	E-SPARK
	Results
	Related Work and Future Work
	Conclusion

