
Electronic Communications of the EASST
Volume 48 (2012)

Proceedings of the
Fifth International Workshop on on Foundations

and Techniques for Open Source Software Certification
(OpenCert 2011)

Learning and Activity Patterns in OSS Communities and theirImpact on
Software Quality

Antonio Cerone

21 pages

Guest Editors: Luı́s Soares Barbosa, Dimitrios Settas
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Learning and Activity Patterns in OSS Communities and their
Impact on Software Quality

Antonio Cerone1

1 antonio@iist.unu.edu,
UNU-IIST — International Institute for Software Technology

United Nations University, Macau SAR China

Abstract: This paper presents a framework to identify and analyse learning and
activity patterns that characterise participation and collaboration of individuals in
Open Source Software (OSS) communities. It first describes how participants’ ac-
tivities enable and drive a learning process that occurs in individual participants as
well as in the OSS project community as a whole. It then explores how to identify
and analyse learning patterns at both individual level and community level. The ob-
jective of such analysis is to determine the impact of these patterns on the quality of
the OSS product and define a descriptive approach to quality that is concerned less
with standards than with the facts of OSS peer-review and peer-production.

Keywords: Open Source Software, activity patterns, learning patterns, software
quality.

1 Introduction

Open Source Software (OSS) communities have been representing during the last decades an
interesting phenemenon of collaborative work leading to the successful delivery of high-quality
software products. Popular OSS products range from operating systems, such as Linux, Ubuntu
and BSD distributions, to network services, such as Apache,high-end applications, such as
MySQL, and Learning Management Systems (LMS), such as Moodle. Popularity and widespread
use of such products arede facto indicators of their high quality.

Although the high-quality of such OSS products has been accepted as a fact and is confirmed
by their widespread use not only in the academic world but also in the industrial world and in
public administration, it is still largely unclear how suchhigh-quality emerges from the “bazaar-
style” activities of an OSS community. Recently several studies have analysed activities, prac-
tices and collaboration processes that occur within OSS communities and projects, as well as the
quality of OSS products, in the attempt to identify relevantfactors that foster the emergence of
high quality in product releases.

Halloran and Scherlis [HS02] review a number of notable quality practices on some popular
OSS projects, of which good project communication and management is highlighted. Coverity
has been analysing the quality of Open Source Software since2006, using Coverity Scan, a tool
for automated static analysis of source code [Cov]. Coverity reports emphasise the high-quality
of OSS products, comparable with if not better than closed-source proprietary software, and ex-
press the expectation that as open source continues to mature, more and more projects will begin

1 / 21 Volume 48 (2012)

mailto:antonio@iist.unu.edu


OSS Learning and Activity Patterns and their Impact on Software Quality

to adopt stronger quality practices [Cov11]. According to Newman, OSS “has the potential of
being better [than closed-source proprietary software] ifits development process addresses many
factors that are not normally experienced in mass-market proprietary software” [Neu05]. Zhao
and Elbaum [ZE00] undertake a small survey to examine the factors underlyingquality assurance
methods of open source developers. Their work characterises the general attitude and practices
of the open source community towards quality, realising that quality assurance practices are
somewhat different to those prevalent in traditional software development. McConnell [McC99]
emphasises the need for a comprehensive methodology for open source development. This is a
fundamental need for OSS products to be used as safety-critical or security components of high
quality complex software systems. In fact, Schneider [Sch00] finds that Open Source Software
still falls short of requirements for security systems. Moreover, the lack of central management
in OSS projects [MHP05, Mic05] makes it difficult to define a standard that could suggest in-
dicators of the technical rigour used by a distributed community of volunteers and identify the
human processes involved in the project.

OSS communities are heterogeneous groups of volunteers that are loosely organised in a
“democratic” fashion based on the principles of freedom andequality of participants. How-
ever, this does not mean that OSS communities are disorganised entities. In fact, they develop
a natural form of self-organisation in which participants play distinct roles, have various forms
of engagement, develop different levels of knowledge, produce a range of contributions and are
driven by a large variety of intrinsic and extrinsic motivations. Roles, engagement, knowledge,
contribution and personal motivations build up reputationand support the emergence of driving
personalities and forms of leadership. In addition to this implicit bottom-up organisational char-
acteristics, which naturally emerge within the community,some forms of top-down organisation
may be explicitly superimposed by the project initiator, who can be an individual, a team, a
consortium, an organisation, or even a private company.

Collaboration among peers is the productive engine of the OSS community and determine the
typical OSS development model, which has potential benefitsthat include “the ability to more
easily carry out open peer reviews, add new functionality either locally or to the mainline prod-
ucts, identify flaws, and fix them rapidly — for example, through collaborative efforts involving
people irrespective of their geographical locations and corporate allegiances” [Neu05]. Addi-
tional testimonials about the impact that peer-review has on the product of OSS development are
given by Raymond, who claims that “The high level of quality of free software is partly due to the
high degree of peer review and user involvement” [Ray99], and McConnell, who acknowledges
the efficiency of extensive field testing and peer review in open source development [McC99].

OSS projects can also be considered as learning and development environments in which het-
erogeneous communities get together to exchange knowledgethrough discussion and put it into
practice through actual contributions to software development, revision and testing [CSb]. OSS
communities are open participatory ecosystems in which actors create not only source code but
a large variety of resources that include the implicit and explicit definitions of learning processes
and the establishment and maintenance of communication andsupport systems.

The rest of this paper is organised as follows. Section2 introduces typical roles of participants
to OSS projects, describes their high-level activities andbreaks them down into four basic ac-
tivities. Section3 describes the learning process of individual actors of an OSS community as
the result of communication and development activities. Section3.1identifies the learning stages

Proc. OpenCert 2011 2 / 21



ECEASST

that characterise OSS ecosystems and relates them to participants’ activities. Section3.2reviews
the literature concerning the identification and analysis of learning patterns. Section4 presents
a descriptive approach to quality based on the identification of learning and activity patterns in
data collected from OSS project repositories and the analysis of their impact on the quality of
the OSS product.

2 Contributors’ Roles and Activities

Paricipants in OSS projects may play a large varieties of roles, have various levels of engage-
ments, both within the project and the community, and contribute to the project development in
different respects. Typical participants’ roles are

observer who plays a passive role in which there is neither interaction with the community nor
production of artifacts;

supporting user who often plays a very active role in providing feedback, helping new users,
recommending the project to others, requesting new features, but does not produce arti-
facts;

developer who actively writes and updates software, documentation and/or creates artwork;

tester who actively performs testing and reports and possibly fixesbugs;

translator who translates software and/or documentation into anotherlanguage.

Theobserver performs a large range of activities including: accessing and reading reports, doc-
umentation and tool manuals, possibly using the tools, looking at data in the repositories, reading
posted message without posting or replying, looking at the code and possibly running it. How-
ever, this role ispassive in terms of interaction with the community, although it may characterise
an active but non-supporting user (the usage actually occurs outside the community, with no
impact on the community or the project). It is therefore a role with neithersupporting nor pro-
ductive finality, but involving two kinds ofbasic activities: observe anduse. Here the finality of
the participant is actuallylearning, which is usually the main goal during the first stage of the
participation of a contributor in a project. We will deeply investigate this aspect in Section3.1.

The other roles are allactive. A supporting user not only uses tools and code but also provides
feedback to the community as well as support to new users, and/or requests new features. These
kinds of services to the communities are provided through another basic activity, post, which
consists in making available to the community messages containing questions, requests, advices
and/or critics. This typically occurs in discussion fora.

The last three roles are not onlyactive but alsoproductive. Produced artifacts are software,
documentation, artwork (by adeveloper), bug reports, fixed code (by atester), translated soft-
ware, translated documentation (by atranslator). Productive activities are enabled by a fourth
basic activity, commit, which is the process of adding an artifact to a project repository and make
it part of the project product, to be potentially deployed with the next release. Commit may be
direct, if the contributor has commit right, or may occur through an approval process mediated
by a leader or leading team.

3 / 21 Volume 48 (2012)



OSS Learning and Activity Patterns and their Impact on Software Quality

To summarise, the fourbasic activities that enable all contributors’ activities are:

observe reports, documentation, tool manuals, data, posts, code;

use code, tools;

post questions, requests, advices, critics;

commit software, documentation, artwork, bug reports, fixed code,translations.

However, the way these four basic activities are combined and result in the activity pattern of a
contributor depends on multiple factors, including intrinsic and extrinsic motivations, maturity
levels, technical and social skills. This yields a large heterogeneity of activity patterns at both
individual level and community level.

The development of apost into an exchange of messages is the engine of discussion foraand
enables theinteraction process that occurs within the OSS community. Such interaction process
has two components:

learning sub-process in which the exchange of knowledge between individual and community
results in the growth of knowledge at both the individual level and the team or community
level;

contribution sub-process in which a contribution in terms of commit of code, bug report, etc.
is the result of an exchange of communications.

The learning component of the interaction process is essentially a collaborative learning pro-
cess, in which knowledge is built through social constructivism and is part of a more complex
learning process that will be detailed in Section3. The contribution component of the interaction
process can be seen as apeer-production process, in which the creative energy of large num-
bers of individuals is remotely coordinated, usually through the Internet, into large, meaningful
projects mostly without traditional hierarchical organisation [Ben02]. Therefore, contribution,
which is based oncommit, is the result of communication, which is based onpost, individual
learning, which is based onobserve anduse, and collaborative learning, which is based onpost.
Furthermore, the interaction process is cyclic on its two components, in the sense that both the
knowledge that results from the learning sub-process and the artifacts that result from the con-
tribution sub-process feed a new iteration of the interaction process. This cyclic nature of the
interaction process is the basis of the individual-team interplay that occur in OSS communities
[CFS12]. Finally, we can say that also the learning process, and as aresult the entire interaction
process, can be seen as an instantiation of the peer-production model [Fut06].

Recent research on contributors’ activity patterns has been carried out by utilising data from
a single repository to analyse code contribution of developers [RG06, GKS08], trends and in-
equality in posting and replying activities in Apache and Mozilla [MFH02], KDE [Kuk06], De-
bian [SSA08], and FreeBSD [DB05]. Data on communications (post) from mailing lists [SSA08]
and development activities (commit) are extracted from revision control systems such as CVS
(Concurrent Versions System) and SVN (Apache SubVersioN),which are part of the Source
Configuration Management (SCM) used to coordinate the coding activities of software devel-
opers and manage software builds and releases. A number of tools [JG06, RGCH09, SSSA08]

Proc. OpenCert 2011 4 / 21



ECEASST

can be used to retrieve data from SCM sytems using tools that store committers’ attributes into
various tables and extract [SSSA08] one or more mailing list archives of a particular project.

Data are then analysed to identify posters and committers and, after appropriate data cleaning
[SCb] and alias unmasking [BGD+06, SSA08], descriptive statistics is used to show developers
posting and committing activities and patterns [SAS06, SCb] as well as activity patterns recurring
in various OSS projects. Many of these studies highlight theessence of communication as a
means to foster long term success of software projects [Bro75]. Although a strong linkage exists
between the information in OSS repositories (e.g. bug reports and source code repositories
[DB07, ZPZ07]) and SVN and mailing lists [SCb]), few researchers strive to understand how
contributions vary across repositories. In the next sections we attempt a deeper investigation of
such linkage to better understand

1. how communication and development enable a naturallearning process (Section3);

2. how the linkage between learning process and basic activities drives evolution of activity
patterns and maturation at individual level as well as at community level (Section3.1);

3. how activity patterns can be analysed to identify the presence oflearning patterns (Sec-
tion 3.2);

4. how evolution and maturation of the activity patterns foster theproductive process and
what their impact on software quality is (Section4).

3 Learning Process

Freedom and equality of participants constitute a “democratic” basis for analysing OSS commu-
nities ascommunities of practice. Novices are always welcome by OSS communities, in which
they undergo through a gradual process of social integration and skill development that allows
them to earn a reputation as reliable developers and then move towards the leading positions
in the community [Tuo05]. OSS communities are in this sense open participatory ecosystems
[MGS08, MGS09], in which actors produce not only source code but a large variety of resources
that include the implicit and explicit definitions of learning processes and the establishment and
maintenance of communication and support systems. Furthermore these resources are made
visible and available to other actors. Therefore development (source code), support (tools) and
learning (knowledge) emerge as the product of a continuous socialisation process in a virtual
environment.

Development of source code is enabled by building up knowledge about already produced
code, through direct observation, review, modification as well as discussion with other actors, and
about support tools, through direct interaction as well as access to documentation and discussion
with other actors. As suggested by Sowe and Stamelos [SS08a] the learning process of individual
actors can be divided in four phases through which knowledgeevolves. Cerone and Sowe [CSb]
give their slightly different characterisation of these phases. We complete such a characterisation
by associating relevantbasic activities with each phase as follows:

socialise by implicitly sharing knowledge (enabled bypost);

5 / 21 Volume 48 (2012)



OSS Learning and Activity Patterns and their Impact on Software Quality

Phase 1
socialise

post
observe

�
�

�
�	

Phase 2
externalise

post

commit

-

?
Phase 3

combine

observe
use

-

@
@

@
@R

Phase 4
internalise

-

developing ⇐= practising ⇐= understanding

Figure 1: Learning process of individual actors in OSS communities

externalise tacit knowledge by making it explicit to the community (enabled bypost, commit);

combine community explicit knowledge and organise it as abstract knowledge (enabled by
observe, use);

internalise abstract knowledge by absorbing it and combining it with own knowledge and ex-
periences to produce new tacit knowledge.

The four phases are not fully sequential but overlap in a certain measure, as shown in Figure2.
In particular, socialisation, after playing the role of initiating the learning process, is still active
during the other phases for which it is actually an enabling factor.

Socialisation in a virtual environment, specifically through the Internet, already permeates our
daily life, especially through social networks, as well as informal and formal education settings,
especially through e-Learning tools and environments [Imm] such as Moodle [Moo] and Second
Life [Sec]. In an OSS context the socialisation phase is enabled by specific mechanisms and
tools used by OSS communities, such as discussion fora, and may be initiated

• either by theobserve activity, that triggers a communication with an “observed”commu-
nity member;

• or by thepost activity, that triggers a reply to the posted message.

After being initiated, socialisation can continue throughposting, also outside the OSS commu-
nity tool infrastructure, for instance through social networks.

Externalisation naturally occurs in an implicit way through socialisation tools such as discus-
sion fora, withpost as the enabling basic activity, or in an explicit way throughcommit. Intrinsic
motivations, such as

Proc. OpenCert 2011 6 / 21



ECEASST

• feel passionate about particular areas of expertise

• enjoy self-satisfaction from sharing knowledge and skills

• have a sense of belonging to a community

are all examples of strong drivers for externalisation. There are also a number of extrinsic moti-
vations that contribute to externalisation, which include

• solve particular technical problems/needs by exploiting Linus’ Law: “given enough eye-
balls, all the bugs are shallow” (from Linus Torvalds);

• public visibility to increase reputation and peer recognition.

Combination of knowledge is incremental and consists of two main activities:

• multiple interactions with knowledge-management tools aswell as with other members of
the community to identify and extract relevant bits of explicit knowledge;

• combination and organisation of such bits of explicit knowledge to produce meaningful
abstract knowledge.

The interaction with knowledge-management tools is obviously enabled by theuse and ob-
serve basic activities. Organisation of explicit knowledge and production of meaningful abstract
knowledge are cognitive activities within the ambit ofknowledge representation. Without en-
tering the realm of cognitive theories that aim to explain knowledge representation within the
human mind, we can say that the way individuals combine explicit knowledge is affected by the
accessibility, structure and presentation of the contentsof such knowledge and by own personal
learning attitudes.

Internalisation of knowledge is a cognitive activity that proceeds at an unconscious level (un-
conscious assimilation) and results in the acceptance of the newly produced tacit knowledge.
Being an unconscious process, it is not affected by any basicactivities. Internalisation is driven
by both intrinsic and extrinsic motivations. Examples ofIntrinsic motivations for internalisation
are:

• revel in creating something new or better;

• have a personal sense of accomplishment and contribution.

Examples ofExtrinsic motivations for internalisation are:

• improve technical knowledge base;

• pass examinations;

• develop the solution to a technical problem.

7 / 21 Volume 48 (2012)



OSS Learning and Activity Patterns and their Impact on Software Quality

3.1 Learning Stages

We can identify three stage that characterise the evolutionof activity patterns and maturation of
an OSS community participant.

understanding The most critical part of the learning process develops through an initial but
often significantly long stage in which communication is heavily used to capture, describe
and understand contents, while no production activities are performed. That is, during this
stage the project participants mainly access project repositories and exchange emails and
post messages with the purpose of understanding contents without producing any code or
reports and without performing any commits. This stage might be very brief and marginal
for an OSS expert who just joined a new project, but is significantly long and important
for a novice.

practising In this second stage the role of communication gradually moves to the proposal of
new contents, the defense of the proposed contents and the criticism to existing contents
or contents proposed by others. At the same time, during thisstage, production activity
starts as a trial and error process with a consequent low quality in the resultant product
and little or no immediately visible impact on project productivity. This stage is usually
significantly long and important for a novice.

developing Only during this third stage the quality level of developed code and reports becomes
important and communication is mainly used to support own productive contributions and
contrast them to others’ contributions.

In Figure2 contributors’learning stages are linked to the contributors’basic activities identified
in Section2. The segmented curve represents thematuration of the contributor through the three
learning stages. For eachlearning stage the shaded area highlights whichbasic activities are
carried out during that stage, with no quantitative meaningassociated with the area size. We
claim that although during theunderstanding stageobserve activities are carried out, there is
no actual evolution through the learning stages (i.e. nomaturation) until use activities are also
carried out. This is represented in Figure2 by a 0 gradient curve segment forobserve activities
during theunderstanding stage. The low gradient of the curve segment foruse activities aims
to explain the fact that, although there is some form of learning at the individual level there
is instead no learning at all at community level. The learning process described in Section3
only starts whensocialisation andexternalisation occur, enabled bypost activities. Initiallypost
activities just contribute tosocialisation and only when they start to be used forexternalisation
the curve gradient considerably increases to denote a faster progress through thelearning stages.
Contributors enter thepractising stage only when they start to carry outcommit activities as a
trial and error process. With practice, the quality of the resultant product gradually increases,
which results in the fastest learning progress, and finally thedeveloping stage is entered.

Note that we have used a segmented curve to highlight progress from onelearning stage to the
next as well as milestones within stages. In reality thematuration process gradually evolves in
an almost continuous way, though milestones still occur both at individual and community level.

Figure3 shows howactual activities carried out by contributors, as instantiations of their basic
activities, are linked to theirmaturation throughlearning stages.

Proc. OpenCert 2011 8 / 21



ECEASST

6

learning stage

- activity

observe use post commit

�����������
�

�
�

�
��







�
�
�
�
�
���

maturation

understanding

practising

developing

Figure 2: Learning process of individual actors in OSS communities

6

learning stage

understanding

practising

developing

- activity

observe use post commit

data,
code,

docs/reports,
discussions.

data,
code,

docs/reports.

to capture,
describe and
understand
contents.

code,
docs/reports,

data.

code,
docs/reports,

data,
tools.

to propose
new contents
to criticise

exist. contents.

low quality
code/reports

as
trial and error.

code,
docs/reports,

data.

selected code,
docs/reports

and/or
tools.

to illustrate
new code/bugs
and comment
on code/bugs.

high quality
code/reports.

Figure 3: Activity contents

9 / 21 Volume 48 (2012)



OSS Learning and Activity Patterns and their Impact on Software Quality

It is evident that the first twolearning stages (understanding andpracticing) are the most
relevant for the understanding of the learning processes occurring within the OSS community.
Since the thirdlearning stage (developing) mainly involvesproduction activities, at first thought
we might think that on one hand such stage does not contributeto the learning process at all,
on the other hand this is the only one among the three stages that contributes to productivity.
However, we have to consider that any form of productivity counts on knowledge and skills built
through learning processes and training activities. Therefore, in the case of OSS communities

• productivity is affected by the the learning process: it is actually the final act of a very
long and complex evolution and growth in the individual and collective knowledge and
practice;

• productivity re-enters the learning process through theexternalisation phase and thus con-
tributes to iteratively enable the learning process.

In Section3.2 we highlight some analysis steps that are essential in understanding the learning
processes occurring within individuals and the knowledge growth at group and community level
and in identifyinglearning patterns. Moreover, in Section4 we illustrate how it is possible to
extract indicators of the quality of the OSS product from learning patterns.

3.2 Learning Patterns

Collaboration in OSS projects is highly mediated by the usage of tools, such as versioning sys-
tems, mailing lists, reporting systems, etc. These tools serve as repositories which can be data
mined to understand the identities of the individuals involved in a communication, the topics
of their communication, the amount of information exchanged in each direction, as well as
the amount of contribution in terms of code commits, bug fixing, reports and documentation
produced and email postings. This large amount of data can beselectively collected and then
analysed not only by using inferential statistics to identify activity patterns but also by using on-
tology engineering formalisms that support the extractionof semantic information. In the area of
Empirical Software Engineering, cyber-archeology [SSS07] has been applied to these reposito-
ries to learn and better understand the patterns of contribution of OSS developers in the projects
concerned [SFF+06, SSS07, GKS08, SCb].

In order to investigate learning processes, the data mininganalysis has to be carried out on
communications and activities related to learning. In previous work data collection has involved
communications mainly in terms of participants, quantity and sometimes topics but neglected
the objective collection of actual communication contents. At most, content data has been col-
lected through questionnaire and surveys [SS08b] or through written student reports describing
the encountered risks [AP09], thus providing subjective rather than objective data. This is not
a problem when the research goal is the analysis of level, type and quality of productive par-
ticipation in the project, since communication data is usually integrated by objective data on
contribution in terms of commits, bug reports, bug fixing andon the approval and inclusion of
the resultant artifacts in a software release [SCb].

When the research goal is the analysis of learning patterns,objective data have to be extracted
from communications and activities releated to learning The identification of the learning stage of

Proc. OpenCert 2011 10 / 21



ECEASST

the OSS community member whose data is collected can be a challenge during this preliminary
data collection from repositories of OSS projects. Text mining of communications can be used
to identify keywords and phrases that may indicate the learning maturity level in the learning
environment.

The technology of antipatterns [BMM+98] can provide an important support to both data
mining and text mining. A number of OSS communication antipatterns have been identified and
made available [Leu08, Ber, Nea11, ant11, CSa]. OSS participant communication analysis using
data mining can reveal commonly occurring problematic OSS practices or problematic processes
that occur during the learning process and have negative consequences for the development pro-
cess and/or for the learning process itself. Moreover, textmining can reveal the communica-
tion and collaboration antipatterns that exist in OSS projects. Further reasoning on determining
which antipatterns exist in specific OSS projects can be achieved using software tools that sup-
port Semantic Web technology [Tap08, SMSB11]. The knowledge representation formalism of
ontology [CRP06] can define a common dictionary of OSS community antipatternterms and can
be used as an extensible knowledge base of an intelligent system that can detect antipatterns in
specific OSS projects. Ontology editors support collaborative Web-based ontology enrichment
and editing [TVN08]. An example of this approach is the e-Learning environments designed by
Settas and Cerone [SC11]. Similar environments can be designed to provide OSS antipattern
contributors with the motivation to contribute antipatterns by communicating with other contrib-
utors and by supporting discussions and voting mechanisms for ontology changes. In this way
the analysis of antipatterns in general, and of the learning-related antipatterns in particular, may
be carried out by the OSS community itself, which would thus actively contribute to the analysis
and refactored solution of its own ‘negative’ activity patterns in general, and of its own ‘negative’
learning patterns in particular.

4 Descriptive Approach to Quality

The traditional approach to quality assurance is based on the conformance toprescriptive stan-
dards and strict guidelines, which are sometimes incorporated in legal prescriptions for software
certification. Moreover, standards and guideline refer to clearly defined software development
methodologies and are the basis for the definition of qualitymetrics to be used in the certification
process.

The lack of accurate information on how quality emerges fromthe large amount of loosely
organised activities of an OSS community makes it difficult to apply traditional quality metrics
and certification processes to OSS products. For instance, if we consider McCall’s production
revision quality factors [MRW77], can we claim that an OSS product lacksmaintainability be-
cause there are no defined coding standards and guidelines towhich programming has adhered?
The philosophy of freedom and absence of hierarchical organisation typical of OSS communities
results in collaborative production environments in whichthere is no space forprescriptive stan-
dards and strict guidelines. Communication and collaboration as well as individual preferences,
skills and intrinsic and extrinsic motivations are the drivers of such production environments and
naturally determine the evolution of programming practices within teams of contributors and
across the OSS community, even beyond a specific OSS project.In such a context, adescriptive

11 / 21 Volume 48 (2012)



OSS Learning and Activity Patterns and their Impact on Software Quality

approach that analyses the OSS community of practise and itsactivities is likely to define better
indicators of the quality of the software product than aprescriptive approach that tries to check
whether these activities follow prescribed standards and guidelines.

This distinction betweenprescriptive anddescriptive approach can in general refer to the cor-
rectness and quality evaluation of artifacts that are the result of evolving community processes.
For example, language emergence and evolution is a natural community process whose artifacts
are speeches and written texts. The early approach to linguistic analysis was based on thepre-
scriptive tradition: the correctness and quality of a speech or written text are evaluated in terms
of its conformance to strict rules defined by grammarians. In1761, Joseph Priestley, in his
Rudiments of English Grammar, proposed an alternative view by claiming that “the custom of
speaking is the original and only just standard of any language”. This started thedescriptive ap-
proach to linguistic analysis, which, in David Crystal’s words “is concerned less with ’standards’
than with thefacts of linguistic usage” [Cry97].

If we transfer Priestley’s claim to the OSS world we can say that

the custom of OSS individual and community activities, learning and patterns is the
original and only just standard of any OSS project.

And a paraphrase of Crystal’s words for the OSS world could be

thedescriptive approach is concerned less with standards than with thefacts of OSS
peer-review and peer-production.

In Section3.2 we have seen that cyber-archeology [SSS07] has been applied to OSS repos-
itories to learn and better understand the patterns of communication and contribution of OSS
developers [SFF+06, SSS07, GKS08, SCb]. The findings in these studies have promoted the
conjecture that patterns of communication and contribution have implications for the quality of
code of the OSS product. When a large number of developers externalise and discuss their coding
activities with other community members in mailing lists, the high magnitude of the community
engagement may enable developers to improve the quality of their code base, do more refactor-
ing and learn about how the quality of the produced code may beimproved [SCb]. Moreover, the
engagement of an individual in the community can be related to three notions of quality iden-
tified by Shaikh and Cerone [SCa]: quality by access, quality by development and quality by
design. Every activity of an individual can be classified under an appropriate category of quality
and marked to contribute to the final software product accordingly [CFS12]. Bug reporting, test-
ing and reviews enhance quality by development, the media and format used to externalise such
contributions affect quality by access, whereas evidence of planning and design, and validation
of software code contribute to quality by design.

The number of commits describes how much the individual delivers in terms of product and
is therefore an indicator of the individual’sproductivity. Although there is no guarantee on the
quality of the product delivered, number of commits can be considered by itself an important
parameter in evaluating the quality of the individual as a contributor. Moreover, in the analysis
of level, type and quality of productive participation in the project, the mere number of commits
can be integrated by other data related to the object of a considered commit activity. Such related
data can be extracted from communications as well as other commit activities and processed

Proc. OpenCert 2011 12 / 21



ECEASST

using text mining and ontology engineering techniques. In this wider context, productivity is
intended in terms of community activities rather than individuals’ contribution. More precisely,
data mining may identify clusters of interrelated commit and post activities that refer to a specific
artifact, whose development is likely to involve several contributors; in addition, text mining of
the post activities can provide information on the quality of the considered artifact.

Evidence suggests [RHS06] that reputation serves as a major source of motivation for devel-
opers to participate in a community. Moreover, reputation builds on a history of participation in
OSS projects that have successfully delivered high qualitysoftware products. It is therefore per-
ceived as a warranty for quality. Communications among members of an OSS community can
be analysed to extract information about the reputation that an individual has achieved within
the community. Text mining of communications can be used to identify keywords and phrases
that may indicate whether an individual is asking or providing support and whether an answer or
suggestion is taken on board or refuted by others.

Cerone, Fong and Shaikh [CFS12] considerengagement, productivity andreputation as key
factors to evaluate the quality of an individual’s contribution to an OSS project.

We have also seen in Section3.1 that the learning stages of OSS community members affect
the kind of activities carried out and have an impact on the quality of the artifacts they produce.
For instance the code committed by a contributor in thepractising stage has on average a lower
quality than the code committed by a contributor in thedeveloping stage. Therefore, the learning
stage can be seen as a weight to associate with productivity in the evaluation of the quality of
individuals’ contribution and community activities. Moreover, learning stages of individuals
belonging to a team or to a project community affect collaboration patterns and have an impact
on the collaboration effectiveness, that is, the quality ofcollaboration within the community. For
example, individuals in theunderstanding stage are not expected to contribute to team decisions
and commit activities, whereas individuals in thedeveloping stage are expected to contribute at
least to commit activities and possibly to team decisions [CFS12]. We can, therefore, consider
learning as a fourth key factor to evaluate the quality of an individual’s contribution to an OSS
project.

Our descriptive approach to quality is summarised in Figure4. The flow on top of the Figure
describes the extraction of data from OSS Project Repositories, their processing using a range
of Analysis Technologies to characterise patterns that describe OSS Community Activities, then
quantified through metrics for Quality. Typical data to be analysed includes: communications,
commits, code, reports as well as organisational structureand processes. Data extracted from
repositories are processed using data mining and text mining and applying categories of quality,
collaboration models, trust models and ontology engineering to identify patterns for engagement,
productivity, learning and reputation, as well as positive(effective) collaboration patterns and
negative patterns (antipatterns) at the community level.

Quality of individuals’ contribution can be characterised by defining separate metrics for en-
gagement, productivity, learning and reputation of individuals [CFS12]. However, how to com-
bine such metrics into a global metric that could quantify the quality of an individuals contri-
bution to a specific OSS project is still unclear. Another challenge is represented by possible
interrelations between the four metrics; for instance, we can note that the level of engagement of
an individual within a project is visible to the entire project community and, therefore, implicitly
affects that individual’s reputation. We have also pointedout that learning affects productivity:

13 / 21 Volume 48 (2012)



OSS Learning and Activity Patterns and their Impact on Software Quality

OSS Project
Repositories

-
data

Analysis
Technology

-
patterns

OSS Community
Activities

? ? ?? ? ?? ? ?

-
metrics

Quality

???

communications

commits

code

reports

organisation

- data mining
productivity

����� -

PPP - learning
6

�

�

- text mining�
�

��

- reputation �

quality of
individuals’
contribution

�
�

�
�	

?

collaboration

& trusts models
-collaboration

effectiveness

?
quality of
collaboration

?
ontology

engineering
-�

�
�
��

community

antipatterns

6
quality of
community
learning and
development
processes and
organisation

categories of
quality

- engagement

6

Figure 4: Descriptive approach for OSS quality analysis

a learning stage can be seen as a weight to associate with productivity in defining a metric for
the quality of individuals’ contribution [CFS12]. These two interrelations are described by ar-
rows in Figure4. Finally, although this is not captured by the diagram in Figure 4, there are
other social parameters that affect reputation [HZC12], demonstrating how reputation obeys the
laws of cumulative advantage (through higher likelihood ofattracting good reputation given past
reputation) and homophily (providing advantage through shared affiliations in terms of common
OSS projects) [CFS12].

Quality of collaboration can be defined by applying metrics to patterns identified using collab-
oration and trust models to describecollaboration effectiveness. These models have to be instan-
tiated using content information extracted from communication through text mining carried out
with the support of appropriate ontologies aiming to identify patterns, progress, evolution and
achievements in the collaboration process occurring within groups of participants. Moreover,
online trust may be inferred via a hierarchical metrics model which consists of explicit trust by
relation, and implicit trust by reputation [CFda]. Therefore, reputation, in the form of implicit
trust, is incorporated within trust models. Finally, the two-way relation between learning and
collaboration effectiveness shown in Figure4 highlights what we have already observed:

• that learning stages of individuals belonging to a team or toa project have impact on the

Proc. OpenCert 2011 14 / 21



ECEASST

collaboration effectiveness (as mentioned earlier in thissection);

• that learning in OSS communities is essentially a collaborative process (it is actually a
sub-process of the interaction process illustrated in Section 2).

Quality of community processes (such aslearning anddevelopment) andorganisation can be
characterised by identifying communication, learning andcollaboration antipatterns occurring
in OSS communities. In this sense Cerone and Settas [CSa] propose a framework to provide a
measure that quantifies the negative effect of such antipatterns on quality. Note that the analy-
sis we propose here considerscommunity antipatterns rather than individual-based antipatterns;
thus learning antipatterns contribute to measure collaborative learning — hence collaboration
effectiveness, rather than individual learning. Therefore, there is an arrow in Figure4 from com-
munity antipatterns to collaboration effectiveness, yet there is no connection between learning
and community antipatterns.

5 Conclusion and Future Directions

The descriptive approach to quality presented in Section4 shows that learning is a key factor
to evaluate not only the quality of an individual’s contribution but also the quality of commu-
nity activities. The two-way arrow between learning and collaboration effectiveness in Figure4
shows that individual learning affects collaboration effectiveness through the learning stages of
the collaborating participants and that, in the other directions, individuals actually learn through
collaborative efforts. Thus, we can claim that, on one hand,learning affects quality, since col-
laboration effectiveness is an indicator of quality (collaboration quality), and, on the other hand,
quality affects learning.

Our descriptive approach to quality aims to “deduce” the quality of the OSS product from the
quality of the production process and its enabling components: individual engagement, produc-
tivity, learning and reputation, as well as collaboration effectiveness and solution of community
antipatterns. Therefore, our approach leads to a measure ofthe quality of the process rather
than the quality of the product: only the former is measured whereas the latter is deduced. Al-
though this notion of quality ispotential rather thanassured, it is warranted by the popularity
and widespread use of many OSS products and is supported by the complex and multifaceted
“open-source paradigm”, which actually “has significant potential that is much more difficult to
attain in closed-source proprietary systems” [Neu05]. This “potential of being better” is exactly
what our approach aims to measure.

After having deeply investigated the impact of learning on quality, we would like to spend a
few words to illustrate how the quality of the production process could be exploited to improve
learning. We have already seen in Section2 that the artifacts that result from the contribution
sub-process feed a new iteration of the interaction process, thus also driving the next step of the
learning sub-process. We also agree that OSS projects provide a meaningful alternative learning
context to expose students to real-world software development activities [SSD06]. The proposal
to use OSS projects as e-Learning tools by injecting students into OSS communities [CSb] can
be see in this perspective. Moreover, such proposal has the potential to offer great advantages to
OSS communities themselves:

15 / 21 Volume 48 (2012)



OSS Learning and Activity Patterns and their Impact on Software Quality

• expose the community to innovative technologies brought inby postgraduate students who
work at the edge between academic research and industrial development with a constant
look at the future of software engineering;

• integrate tools to support students and educational objectives, which is likely to lead to
improvements in tool usability and acceptance by the community of effective social pro-
tocols, with a positive impact on collaboration and on the externalisation and combination
phases of the learning process;

• adopt new e-Learning technology that can benefit the entire community;

• produce more documentation as part of student tasks or even student assignments;

• expand the OSS community with new categories of actors (hence with new roles) who, for
instance, reverse engineering code into formal models, refine and extend formal models,
verify formal models, certify code and community activities [CS08].

Finally, we would like to conclude with the hope (and confidence) that introduction of new e-
Learning technologies, injection of students as contributors, gradual acceptance and practise of
innovative technologies will all have a strong impact on OSScommunities by increasing their
learning capability and their connection with the researchand development world.

Acknowledgements: Several colleagues and friends have contributed through discussions and
research collaborations to the development of the ideas presented in this paper: Luı́s S. Barbosa,
Gabriella Dodero, Sara Fernandes, Simon Fong, Donatella Persico, Francesca Pozzi, Barbara
Russo, Dimitrios Settas, Siraj A. Shaikh and Sulayman K. Sowe.

This work has been supported by Macao Science and TechnologyDevelopment Fund, File
No. 019/2011/A1, in the context of the PPAeL project.

Bibliography

[ant11] Community Management Wiki. 2011.
http://communitymgt.wikia.com/wiki/Category:Anti-patterns

[AP09] T. Ahtee, T. Poranen. Risks in Students’ Software Projects. InIn Proceedings of
the 22nd Conference on Software Engineering Education and Training (CSEET).
Pp. 154–157. IEEE Computer Society, 2009.

[Ben02] Y. Benkler. Coase’s Penguin, or, Linux and The Nature of the Firm.The Yale Law
Journal 212:369–446, 2002.
http://www.yalelawjournal.org/images/pdfs/354.pdf

[Ber] J. Berkus. How to destroy your community.
http://lwn.net/Articles/370157/

Proc. OpenCert 2011 16 / 21

http://communitymgt.wikia.com/wiki/Category:Anti-patterns
http://www.yalelawjournal.org/images/pdfs/354.pdf
http://lwn.net/Articles/370157/


ECEASST

[BGD+06] C. Bird, A. Gourley, P. Devanbu, M. Gertz, A. Swaminathan. Mining email social
networks. InMSR ’06: Proceedings of the 2006 international workshop on Mining
software repositories. Pp. 137–143. ACM Press, New York, NY, USA, 2006.

[BMM +98] W. J. Brown, R. C. Malveau, H. W. S. McCormick, T. J. Mowbray, T. Hudson
(eds.).AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
John Wiley, 1998.

[Bro75] F. Brooks.The Mythical Man-Month. Essays on Software Engineering. Addison-
Welsey Publishing, 1975.

[CFda] W. Chen, S. Fong. Social Network Collaborative Filtering Framework and Online
Trust Factors: a Case Study on Facebook. InThe 5th International Conference on
Digital Information Management (ICDIM 2010). Pp. 266–273. July 2010, Thunder
Bay, Canada.

[CFS12] A. Cerone, S. Fong, S. A. Shaikh. Analysis of Collaboration Effectiveness and Indi-
viduals’ Contribution in FLOSS Communities. InProceedings of OpenCert 2011.
Volume 48 of Electronic Communications of the EASST. 2012.

[Cov] Coverity Scan.
http://scan.coverity.com/about.html

[Cov11] Coverity. Open Source Reports. 2008–2011.
http://www.coverity.com/resource-library

[CRP06] C. Calero, F. Ruiz, M. Piattini.Ontologies for Software Engineering and Software
Technology. Springer, 2006.

[Cry97] D. Crystal. The Cambridge Encyclopedia of Language. Cambridge University
Press, 1997.

[CSa] A. Cerone, D. Settas. Using Antipatterns to Improve the Quality of FLOSS Devel-
opment. InProceedings of OpenCert 2011. Volume 48 of Electronic Communica-
tions of the EASST, 2012.

[CSb] A. Cerone, S. K. Sowe. Using Free/Libre Open Source Software Projects as E-
Learning Tools. InProceedings of OpenCert 2010. Volume 33 of Electronic Com-
munications of the EASST, 2010.

[CS08] A. Cerone, S. A. Shaikh. Incorporating Formal Methods in the Open Source Soft-
ware Development Process. InProceedings of the OpenCert and FLOSS-FM 2008
joint Workshop. UNU-IIST Research Report 398, pp. 26–34. 2008.

[DB05] T. T. Dinh-Trong, J. M. Bieman. The FreeBSD Project: AReplication Case
Study of Open Source Development.IEEE Transactions on Software Engineering
31(6):481–494, 2005.

17 / 21 Volume 48 (2012)

http://scan.coverity.com/about.html
http://www.coverity.com/resource-library


OSS Learning and Activity Patterns and their Impact on Software Quality

[DB07] J. M. Dalle, M. den Besten. Different Bug Fixing Regimes? A Preliminary Case for
Superbugs. In Feller et al. (eds.),Open Source Development, Adoption and Inno-
vation. IFIP International Federation for Information Processing 234, pp. 247–252.
Springer, September 7–10 2007.

[Fut06] Futurelab. The potential of open source approachesfor education. Opening Educa-
tion Report. Published online, 2006.
http://www.futurelab.org.uk/resources/

[GKS08] G. Gousios, E. Kalliamvakou, D. Spinellis. Measuring developer contribution from
software repository data. InMSR ’08: Proceedings of the 2008 International Work-
shop on Mining Software Repositories. Pp. 129–132. ACM, 2008.

[HS02] T. J. Halloran, W. L. Scherlis. High Quality and Open Source Software Practices.
In 2nd Workshop on Open Source Software Engineering. May 2002.

[HZC12] D. Hu, J. L. Zhao, J. Cheng. Reputation management inan open source developer
social network.Decision Support Systems 53(3):526–1058, Jun 2012.

[Imm] Immersive Education.
http://immersiveeducation.org/

[JG06] G. R. Juan Jose Amor, J. M. Gonzalez-Barahona. Discriminating Development Ac-
tivities in Versioning Systems: A Case Study. InProceedings PROMISE 2006: 2nd.
International Workshop on Predictor Models in Software Engineering co-located at
the 22th International Conference on Software Maintenance (Philadelphia, Pennsil-
vanya, USA). 2006.

[Kuk06] G. Kuk. Strategic Interaction and Knowledge Sharing in the KDE Developer Mail-
ing List. Management Science 52, 2006.

[Leu08] T. Leung. Open Source Community Antipatterns. InO’Reilly OSCON Open Source
Convention. 2008.

[McC99] S. McConnell. Open Source Methodology: Ready for Prime Time?IEEE Software
16(4):6–8, Jul/Aug 1999. IEEE Computer Society.

[MFH02] A. Mockus, R. Fielding, J. Herbsleb. Two case studies of open source software
development: Apache and Mozilla.Transactions on Software Engineering and
Methodology 11(3):1–38, 2002.

[MGS08] A. Meiszner, R. Glott, S. K. Sowe. Free/Libre Open Source Software (FLOSS)
Communities as an Example of successful Open ParticipatoryLearning Ecosys-
tems. The European Journal for the Informatics Professional, UPGRADE
IX(3):62–68, 2008.

[MGS09] A. Meiszner, R. Glott, S. K. Sowe. Preparing the Ne(x)t Generation: Lessons learnt
from Free/Libre Open Source Software — Why free and open are pre-conditions

Proc. OpenCert 2011 18 / 21

http://www.futurelab.org.uk/resources/
http://immersiveeducation.org/


ECEASST

and not options for higher education! InProceedings of the 4th International
Barcelona Conference on Higher Education. Volume 2. Knowledge technologies
for social transformation. Barcelona, Spain, 15–19 July 2009.

[MHP05] M. Michlmayr, F. Hunt, D. Probert. Quality Practices and Problems in Free Soft-
ware Projects. In Scotto and Succi (eds.),Proceedings of the First International
Conference on Open Source Systems. Pp. 24–28. Genova, Italy, 2005.

[Mic05] M. Michlmayr. Quality Improvement in Volunteer Free Software Projects: Explor-
ing the Impact of Release Management. In Scotto and Succi (eds.),Proceedings of
the First International Conference on Open Source Systems. Pp. 309–310. Genova,
Italy, 2005.

[Moo] Moodle.
http://moodle.org/

[MRW77] J. A. McCall, P. K. Richards, G. F. Walters. Factors in Software Quality. Volume I.
Concepts and Definitions of Software Quality. 1977.
http://www.dtic.mil/dtic/tr/fulltext/u2/a049014.pdf

[Nea11] D. Neary. Community Antipatterns. InFree and Open Source Software Developers
European Meeting. 2011.

[Neu05] P. Neumann. Attaining Robust Open Source Software.In Feller et al. (eds.),Per-
spectives on Free and Open Source Software. Chapter 7, pp. 123–126. MIT Press,
2005.

[Ray99] E. S. Raymond.The cathedral and the bazaar. O’Reilly, 1999.

[RG06] G. Robles, J. Gonzalez-Barahona. Contributor Turnover in Libre Software Projects.
In Damiani et al. (eds.),IFIP International Federation for Information Processing,
Open Source Systems. Volume 203, pp. 273–286. Springer, 2006.

[RGCH09] G. Robles, J. Gonzalez-Barahona, D. Cortazar, I. Herraiz. Tools for the study of the
usual data sources found in libre software projects.International Journal of Open
Source Software and Processes 1(1):24–45, Jan-Mar 2009.

[RHS06] J. Roberts, I. Hann, S. Slaughter. Understanding the motivations, participation,
and performance of open source software developers: a longitudinal study of the
Apache projects.Management Science 52(7):984–999, 2006.

[SAS06] S. K. Sowe, L. Angelis, I. Stamelos. Identifying Knowledge Brokers that Yield
Software Engineering Knowledge in OSS Projects.Information and Software Tech-
nology 48:1025–1033, 2006.

[SCa] S. A. Shaikh, A. Cerone. Towards a metric for Open Source Software Quality. In
Proceedings of OpenCert 2009. Volume 20 of Electronic Communications of the
EASST, 2009.

19 / 21 Volume 48 (2012)

http://moodle.org/
http://www.dtic.mil/dtic/tr/fulltext/u2/a049014.pdf


OSS Learning and Activity Patterns and their Impact on Software Quality

[SCb] S. K. Sowe, A. Cerone. Integrating Data from Multiple Repositories to Analyze Pat-
terns of Contribution in FOSS Projects. InProceedings of OpenCert 2010. Volume
33 of Electronic Communications of the EASST, 2010.

[SC11] D. Settas, A. Cerone. An Ontology Based E-Learning System Using Antipatterns.
In Proceedings of ICWL 2011. Lecture Notes in Computer Science 7048, pp. 243–
252. Springer, 2011.

[Sch00] F. B. Schneider. Open Source in Security: Visting the Bizarre. In2000 IEEE Sym-
posium on Security and Privacy. May 14–17, 2000, Berkley, California, USA,
pp. 126–127. IEEE Computer Society, 2000.

[Sec] Seconf Life.
http://secondlife.com/

[SFF+06] W. Scacchi, J. Feller, B. Fitzgerald, S. A. Hissam, K. Lakhani. Understanding
Free/Open Source Software Development Processes.Software Process: Improve-
ment and Practice 11(2):95–105, 2006.

[SMSB11] D. L. Settas, G. Meditskos, I. G. Stamelos, N. Bassiliades. SPARSE: A Symptom-
based Antipattern Retrieval Knowledge-based System UsingSemantic Web Tech-
nologies.Expert Systems with Applications 38(6), June 2011.

[SS08a] S. K. Sowe, I. Stamelos. Reflection on Knowledge Sharing in F/OSS Projects. In
Open Source Development, Communities and Quality. IFIP International Federa-
tion for Information Processing 275, pp. 351–358. 2008.

[SS08b] S. K. Sowe, I. G. Stamelos. Involving Software Engineering Students in Open
Source Software Projects: Experiences from a Pilot Study.Journal of Information
Systems Education (JISE) 18(4):425–435, 2008.

[SSA08] S. K. Sowe, I. Stamelos, L. Angelis. Understanding Knowledge Sharing Activities
in Free/Open Source Software Projects: An Empirical Study.Journal of Systems
and Software 81(3):431–446., 2008.

[SSD06] S. K. Sowe, I. Stamelos, I. Deligiannis. A Frameworkfor Teaching Software Testing
using F/OSS Methodology. InProceedings of the 2nd International Conference on
Open Source Systems (OSS2006). Como, Italy, 8–10 June 2006.

[SSS07] S. K. Sowe, I. G. Stamelos, I. M. Samoladas (eds.).Emerging Free and Open Source
Software Practices. IGI Global, 2007.

[SSSA08] S. K. Sowe, I. Samoladas, I. Stamelos, L. Angelis. Are FLOSS developers commit-
ting to CVS/SVN as much as they are talking in mailing lists? Challenges for Inte-
grating data from Multiple Repositories. In3rd International Workshop on Public
Data about Software Development (WoPDaSD). September 7th - 10th 2008, Milan,
Italy. 2008.

Proc. OpenCert 2011 20 / 21

http://secondlife.com/


ECEASST

[Tap08] J. Tappolet. Semantics-aware Software Project Repositories. InIn Proceedings of
the European Semantic Web Conference, Ph.D. Symposium. Pp. 78–82. June 2008.

[Tuo05] I. Tuomi. The future of open source: Trends and prospects. In Wynants and Cornelis
(eds.),How open is the future? Economic, social and cultural scenarios inspired
by free and open source software. Pp. 429–459. Vrjie Universiteit Press, 2005.

[TVN08] T. Tudorache, J. Vendetti, F. N. Noy. Web-Protege: ALightweight OWL Ontology
Editor for the Web. InIn Proceedings of the fourth Workshop in the The OWL:
Experiences and Direction (OWLED). 2008.

[ZE00] L. Zhao, S. Elbaum. A survey on quality related activities in open source.ACM
SIGSOFT Software Engineering Notes 25(3):53–57, May 2000. ACM Press New
York, NY, USA.

[ZPZ07] T. Zimmermann, R. Premraj, A. Zeller. Predicting Defects for Eclipse. InPROMISE
’07: Proceedings of the Third International Workshop on Predictor Models in Soft-
ware Engineering. P. 9. IEEE Computer Society, Washington, DC, USA, 2007.

21 / 21 Volume 48 (2012)


	Introduction
	Contributors' Roles and Activities
	Learning Process
	Learning Stages
	Learning Patterns

	Descriptive Approach to Quality
	Conclusion and Future Directions

