Electronic Communications of the EASST

Volume 48 (2012)

Proceedings of the
Fifth International Workshop on on Foundations
and Techniques for Open Source Software Certification
(OpenCert 2011)

Learning and Activity Patterns in OSS Communities and thepact on
Software Quality

Antonio Cerone

21 pages

Guest Editors: Luis Soares Barbosa, Dimitrios Settas

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Learning and Activity Patternsin OSS Communities and their
| mpact on Software Quality

Antonio Cerone!

1 antonio@iist.unu.edu
UNU-IIST — International Institute for Software Technojog
United Nations University, Macau SAR China

Abstract: This paper presents a framework to identify and analysenilegrand
activity patterns that characterise participation andabalration of individuals in
Open Source Software (OSS) communities. It first describ@gsgarticipants’ ac-
tivities enable and drive a learning process that occuradividual participants as
well as in the OSS project community as a whole. It then exgsldrow to identify
and analyse learning patterns at both individual level amdraunity level. The ob-
jective of such analysis is to determine the impact of thedems on the quality of
the OSS product and define a descriptive approach to quidityis concerned less
with standards than with the facts of OSS peer-review andp@eluction.

Keywords: Open Source Software, activity patterns, learning pagtesoftware
quality.

1 Introduction

Open Source Software (OSS) communities have been repregehiring the last decades an
interesting phenemenon of collaborative work leading togihccessful delivery of high-quality
software products. Popular OSS products range from opgragistems, such as Linux, Ubuntu
and BSD distributions, to network services, such as Apabigh-end applications, such as
MySQL, and Learning Management Systems (LMS), such as Mo&bpularity and widespread
use of such products ade facto indicators of their high quality.

Although the high-quality of such OSS products has beenpedeas a fact and is confirmed
by their widespread use not only in the academic world but Bghe industrial world and in
public administration, it is still largely unclear how suleigh-quality emerges from the “bazaar-
style” activities of an OSS community. Recently severatiisi have analysed activities, prac-
tices and collaboration processes that occur within OSSwamities and projects, as well as the
quality of OSS products, in the attempt to identify releviattors that foster the emergence of
high quality in product releases.

Halloran and ScherlisHS07 review a number of notable quality practices on some papula
OSS projects, of which good project communication and memegt is highlighted. Coverity
has been analysing the quality of Open Source Software 2@, using Coverity Scan, a tool
for automated static analysis of source code\]. Coverity reports emphasise the high-quality
of OSS products, comparable with if not better than closedee proprietary software, and ex-
press the expectation that as open source continues toenatare and more projects will begin

1/21 Volume 48 (2012)

mailto:antonio@iist.unu.edu

OSS Learning and Activity Patterns and their Impact on Software Quality @

to adopt stronger quality practiceS¢v1]. According to Newman, OSS “has the potential of
being better [than closed-source proprietary softwaii&d development process addresses many
factors that are not normally experienced in mass-marlairfatary software” [Neu0g. Zhao
and ElbaumZEOQ undertake a small survey to examine the factors underlgiradity assurance
methods of open source developers. Their work characsettimegeneral attitude and practices
of the open source community towards quality, realising thaality assurance practices are
somewhat different to those prevalent in traditional safevdevelopment. McConnelVcC99
emphasises the need for a comprehensive methodology farsmpgce development. This is a
fundamental need for OSS products to be used as safetyatiiti security components of high
quality complex software systems. In fact, Schneic@®ah0(Q finds that Open Source Software
still falls short of requirements for security systems. Blwrer, the lack of central management
in OSS projectsIHPO5, Mic05] makes it difficult to define a standard that could suggest in-
dicators of the technical rigour used by a distributed comitgwof volunteers and identify the
human processes involved in the project.

OSS communities are heterogeneous groups of volunteersaithdoosely organised in a
“democratic” fashion based on the principles of freedom eqdality of participants. How-
ever, this does not mean that OSS communities are disoaghrigtities. In fact, they develop
a natural form of self-organisation in which participantaypdistinct roles, have various forms
of engagement, develop different levels of knowledge, pceda range of contributions and are
driven by a large variety of intrinsic and extrinsic motieais. Roles, engagement, knowledge,
contribution and personal motivations build up reputato support the emergence of driving
personalities and forms of leadership. In addition to thiplicit bottom-up organisational char-
acteristics, which naturally emerge within the commurstyme forms of top-down organisation
may be explicitly superimposed by the project initiator,omdan be an individual, a team, a
consortium, an organisation, or even a private company.

Collaboration among peers is the productive engine of th8 G@Bnmunity and determine the
typical OSS development model, which has potential bengfitsinclude “the ability to more
easily carry out open peer reviews, add new functionalitiyegilocally or to the mainline prod-
ucts, identify flaws, and fix them rapidly — for example, thgbucollaborative efforts involving
people irrespective of their geographical locations ampaate allegiances’Neu03. Addi-
tional testimonials about the impact that peer-review hethe product of OSS development are
given by Raymond, who claims that “The high level of qualityree software is partly due to the
high degree of peer review and user involvemem®&ay99, and McConnell, who acknowledges
the efficiency of extensive field testing and peer review iaropource developmentigC99].

OSS projects can also be considered as learning and dewehbemvironments in which het-
erogeneous communities get together to exchange knowthdgegh discussion and put it into
practice through actual contributions to software develept, revision and testingC5. OSS
communities are open participatory ecosystems in whicbracreate not only source code but
a large variety of resources that include the implicit angliek definitions of learning processes
and the establishment and maintenance of communicatiosugpubrt systems.

The rest of this paper is organised as follows. Secimroduces typical roles of participants
to OSS projects, describes their high-level activities arehks them down into four basic ac-
tivities. Section3 describes the learning process of individual actors of a @@nmunity as
the result of communication and development activitiestiSe 3. Lidentifies the learning stages

Proc. OpenCert 2011 2/21

@ ECEASST

that characterise OSS ecosystems and relates them tageart& activities. SectioBS.2reviews
the literature concerning the identification and analy$ik@rning patterns. Sectiohpresents
a descriptive approach to quality based on the identifinatidlearning and activity patterns in
data collected from OSS project repositories and the aisabfgheir impact on the quality of
the OSS product.

2 Contributors Rolesand Activities

Paricipants in OSS projects may play a large varieties @srahave various levels of engage-
ments, both within the project and the community, and cbate to the project development in
different respects. Typical participants’ roles are

observer who plays a passive role in which there is neither interactiith the community nor
production of artifacts;

supporting user who often plays a very active role in providing feedbackpime new users,
recommending the project to others, requesting new festimg does not produce arti-
facts;

developer who actively writes and updates software, documentatiatioarcreates artwork;
tester who actively performs testing and reports and possibly fixess;
trandator who translates software and/or documentation into andgimgruage.

Theobserver performs a large range of activities including: accessimdjr@ading reports, doc-
umentation and tool manuals, possibly using the tools,itmpét data in the repositories, reading
posted message without posting or replying, looking at taecand possibly running it. How-
ever, this role igassive in terms of interaction with the community, although it madnacacterise
an active but non-supporting user (the usage actually occurs outside the community, with no
impact on the community or the project). It is therefore & nolth neithersupporting nor pro-
ductive finality, but involving two kinds obasic activities. observe anduse. Here the finality of
the participant is actualljearning, which is usually the main goal during the first stage of the
participation of a contributor in a project. We will deepiywestigate this aspect in Secti8ri.

The other roles are adlctive. A supportinguser not only uses tools and code but also provides
feedback to the community as well as support to new usergparatjuests new features. These
kinds of services to the communities are provided througitreer basic activity, post, which
consists in making available to the community messagestong questions, requests, advices
and/or critics. This typically occurs in discussion fora.

The last three roles are not ordytive but alsoproductive. Produced artifacts are software,
documentation, artwork (by developer), bug reports, fixed code (bytaster), translated soft-
ware, translated documentation (byranslator). Productive activities are enabled by a fourth
basic activity, commit, which is the process of adding an artifact to a project rigpgsand make
it part of the project product, to be potentially deployedhithe next release. Commit may be
direct, if the contributor has commit right, or may occuraingh an approval process mediated
by a leader or leading team.

3/21 Volume 48 (2012)

OSS Learning and Activity Patterns and their Impact on Software Quality @

To summarise, the fourasic activities that enable all contributors’ activities are:
observe reports, documentation, tool manuals, data, posts, code;
use code, tools;
post questions, requests, advices, critics;
commit software, documentation, artwork, bug reports, fixed ctrdaslations.

However, the way these four basic activities are combinetrasult in the activity pattern of a
contributor depends on multiple factors, including indithand extrinsic motivations, maturity
levels, technical and social skills. This yields a largeehageneity of activity patterns at both
individual level and community level.

The development of post into an exchange of messages is the engine of discussioaridra
enables thénteraction process that occurs within the OSS community. Such interaction @ssc
has two components:

lear ning sub-process in which the exchange of knowledge between individual arndroonity
results in the growth of knowledge at both the individuakleand the team or community
level;

contribution sub-process in which a contribution in terms of commit of code, bug repett.
is the result of an exchange of communications.

The learning component of the interaction process is esdlgra collaborative learning pro-
cess, in which knowledge is built through social constistn and is part of a more complex
learning process that will be detailed in Sect®rmThe contribution component of the interaction
process can be seen agear-production process, in which the creative energy of large num-
bers of individuals is remotely coordinated, usually tlglodhe Internet, into large, meaningful
projects mostly without traditional hierarchical orgatien [Ben03. Therefore, contribution,
which is based omommit, is the result of communication, which is basedpmst, individual
learning, which is based arbserve anduse, and collaborative learning, which is basedpmst.
Furthermore, the interaction process is cyclic on its twmgonents, in the sense that both the
knowledge that results from the learning sub-process améitifacts that result from the con-
tribution sub-process feed a new iteration of the inteoacprocess. This cyclic nature of the
interaction process is the basis of the individual-teararpiay that occur in OSS communities
[CFS12. Finally, we can say that also the learning process, andresudt the entire interaction
process, can be seen as an instantiation of the peer-piauucbdel FutOq.

Recent research on contributors’ activity patterns has lsaeried out by utilising data from
a single repository to analyse code contribution of devalefRG06§ GKS09, trends and in-
equality in posting and replying activities in Apache andzilla [MFHO0Z], KDE [KukO0#6], De-
bian [SSA09, and FreeBSDIPB05]. Data on communicationg@st) from mailing lists ESA0§
and development activitiesgmmit) are extracted from revision control systems such as CVS
(Concurrent Versions System) and SVN (Apache SubVersiol)ch are part of the Source
Configuration Management (SCM) used to coordinate the godativities of software devel-
opers and manage software builds and releases. A numbeslsfliG06 RGCH09 SSSA0$

Proc. OpenCert 2011 4/21

@ ECEASST

can be used to retrieve data from SCM sytems using tools tiig sommitters’ attributes into
various tables and extracd$SA0$ one or more mailing list archives of a particular project.

Data are then analysed to identify posters and committetsadter appropriate data cleaning
[SCH and alias unmaskinggGD " 06, SSA0§, descriptive statistics is used to show developers
posting and committing activities and patter8&\506 SCH as well as activity patterns recurring
in various OSS projects. Many of these studies highlightebsence of communication as a
means to foster long term success of software projé&ts/H. Although a strong linkage exists
between the information in OSS repositories (e.g. bug tspand source code repositories
[DBO7, ZPZ07) and SVN and mailing lists§CH), few researchers strive to understand how
contributions vary across repositories. In the next sastiwe attempt a deeper investigation of
such linkage to better understand

1. how communication and development enable a nakesating process (Section3);

2. how the linkage between learning process and basic t&sidrives evolution of activity
patterns and maturation at individual level as well as atroomity level (Sectior8.1);

3. how activity patterns can be analysed to identify the gmes oflearning patterns (Sec-
tion 3.2);

4. how evolution and maturation of the activity patternstéoghe productive process and
what their impact on software quality is (Sectidn

3 Learning Process

Freedom and equality of participants constitute a “demidrhasis for analysing OSS commu-
nities ascommunities of practice. Novices are always welcome by OSS communities, in which
they undergo through a gradual process of social integratia skill development that allows
them to earn a reputation as reliable developers and ther nowards the leading positions
in the community Tuo0g. OSS communities are in this sense open participatoryystass
[MGS08 MGSO09, in which actors produce not only source code but a largietyaof resources
that include the implicit and explicit definitions of leangi processes and the establishment and
maintenance of communication and support systems. Fuontrerthese resources are made
visible and available to other actors. Therefore develofin®urce code), support (tools) and
learning (knowledge) emerge as the product of a continuoumlgsation process in a virtual
environment.

Development of source code is enabled by building up knogdeabout already produced
code, through direct observation, review, modification el &s discussion with other actors, and
about support tools, through direct interaction as well@ess to documentation and discussion
with other actors. As suggested by Sowe and Stam&l888the learning process of individual
actors can be divided in four phases through which knowledgéses. Cerone and Sowe$4
give their slightly different characterisation of thesepbs. We complete such a characterisation
by associating relevaiasic activities with each phase as follows:

socialise by implicitly sharing knowledge (enabled bypost);

5/21 Volume 48 (2012)

OSS Learning and Activity Patterns and their Impact on Software Quality @

observe
post

Phase 1

socialise

Phase 2 Phase 3 Phase 4
externalise combine internalise

post observe

commit use

developing < practising < under standing

Figure 1: Learning process of individual actors in OSS comities

externalise tacit knowledge by making it explicit to the community (enabled pgst, commit);

combine community explicit knowledge and organise it as abstract knowledge (enabled by
observe, use);

internalise abstract knowledge by absorbing it and combining it with own knowledge and ex-
periences to produce new tacit knowledge.

The four phases are not fully sequential but overlap in aagerheasure, as shown in Figuze
In particular, socialisation, after playing the role oftiaiing the learning process, is still active
during the other phases for which it is actually an enablawdf.

Socialisation in a virtual environment, specifically through the Intefredteady permeates our
daily life, especially through social networks, as well@®imal and formal education settings,
especially through e-Learning tools and environmeimtsrj] such as MoodleNioo] and Second
Life [Sed. In an OSS context the socialisation phase is enabled bgifspenechanisms and
tools used by OSS communities, such as discussion fora, agdeinitiated

e either by theobserve activity, that triggers a communication with an “observedinmu-
nity member;

e or by thepost activity, that triggers a reply to the posted message.

After being initiated, socialisation can continue throyggsting, also outside the OSS commu-
nity tool infrastructure, for instance through social neths.

Externalisation naturally occurs in an implicit way through socialisatiaols such as discus-
sion fora, withpost as the enabling basic activity, or in an explicit way throegmmit. Intrinsic
motivations, such as

Proc. OpenCert 2011 6/21

@ ECEASST

o feel passionate about particular areas of expertise

e enjoy self-satisfaction from sharing knowledge and skills
e have a sense of belonging to a community

are all examples of strong drivers for externalisation. rélae also a number of extrinsic moti-
vations that contribute to externalisation, which include

e solve particular technical problems/needs by exploitimguk’ Law: “given enough eye-
balls, all the bugs are shallow” (from Linus Torvalds);

e public visibility to increase reputation and peer recagnit
Combination of knowledge is incremental and consists of two main agtisit

e multiple interactions with knowledge-management toolsal as with other members of
the community to identify and extract relevant bits of egplknowledge;

e combination and organisation of such bits of explicit kneside to produce meaningful
abstract knowledge.

The interaction with knowledge-management tools is olslip®enabled by theise and ob-
serve basic activities. Organisation of explicit knowledge amdduction of meaningful abstract
knowledge are cognitive activities within the ambitlofowledge representation. Without en-
tering the realm of cognitive theories that aim to explaimikiedge representation within the
human mind, we can say that the way individuals combine expihowledge is affected by the
accessibility, structure and presentation of the contehssich knowledge and by own personal
learning attitudes.

Internalisation of knowledge is a cognitive activity that proceeds at an uscmus leveln-
conscious assimilation) and results in the acceptance of the newly produced tacivlatge.
Being an unconscious process, it is not affected by any laasigties. Internalisation is driven
by both intrinsic and extrinsic motivations. Exampledmifinsic motivations for internalisation
are:

e revel in creating something new or better;

e have a personal sense of accomplishment and contribution.
Examples oExtrinsic motivations for internalisation are:

e improve technical knowledge base;

e pass examinations;

e develop the solution to a technical problem.

7121 Volume 48 (2012)

OSS Learning and Activity Patterns and their Impact on Software Quality @

3.1 Learning Stages

We can identify three stage that characterise the evolati@ttivity patterns and maturation of
an OSS community participant.

under standing The most critical part of the learning process developsuttinoan initial but

often significantly long stage in which communication isvVigaused to capture, describe
and understand contents, while no production activitiegpparformed. That is, during this
stage the project participants mainly access project iepies and exchange emails and
post messages with the purpose of understanding contethisutv/producing any code or
reports and without performing any commits. This stage iriighvery brief and marginal
for an OSS expert who just joined a new project, but is sigaifity long and important
for a novice.

practising In this second stage the role of communication graduallyenado the proposal of
new contents, the defense of the proposed contents anditib&sier to existing contents
or contents proposed by others. At the same time, duringstage, production activity
starts as a trial and error process with a consequent lovitguralthe resultant product
and little or no immediately visible impact on project protivity. This stage is usually
significantly long and important for a novice.

developing Only during this third stage the quality level of developede and reports becomes
important and communication is mainly used to support ovaapctive contributions and
contrast them to others’ contributions.

In Figure2 contributors’learning stages are linked to the contributordasic activities identified

in Section2. The segmented curve representsrtiaguration of the contributor through the three
learning stages. For eachlearning stage the shaded area highlights whibhsic activities are
carried out during that stage, with no quantitative mearisgociated with the area size. We
claim that although during thender standing stageobserve activities are carried out, there is
no actual evolution through the learning stages (i.ematuration) until use activities are also
carried out. This is represented in Fig@réy a 0 gradient curve segment faloserve activities
during theunder standing stage. The low gradient of the curve segmentuss activities aims
to explain the fact that, although there is some form of liegrrat the individual level there
is instead no learning at all at community level. The leagnimocess described in Secti@n
only starts whersocialisation andexternalisation occur, enabled bgost activities. Initially post
activities just contribute teocialisation and only when they start to be used &sternalisation
the curve gradient considerably increases to denote a fasigress through tHearning stages.
Contributors enter thpractising stage only when they start to carry aammit activities as a
trial and error process. With practice, the quality of theuiant product gradually increases,
which results in the fastest learning progress, and finhydeveloping stage is entered.

Note that we have used a segmented curve to highlight pé@s ondearning stage to the
next as well as milestones within stages. In reality rtiauration process gradually evolves in
an almost continuous way, though milestones still occuin lbtndividual and community level.

Figure3 shows howactual activities carried out by contributors, as instantiations of theiibas
activities, are linked to theimaturation throughlearning stages.

Proc. OpenCert 2011 8/21

E

ECEASST
learning stage)
maturation
A
{
developing
practising)
////
/////
under standing jlit e
— > activity
observe use post commit
Figure 2: Learning process of individual actors in OSS comities
learning stage
A
code, selected code, to illustrate
developin docs/reports| docs/reports|new code/bugs high quality
eveloping data. and/or and commenf code/reports
tools. on code/bugg.
code, code, to propose | low quality
- docs/reports| docs/reports| new contentq code/reports
practising data. data, to criticise as
tools. exist. contentstrial and error
data, data, to capture,
. code, code, describe and
under standing docs/reports| docs/reports| understand
discussions. contents.
> activity
observe use post commit

Figure 3: Activity contents

9/21

Volume 48 (2012)

OSS Learning and Activity Patterns and their Impact on Software Quality @

It is evident that the first twdearning stages (understanding andpracticing) are the most
relevant for the understanding of the learning processesrong within the OSS community.
Since the thirdearning stage (developing) mainly involvesproduction activities, at first thought
we might think that on one hand such stage does not contributfee learning process at all,
on the other hand this is the only one among the three stagesdhtributes to productivity.
However, we have to consider that any form of productivityrts on knowledge and skills built
through learning processes and training activities. Thegein the case of OSS communities

e productivity is affected by the the learning process: itétually the final act of a very
long and complex evolution and growth in the individual amflextive knowledge and
practice;

e productivity re-enters the learning process throughetter nalisation phase and thus con-
tributes to iteratively enable the learning process.

In Section3.2 we highlight some analysis steps that are essential in gtadeting the learning
processes occurring within individuals and the knowledgevth at group and community level
and in identifyinglearning patterns. Moreover, in Sectiort we illustrate how it is possible to
extract indicators of the quality of the OSS product fronriéag patterns.

3.2 Learning Patterns

Collaboration in OSS projects is highly mediated by the asaftools, such as versioning sys-
tems, mailing lists, reporting systems, etc. These toalgesas repositories which can be data
mined to understand the identities of the individuals iwedl in a communication, the topics
of their communication, the amount of information exchah@e each direction, as well as
the amount of contribution in terms of code commits, bug fixireports and documentation
produced and email postings. This large amount of data caeleetively collected and then
analysed not only by using inferential statistics to idigrdictivity patterns but also by using on-
tology engineering formalisms that support the extractibeemantic information. In the area of
Empirical Software Engineering, cyber-archeolo@5F07T has been applied to these reposito-
ries to learn and better understand the patterns of cotitibof OSS developers in the projects
concerned$FF 06, SSS07GKS08 SCH.

In order to investigate learning processes, the data mianadysis has to be carried out on
communications and activities related to learning. In jies work data collection has involved
communications mainly in terms of participants, quantitgl aometimes topics but neglected
the objective collection of actual communication contem®{s most, content data has been col-
lected through questionnaire and surveyS(Q8h or through written student reports describing
the encountered risk®\P09, thus providing subjective rather than objective dataisTi& not
a problem when the research goal is the analysis of levet &yl quality of productive par-
ticipation in the project, since communication data is Uguategrated by objective data on
contribution in terms of commits, bug reports, bug fixing amdthe approval and inclusion of
the resultant artifacts in a software releaSER.

When the research goal is the analysis of learning pattehjsctive data have to be extracted
from communications and activities releated to learning ilentification of the learning stage of

Proc. OpenCert 2011 10/21

@ ECEASST

the OSS community member whose data is collected can belammp@lduring this preliminary
data collection from repositories of OSS projects. Textingrof communications can be used
to identify keywords and phrases that may indicate the legrmaturity level in the learning
environment.

The technology of antipattern&[IM "98] can provide an important support to both data
mining and text mining. A number of OSS communication arntaras have been identified and
made availablel[eu08 Ber, Neall antl] CSg. OSS participant communication analysis using
data mining can reveal commonly occurring problematic O@8tjzes or problematic processes
that occur during the learning process and have negativeegoiences for the development pro-
cess and/or for the learning process itself. Moreover, t@ring can reveal the communica-
tion and collaboration antipatterns that exist in OSS itsjeFurther reasoning on determining
which antipatterns exist in specific OSS projects can beegeliusing software tools that sup-
port Semantic Web technology¥gp08 SMSB11]. The knowledge representation formalism of
ontology [CRP0§ can define a common dictionary of OSS community antipatimms and can
be used as an extensible knowledge base of an intelligetgnsythat can detect antipatterns in
specific OSS projects. Ontology editors support collalharatVeb-based ontology enrichment
and editing TVNO08]. An example of this approach is the e-Learning environmelaisigned by
Settas and Ceroné&{C1]. Similar environments can be designed to provide OSS aittéim
contributors with the motivation to contribute antipatigby communicating with other contrib-
utors and by supporting discussions and voting mechaniesmantology changes. In this way
the analysis of antipatterns in general, and of the learrefated antipatterns in particular, may
be carried out by the OSS community itself, which would thetssaly contribute to the analysis
and refactored solution of its own ‘negative’ activity featts in general, and of its own ‘negative’
learning patterns in particular.

4 Descriptive Approach to Quality

The traditional approach to quality assurance is based@wodhformance torescriptive stan-
dards and strict guidelines, which are sometimes incotpdria legal prescriptions for software
certification. Moreover, standards and guideline referliéarty defined software development
methodologies and are the basis for the definition of qualigyrics to be used in the certification
process.

The lack of accurate information on how quality emerges ftbmlarge amount of loosely
organised activities of an OSS community makes it difficollapply traditional quality metrics
and certification processes to OSS products. For instahees consider McCall's production
revision quality factors§jIRW77], can we claim that an OSS product lackaintainability be-
cause there are no defined coding standards and guidelimdgdio programming has adhered?
The philosophy of freedom and absence of hierarchical @gtan typical of OSS communities
results in collaborative production environments in whicére is no space fqrescriptive stan-
dards and strict guidelines. Communication and collamras well as individual preferences,
skills and intrinsic and extrinsic motivations are the driavof such production environments and
naturally determine the evolution of programming pradtieéthin teams of contributors and
across the OSS community, even beyond a specific OSS prbjexich a context, descriptive

11/21 Volume 48 (2012)

OSS Learning and Activity Patterns and their Impact on Software Quality @

approach that analyses the OSS community of practise aadtitdties is likely to define better
indicators of the quality of the software product thaprescriptive approach that tries to check
whether these activities follow prescribed standards andegjnes.

This distinction betweeprescriptive anddescriptive approach can in general refer to the cor-
rectness and quality evaluation of artifacts that are thelr@f evolving community processes.
For example, language emergence and evolution is a naturahanity process whose artifacts
are speeches and written texts. The early approach to $itigainalysis was based on thes-
scriptive tradition: the correctness and quality of a speech or writttxt are evaluated in terms
of its conformance to strict rules defined by grammarians.17161, Joseph Priestley, in his
Rudiments of English Grammar, proposed an alternative view by claiming that “the custdm o
speaking is the original and only just standard of any lagguaThis started theescriptive ap-
proach to linguistic analysis, which, in David Crystal'snds “is concerned less with 'standards’
than with thefacts of linguistic usage” Cry97.

If we transfer Priestley’s claim to the OSS world we can say th

the custom of OSS individual and community activities, té@g and patterns is the
original and only just standard of any OSS project.

And a paraphrase of Crystal’'s words for the OSS world could be

the descriptive approach is concerned less with standards than witfatheof OSS
peer-review and peer-production.

In Section3.2 we have seen that cyber-archeolo@SE0T has been applied to OSS repos-
itories to learn and better understand the patterns of camwation and contribution of OSS
developers $FF 06, SSS07 GKS08 SCH. The findings in these studies have promoted the
conjecture that patterns of communication and contrilbutiave implications for the quality of
code of the OSS product. When a large number of developezsaiise and discuss their coding
activities with other community members in mailing listse thigh magnitude of the community
engagement may enable developers to improve the quality of their codebdo more refactor-
ing and learn about how the quality of the produced code mampeved [SCH. Moreover, the
engagement of an individual in the community can be reladetthriee notions of quality iden-
tified by Shaikh and Cerones[Cd: quality by access, quality by development and quality by
design. Every activity of an individual can be classified @eman appropriate category of quality
and marked to contribute to the final software product aéoghd [CFS13. Bug reporting, test-
ing and reviews enhance quality by development, the medidamat used to externalise such
contributions affect quality by access, whereas evidefigtanning and design, and validation
of software code contribute to quality by design.

The number of commits describes how much the individualvdediin terms of product and
is therefore an indicator of the individuafsoductivity. Although there is no guarantee on the
quality of the product delivered, number of commits can besaered by itself an important
parameter in evaluating the quality of the individual as atibutor. Moreover, in the analysis
of level, type and quality of productive participation iretproject, the mere number of commits
can be integrated by other data related to the object of admnesl commit activity. Such related
data can be extracted from communications as well as othramitactivities and processed

Proc. OpenCert 2011 12/21

@ ECEASST

using text mining and ontology engineering techniques. hia Wwider context, productivity is
intended in terms of community activities rather than iidlials’ contribution. More precisely,
data mining may identify clusters of interrelated commit @ost activities that refer to a specific
artifact, whose development is likely to involve severattecibbutors; in addition, text mining of
the post activities can provide information on the qualityhe considered artifact.

Evidence suggest®RHS04 that reputation serves as a major source of motivation for devel-
opers to participate in a community. Moreover, reputatioitds on a history of participation in
OSS projects that have successfully delivered high qusdifiivare products. It is therefore per-
ceived as a warranty for quality. Communications among megmbf an OSS community can
be analysed to extract information about the reputatioh dhandividual has achieved within
the community. Text mining of communications can be usedi¢mtify keywords and phrases
that may indicate whether an individual is asking or pravigsupport and whether an answer or
suggestion is taken on board or refuted by others.

Cerone, Fong and ShaikFS17 considerengagement, productivity andreputation as key
factors to evaluate the quality of an individual’s conttiba to an OSS project.

We have also seen in Secti@ril that the learning stages of OSS community members affect
the kind of activities carried out and have an impact on traityuof the artifacts they produce.
For instance the code committed by a contributor inghactising stage has on average a lower
quality than the code committed by a contributor indegel oping stage. Therefore, the learning
stage can be seen as a weight to associate with productivityei evaluation of the quality of
individuals’ contribution and community activities. Maneer, learning stages of individuals
belonging to a team or to a project community affect collakion patterns and have an impact
on the collaboration effectiveness, that is, the qualityalfaboration within the community. For
example, individuals in thender standing stage are not expected to contribute to team decisions
and commit activities, whereas individuals in the/eloping stage are expected to contribute at
least to commit activities and possibly to team decisia®s$13. We can, therefore, consider
learning as a fourth key factor to evaluate the quality of an individueontribution to an OSS
project.

Our descriptive approach to quality is summarised in Figur€he flow on top of the Figure
describes the extraction of data from OSS Project Rep@sstotheir processing using a range
of Analysis Technologies to characterise patterns thairdesOSS Community Activities, then
quantified through metrics for Quality. Typical data to balgsed includes: communications,
commits, code, reports as well as organisational stru@nceprocesses. Data extracted from
repositories are processed using data mining and text ghamd applying categories of quality,
collaboration models, trust models and ontology engingeo identify patterns for engagement,
productivity, learning and reputation, as well as posi{jgffective) collaboration patterns and
negative patterns (antipatterns) at the community level.

Quality of individuals' contribution can be characterised by defining separate metrics for en-
gagement, productivity, learning and reputation of indlidls CFS13. However, how to com-
bine such metrics into a global metric that could quantify ¢fuality of an individuals contri-
bution to a specific OSS project is still unclear. Anotherliemge is represented by possible
interrelations between the four metrics; for instance, aremote that the level of engagement of
an individual within a project is visible to the entire prajgommunity and, therefore, implicitly
affects that individual’s reputation. We have also pointeti that learning affects productivity:

13/21 Volume 48 (2012)

OSS Learning and Activity Patterns and their Impact on Software Quality @

OSS Project Analysis 0SS Community Qualit
Repositories data Technology patterns Activities metrics y

i i i i

categories of
. . engagement ——
quality
T .+ productivity quality of
—— data minin individuals
communications — learning-— contribution
commits [text mmmlg —— reputation
code . .)
collaboration collaboration quality of
i N collaboration
reports & trusts models effectiveness
quality of
organisation . community
ontology community learning and
engineering antipatterns devel opment
processes and
organisation

Figure 4: Descriptive approach for OSS quality analysis

a learning stage can be seen as a weight to associate withgtikaty in defining a metric for
the quality of individuals’ contribution@FS12. These two interrelations are described by ar-
rows in Figure4. Finally, although this is not captured by the diagram inufégd, there are
other social parameters that affect reputatid@ C12), demonstrating how reputation obeys the
laws of cumulative advantage (through higher likelihoo@thfacting good reputation given past
reputation) and homophily (providing advantage througirath affiliations in terms of common
OSS projects)CFS13.

Quality of collaboration can be defined by applying metrics to patterns identifiedgusitiab-
oration and trust models to descritzgllaboration effectiveness. These models have to be instan-
tiated using content information extracted from commutiicathrough text mining carried out
with the support of appropriate ontologies aiming to idgnpiatterns, progress, evolution and
achievements in the collaboration process occurring wigmbups of participants. Moreover,
online trust may be inferred via a hierarchical metrics nhedgch consists of explicit trust by
relation, and implicit trust by reputatiorCFdd. Therefore, reputation, in the form of implicit
trust, is incorporated within trust models. Finally, theotway relation between learning and
collaboration effectiveness shown in Figdraighlights what we have already observed:

¢ that learning stages of individuals belonging to a team @ pooject have impact on the

Proc. OpenCert 2011 14 /21

@ ECEASST

collaboration effectiveness (as mentioned earlier inghigion);

e that learning in OSS communities is essentially a collai@grocess (it is actually a
sub-process of the interaction process illustrated ini@e2).

Quality of community processes (such adearning anddevelopment) andorganisation can be
characterised by identifying communication, learning antlaboration antipatterns occurring
in OSS communities. In this sense Cerone and Sefi&g] [propose a framework to provide a
measure that quantifies the negative effect of such ardipation quality. Note that the analy-
sis we propose here considemsnmunity antipatterns rather than individual-based antipatterns;
thus learning antipatterns contribute to measure col&ther learning — hence collaboration
effectiveness, rather than individual learning. Thereftinere is an arrow in Figueefrom com-
munity antipatterns to collaboration effectiveness, eré¢ is no connection between learning
and community antipatterns.

5 Conclusion and Future Directions

The descriptive approach to quality presented in Sectishows that learning is a key factor
to evaluate not only the quality of an individual’s conttiloun but also the quality of commu-
nity activities. The two-way arrow between learning andatmbration effectiveness in Figute
shows that individual learning affects collaboration efifieeness through the learning stages of
the collaborating participants and that, in the other diioes, individuals actually learn through
collaborative efforts. Thus, we can claim that, on one hagaining affects quality, since col-
laboration effectiveness is an indicator of quality (cdeation quality), and, on the other hand,
quality affects learning.

Our descriptive approach to quality aims to “deduce” thdiguaf the OSS product from the
quality of the production process and its enabling comptmendividual engagement, produc-
tivity, learning and reputation, as well as collaboratidie&iveness and solution of community
antipatterns. Therefore, our approach leads to a measute afuality of the process rather
than the quality of the product: only the former is measurégneas the latter is deduced. Al-
though this notion of quality ipotential rather tharassured, it is warranted by the popularity
and widespread use of many OSS products and is supportect lmpthplex and multifaceted
“open-source paradigm”, which actually “has significantgmbial that is much more difficult to
attain in closed-source proprietary systemse{i0g. This “potential of being better” is exactly
what our approach aims to measure.

After having deeply investigated the impact of learning oalify, we would like to spend a
few words to illustrate how the quality of the production gess could be exploited to improve
learning. We have already seen in Sectibthat the artifacts that result from the contribution
sub-process feed a new iteration of the interaction prod¢less also driving the next step of the
learning sub-process. We also agree that OSS projectdpravineaningful alternative learning
context to expose students to real-world software devedopractivities 5SD0§. The proposal
to use OSS projects as e-Learning tools by injecting stedatt OSS communities]SH can
be see in this perspective. Moreover, such proposal hasothatal to offer great advantages to
OSS communities themselves:

15/21 Volume 48 (2012)

OSS Learning and Activity Patterns and their Impact on Software Quality @

e expose the community to innovative technologies broughyipostgraduate students who
work at the edge between academic research and industvielogenent with a constant
look at the future of software engineering;

e integrate tools to support students and educational dsgsctwhich is likely to lead to
improvements in tool usability and acceptance by the conityon effective social pro-
tocols, with a positive impact on collaboration and on thiemalisation and combination
phases of the learning process;

e adopt new e-Learning technology that can benefit the entimenunity;
e produce more documentation as part of student tasks or avaent assignments;

e expand the OSS community with new categories of actors éweiith new roles) who, for
instance, reverse engineering code into formal models)eefhd extend formal models,
verify formal models, certify code and community activtigS04g.

Finally, we would like to conclude with the hope (and conficenthat introduction of new e-
Learning technologies, injection of students as contoitsjtgradual acceptance and practise of
innovative technologies will all have a strong impact on @88 munities by increasing their
learning capability and their connection with the reseanott development world.

Acknowledgements. Several colleagues and friends have contributed througfusgsions and
research collaborations to the development of the ideaepted in this paper: Luis S. Barbosa,
Gabriella Dodero, Sara Fernandes, Simon Fong, DonateticBe Francesca Pozzi, Barbara
Russo, Dimitrios Settas, Siraj A. Shaikh and Sulayman K.&ow

This work has been supported by Macao Science and Techn@legglopment Fund, File
No. 019/2011/A1, in the context of the PPAeL project.

Bibliography

[ant11] Community Management Wiki. 2011.
http://communitymgt.wikia.com/wiki/Category:Anti-fiarns

[APQ9] T. Ahtee, T. Poranen. Risks in Students’ Softwarejd@ts. Inin Proceedings of
the 22nd Conference on Software Engineering Education and Training (CSEET).
Pp. 154-157. IEEE Computer Society, 2009.

[Ben02] Y. Benkler. Coase’s Penguin, or, Linux and The Naifrthe Firm.The Yale Law
Journal 212:369-446, 2002.
http://www.yalelawjournal.org/images/pdfs/354.pdf

[Ber] J. Berkus. How to destroy your community.
http://lwn.net/Articles/370157/

Proc. OpenCert 2011 16/21

http://communitymgt.wikia.com/wiki/Category:Anti-patterns
http://www.yalelawjournal.org/images/pdfs/354.pdf
http://lwn.net/Articles/370157/

E

ECEASST

[BGD*06]

[BMM 98]

[Bro75]

[CFda]

[CFS12]

[Cov]

[Covll]

[CRPOB]

[Cry97]

[CSa]

[CSh]

[CS08]

[DBO5]

C. Bird, A. Gourley, P. Devanbu, M. Gertz, A. Swaminathitining email social
networks. INMSR ’06: Proceedings of the 2006 international workshop on Mining
software repositories. Pp. 137-143. ACM Press, New York, NY, USA, 2006.

W. J. Brown, R. C. Malveau, H. W. S. McCormick, T. J. Mowjgrd. Hudson
(eds.).AntiPatterns. Refactoring Software, Architectures, and Projects in Crisis.
John Wiley, 1998.

F. Brooks.The Mythical Man-Month. Essays on Software Engineering. Addison-
Welsey Publishing, 1975.

W. Chen, S. Fong. Social Network Collaborative Fittg Framework and Online
Trust Factors: a Case Study on FacebookTHa 5th International Conference on
Digital Information Management (ICDIM 2010). Pp. 266—273. July 2010, Thunder
Bay, Canada.

A. Cerone, S. Fong, S. A. Shaikh. Analysis of Collation Effectiveness and Indi-
viduals’ Contribution in FLOSS Communities. FProceedings of OpenCert 2011.
Volume 48 of Electronic Communications of the EASST. 2012.

Coverity Scan.
http://scan.coverity.com/about.html

Coverity. Open Source Reports. 2008—-2011.
http://www.coverity.com/resource-library

C. Calero, F. Ruiz, M. PiattinDntologies for Software Engineering and Software
Technology. Springer, 2006.

D. Crystal. The Cambridge Encyclopedia of Language. Cambridge University
Press, 1997.

A. Cerone, D. Settas. Using Antipatterns to Improwe@uality of FLOSS Devel-
opment. InProceedings of OpenCert 2011. Volume 48 of Electronic Communica-
tions of the EASST, 2012.

A. Cerone, S. K. Sowe. Using Free/Libre Open Sourcéwsoé Projects as E-
Learning Tools. InProceedings of OpenCert 2010. Volume 33 of Electronic Com-
munications of the EASST, 2010.

A. Cerone, S. A. Shaikh. Incorporating Formal Methadthe Open Source Soft-
ware Development Process. Pnoceedings of the OpenCert and FLOSS-FM 2008
joint Workshop. UNU-IIST Research Report 398, pp. 26—34. 2008.

T. T. Dinh-Trong, J. M. Bieman. The FreeBSD Project: Replication Case
Study of Open Source DevelopmeHEEE Transactions on Software Engineering
31(6):481-494, 2005.

17721

Volume 48 (2012)

http://scan.coverity.com/about.html
http://www.coverity.com/resource-library

OSS Learning and Activity Patterns and their Impact on Software Quality @

[DBO7]

[Fut06]

[GKS08]

[HS02]

[HZC12]

[Imm]

[JG06]

[Kuk06]

[Leu08]

[McC99]

[MFHO2]

[MGS08]

[MGS09]

J. M. Dalle, M. den Besten. Different Bug Fixing Regig? A Preliminary Case for
Superbugs. In Feller et al. (edsQpen Source Development, Adoption and Inno-
vation. IFIP International Federation for Information Procegs34, pp. 247-252.
Springer, September 7-10 2007.

Futurelab. The potential of open source approafdresducation. Opening Educa-
tion Report. Published online, 2006.
http://www.futurelab.org.uk/resources/

G. Gousios, E. Kalliamvakou, D. Spinellis. Measgrideveloper contribution from
software repository data. MSR’08: Proceedings of the 2008 International Work-
shop on Mining Software Repositories. Pp. 129-132. ACM, 2008.

T. J. Halloran, W. L. Scherlis. High Quality and Opeou&e Software Practices.
In 2nd Workshop on Open Source Software Engineering. May 2002.

D. Hu, J. L. Zhao, J. Cheng. Reputation managemeahinpen source developer
social networkDecision Qupport Systems 53(3):526-1058, Jun 2012.

Immersive Education.
http://immersiveeducation.org/

G. R. Juan Jose Amor, J. M. Gonzalez-Barahona. Digtaiting Development Ac-
tivities in Versioning Systems: A Case StudyRroceedings PROMISE 2006: 2nd.
International Workshop on Predictor Models in Software Engineering co-located at
the 22th International Conference on Software Maintenance (Philadelphia, Pennsil-
vanya, USA). 2006.

G. Kuk. Strategic Interaction and Knowledge Shgrin the KDE Developer Mail-
ing List. Management Science 52, 2006.

T. Leung. Open Source Community AntipatternsOlReilly OSCON Open Source
Convention. 2008.

S. McConnell. Open Source Methodology: Ready fomerTime?IEEE Software
16(4):6-8, Jul/Aug 1999. IEEE Computer Society.

A. Mockus, R. Fielding, J. Herbsleb. Two case stsdi open source software
development: Apache and Mozilldransactions on Software Engineering and
Methodology 11(3):1-38, 2002.

A. Meiszner, R. Glott, S. K. Sowe. Free/Libre Operu®e Software (FLOSS)
Communities as an Example of successful Open Participdteayning Ecosys-
tems. The European Journal for the Informatics Professional, UPGRADE
IX(3):62-68, 2008.

A. Meiszner, R. Glott, S. K. Sowe. Preparing the NeGeneration: Lessons learnt
from Free/Libre Open Source Software — Why free and open a&ganditions

Proc. OpenCert 2011 18/21

http://www.futurelab.org.uk/resources/
http://immersiveeducation.org/

E

ECEASST

[MHPO5]

[Mic05]

[Moo]

[MRW77]

[Neall]

[Neu05]

[Ray99]
[RGO6]

[RGCHO9]

[RHS06]

[SAS06]

[SCa]

and not options for higher education! Proceedings of the 4th International
Barcelona Conference on Higher Education. Volume 2. Knowledge technologies
for social transformation. Barcelona, Spain, 15-19 July20

M. Michlmayr, F. Hunt, D. Probert. Quality Pract&cand Problems in Free Soft-
ware Projects. In Scotto and Succi (ed®)oceedings of the First International
Conference on Open Source Systems. Pp. 24-28. Genova, Italy, 2005.

M. Michlmayr. Quality Improvement in Volunteer FeeSoftware Projects: Explor-
ing the Impact of Release Management. In Scotto and Sucsi)(&doceedings of
the First International Conference on Open Source Systems. Pp. 309-310. Genova,
Italy, 2005.

Moodle.
http://moodle.org/

J. A. McCall, P. K. Richards, G. F. Walters. FactarsSoftware Quality. Volume 1.
Concepts and Definitions of Software Quality. 1977.
http://iwww.dtic.mil/dtic/tr/fulltext/u2/a049014.pdf

D. Neary. Community Antipatterns. Finee and Open Source Software Developers
European Meeting. 2011.

P. Neumann. Attaining Robust Open Source Softwar€eller et al. (eds.)Per-
spectives on Free and Open Source Software. Chapter 7, pp. 123-126. MIT Press,
2005.

E. S. Raymondrhe cathedral and the bazaar. O’Reilly, 1999.

G. Robles, J. Gonzalez-Barahona. Contributor Tegnn Libre Software Projects.
In Damiani et al. (eds.)FIP International Federation for Information Processing,
Open Source Systems. Volume 203, pp. 273-286. Springer, 2006.

G. Robles, J. Gonzalez-Barahona, D. Cortazarelrdiz. Tools for the study of the
usual data sources found in libre software projeliternational Journal of Open
Source Software and Processes 1(1):24-45, Jan-Mar 2009.

J. Roberts, I. Hann, S. Slaughter. Understandimgntiotivations, participation,
and performance of open source software developers: atlmliggl study of the
Apache projectsManagement Science 52(7):984—-999, 2006.

S. K. Sowe, L. Angelis, |. Stamelos. Identifying Kvedge Brokers that Yield
Software Engineering Knowledge in OSS Projebtformation and Software Tech-
nology 48:1025-1033, 2006.

S. A. Shaikh, A. Cerone. Towards a metric for Open So@wcftware Quality. In
Proceedings of OpenCert 2009. Volume 20 of Electronic Communications of the
EASST, 2009.

19/21

Volume 48 (2012)

http://moodle.org/
http://www.dtic.mil/dtic/tr/fulltext/u2/a049014.pdf

OSS Learning and Activity Patterns and their Impact on Software Quality @

[SCh]

[SC11]

[Sch00]

[Sec]

[SFF+06]

[SMSB11]

[SS08a]

[SS08b]

[SSA0S]

[SSDO6]

[SSS07]

[SSSAO08]

S. K. Sowe, A. Cerone. Integrating Data from Multiplef®sitories to Analyze Pat-
terns of Contribution in FOSS Projects. Pnoceedings of OpenCert 2010. Volume
33 of Electronic Communications of the EASST, 2010.

D. Settas, A. Cerone. An Ontology Based E-Learningt&3y Using Antipatterns.
In Proceedings of ICWL 2011. Lecture Notes in Computer Science 7048, pp. 243—
252. Springer, 2011.

F. B. Schneider. Open Source in Security: VistirgBlzarre. In2000 |EEE Sym-
posium on Security and Privacy. May 14-17, 2000, Berkley, California, USA,
pp. 126-127. IEEE Computer Society, 2000.

Seconf Life.
http://secondlife.com/

W. Scacchi, J. Feller, B. Fitzgerald, S. A. Hissam, K. haki. Understanding
Free/Open Source Software Development ProceSséisvare Process. |Improve-
ment and Practice 11(2):95-105, 2006.

D. L. Settas, G. Meditskos, I. G. Stamelos, N. Bastts. SPARSE: A Symptom-
based Antipattern Retrieval Knowledge-based System Usargantic Web Tech-
nologies.Expert Systems with Applications 38(6), June 2011.

S. K. Sowe, |. Stamelos. Reflection on Knowledge iBfpan F/OSS Projects. In
Open Source Development, Communities and Quality. IFIP International Federa-
tion for Information Processing 275, pp. 351-358. 2008.

S. K. Sowe, I. G. Stamelos. Involving Software Ergiting Students in Open
Source Software Projects: Experiences from a Pilot Stlmlynal of Information
Systems Education (JISE) 18(4):425-435, 2008.

S. K. Sowe, |. Stamelos, L. Angelis. UnderstandingpWledge Sharing Activities
in Free/Open Source Software Projects: An Empirical Stddyrnal of Systems
and Software 81(3):431-446., 2008.

S. K. Sowe, I. Stamelos, I. Deligiannis. A Frameworkreaching Software Testing
using F/OSS Methodology. IRroceedings of the 2nd International Conference on
Open Source Systems (0SS2006). Como, Italy, 8—10 June 2006.

S. K. Sowe, |. G. Stamelos, |. M. Samoladas (els@rging Free and Open Source
Software Practices. |G| Global, 2007.

S. K. Sowe, |. Samoladas, I. Stamelos, L. Angelis. ALOSS developers commit-
ting to CVS/SVN as much as they are talking in mailing listdtallenges for Inte-
grating data from Multiple Repositories. Bid International Workshop on Public
Data about Software Development (WoPDaSD). September 7th - 10th 2008, Milan,
Italy. 2008.

Proc. OpenCert 2011 20/21

http://secondlife.com/

E

ECEASST

[Tap08]

[Tuo05]

[TVNOS]

[ZEOO]

[ZPZ07]

J. Tappolet. Semantics-aware Software Projeco&tpwies. Inln Proceedings of
the European Semantic Web Conference, Ph.D. Symposium. Pp. 78-82. June 2008.

I. Tuomi. The future of open source: Trends and pectp In Wynants and Cornelis
(eds.),How open is the future? Economic, social and cultural scenarios inspired
by free and open source software. Pp. 429-459. Vrjie Universiteit Press, 2005.

T. Tudorache, J. Vendetti, F. N. Noy. Web-Proteget.ightweight OWL Ontology
Editor for the Web. Inin Proceedings of the fourth Workshop in the The OWL:
Experiences and Direction (OWLED). 2008.

L. Zhao, S. Elbaum. A survey on quality related atiidg in open sourceACM
S GSOFT Software Engineering Notes 25(3):53-57, May 2000. ACM Press New
York, NY, USA.

T. Zimmermann, R. Premraj, A. Zeller. Predictingf@as for Eclipse. IPROMISE
'07: Proceedings of the Third International Workshop on Predictor Models in Soft-
ware Engineering. P. 9. IEEE Computer Society, Washington, DC, USA, 2007.

21/21

Volume 48 (2012)

	Introduction
	Contributors' Roles and Activities
	Learning Process
	Learning Stages
	Learning Patterns

	Descriptive Approach to Quality
	Conclusion and Future Directions

