
Electronic Communications of the EASST
Volume 48 (2012)

Proceedings of the
Fifth International Workshop on on Foundations

and Techniques for Open Source Software Certification
(OpenCert 2011)

Using antipatterns to improve the quality of FLOSS development

Antonio Cerone and Dimitrios Settas

16 pages

Guest Editors: Luı́s Soares Barbosa, Dimitrios Settas
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Using antipatterns to improve the quality of FLOSS development

Antonio Cerone1 and Dimitrios Settas2

1 antonio@iist.unu.edu 2 settdimi@iist.unu.edu
UNU-IIST — International Institute for Software Technology

United Nations University, Macau SAR China

Abstract: Antipatterns have been mostly reported in closed source software en-
vironments. With the advent of Free/Libre Open Source Software (FLOSS), re-
searchers have started analysing popular FLOSS projects, seeking vitality indica-
tors and success patterns. However, an impressively high percentage of FLOSS
projects are unsuccessful. Moreover, even in the successful cases of FLOSS there
can be found tracks of failed attempts, dead-ends, forks, abandonments etc. FLOSS
antipatterns can help developers to improve their code and improve the communi-
cation and collaboration within the FLOSS community. In this paper, we present
some example of FLOSS antipatterns and discuss the benefits that they bring to var-
ious FLOSS user roles. Furthermore, we present ontology-based technology and
software tools that can be used to assist FLOSS developers and community users to
identify, document, share antipatterns and use these mechanisms to assist FLOSS
projects conform to specified requirements. Finally, we propose a framework for
the quantitative identification of the antipatterns to use as quality indicators in the
certification of FLOSS products.

Keywords: FLOSS development, antipatterns, certification, ontology

1 Introduction

An antipattern is a new form of pattern that has two solutions[BMMM98]. The first is a problem-
atic solution with negative consequences and the other is a refactored solution, which describes
how to change the antipattern into a healthy solution. The second solution is what makes antipat-
terns beneficial. The difference is in the context: An antipattern is a pattern with inappropriate
context and is particularly useful in the case of knowledge representation, because it captures ex-
perience and provides information on commonly occurring solutions to problems that generate
negative consequences [LN06]. The process that is followed by a pattern to change its solution
into a better one is called refactoring. This solution has animproved structure that provides more
benefits than the original solution and refactors the systemtoward minimised consequences.

FLOSS anti-patterns are not yet explored to the same extent as in closed source. In addition,
because FLOSS and closed source software produce code usingvery different development pro-
cesses, FLOSS antipatterns are quite different in nature from their closed source counterparts.
There exist different categories of antipatterns. According to the literature [BMMM98, LN06]
closed source software antipatterns exist at a development, architectural and managerial level.
FLOSS antipatterns mostly exist at a community level and describe social and managerial is-
sues regarding communication, interaction and coordination among developers that participate

1 / 16 Volume 48 (2012)

mailto:antonio@iist.unu.edu
mailto:settdimi@iist.unu.edu


Using antipatters in FLOSS development

in FLOSS projects. However, closed source software development antipatterns are also applica-
ble in FLOSS projects and can greatly affect the quality of both closed and open source software
projects.

This paper describes how antipatterns can be used in FLOSS projects by defining the sources
of these antipatterns and the different user roles of FLOSS antipatterns. While antipatterns cannot
be used as a formal certification approach, different kinds of antipatterns (i.e. development,
community level) can be used

1. within the FLOSS development process to directly overcome problems that may affect the
certification of the FLOSS product;

2. as part of the certification process to define indicators ofthe quality of the development
process and the resultant FLOSS product.

Development antipatterns may help developers overcome commonly occurring coding problems.
For example, the “Spaghetti Code” antipattern [BMMM98] can be used to describe code that has
a complex and tangled control structure, especially one with several exceptions, threads, or other
“unstructured” branching constructs. Spaghetti code can be caused by several factors, includ-
ing inexperienced programmers and a complex program which has been continuously modified
over a long life cycle. A solution proposed to resolve the antipattern is using a formal and pre-
dictable style of coding such as that of Structured Programming. Community antipatterns can
help developers overcome problematic FLOSS practices, such as participation and motivation
problems, which are crucial to FLOSS development. For example, “The Big Show” antipattern
[Nea11] describes the scenario in which companies will work for several months on a software
project behind closed doors before announcing it to the public. This behaviour negatively im-
pacts the ability of a FLOSS community to grow outside corporate walls. The project members
are assigned to “secret” projects and interact less with thecommunity, and the end result is a big
code drop which has not had public peer review and was not listed on any roadmap before its
announcement, resulting in people outside the company feeling like second class citizens.

Since encountered coding problems and problematic community practices highlighted by such
antipatterns affect the quality of the FLOSS product, once an antipattern has been identified, it
may be incorporated in the certification process as a negative quality indicator.

One problem is that identifying antipatterns is essentially a qualitative process, in which symp-
toms are associated to antipatterns either directly or indirectly by means of existing causal re-
lationships between antipatterns. Such a qualitative nature of antipattern identification is not
adequate to the accuracy required by a formal certification process. In order to overcome this
problem, metrics for technical quality, based on the ISO/IEC 9126 standard, that have been suc-
cessfully applied to proprietary software as well as to FLOSS [CV08] could be customised to
detect specific antipatterns that describe coding problemssuch as the Spaghetti Code antipattern.

The rest of the paper is organised as follows. In Section2 we give a short introduction to an-
tipatterns and to the way they are identified and used. Section 3 presents an overview of FLOSS
community antipatterns whose descriptions are publicly available at the moment. Section4 iden-
tifies FLOSS contributor types that could benefit from antipattern technology. Section5 illus-
trates the tool support available for the antipattern technology. Section6 proposes an approach
to a quantitative identification of antipatterns and to the definition of an antipattern measure to

Proc. OpenCert 2011 2 / 16



ECEASST

be used in the certification process of a FLOSS product.

2 Antipatterns

Brownet al. [BMMM98] define an antipattern as

a literary form that describes a commonly occurring solution to a problem that gen-
erates decidedly negative consequences.

When properly documented, an antipattern describes ageneral form that defines the generic
characteristics of the antipatterns as well as

causeswhich led to the general form;

symptoms describing how to recognise the general form;

consequencesof the general form;

refactored solution describing how to change the antipattern into a healthier situation.

The general form of the antipattern provides an easily identifiable template for the class of prob-
lems addressed by the antipattern. Such general form can be further structured and enriched with
additional template elements to best characterise the context for the existence of a particular
antipattern in order to reduces the most common mistake in using design patterns: applying a
particular design pattern in the improper context.

The first official template that can be used to document antipatterns was provided by Brown
et al. [BMMM98]. The authors highlighted the importance of a template in order to define what
can be considered as an antipattern. This antipattern template consists of 18 elements. Some
of these elements are optional but others, such as the elements that characterise thegeneral
form and theRefactored Solution, are required to be completed. Although this is the most
detailed template to describe antipatterns, it is not recommended for FLOSS antipatterns, as it
requires background knowledge on completing specific sections such as the scale and the root
causes of the antipattern, which are not available for the mostly informally documented FLOSS
antipatterns.

Several other templates are available for documenting FLOSS antipatterns. The Pseudo-
Antipattern template includes only the name of the antipattern and what problems are addressed
[BMMM98]. This template is not very useful but has appeared on the Internet to quickly describe
an antipattern. A more detailed version is the Mini-Antipattern template, which describes the two
solutions of the antipattern, the problematic solution andthe refactored solution [BMMM98].
These informal templates can be used in order to quickly describe an antipattern but they do not
capture important elements of FLOSS antipatterns such as causes, symptoms and consequences.

An appropriate compromise to address both the informal presentation style of FLOSS an-
tipatterns and the information completeness and structureneeded in a certification process is
the Laplante and Neil’s template [LN06] illustrated in Table1. HereDysfunction provide a
contextual description ofsyntomswhile Explanation describescausesandconsequences.

3 / 16 Volume 48 (2012)



Using antipatters in FLOSS development

Table 1: Laplante’s Antipattern template.

Name A short name that conveys the antipattern’s meaning.
Central Concept The short synopsis of the antipattern in order to make the

antipattern identifiable.
Dysfunction The problems and symptoms with the current practice.

Vignette The antipattern in a real or prototypical situation,
it provides context and richness to the antipattern.

Explanation The expanded explanation including causes and consequences.
Band-Aid A short term coping strategy for those who don’t have the

influence nor time to refactor it.
Self-Repair The first step for someone perpetuating the antipattern.
Refactoring The required changes in order to remedy the situation and

their rationale.
Observations Optional section for additional comments or items of note.
Identification An assessment instrument consisting of a list of questions

for diagnosis of the antipattern.

We will consider a slightly simplified version of Laplante and Neil’s template consisting of 8
rather than 10 elements. We remove theObservationselement, which is anyway optional in La-
plante and Neil’s template, and theVignette element, since in a freedom-centred ecosystems as
a FLOSS community prototypical situations rarely occur anda single real situation may provide
an incomplete and possibly misleading context.

In order to exemplify how our modified template can be used to document a FLOSS antipat-
tern, the “Spaghetti Code” antipattern [BMMM98] has been documented (Figure1) using this
template. As already mentioned in the previous section thisdevelopment antipattern can be used
to describe code that has a complex and tangled control structure, especially one with several
exceptions, threads, or other “unstructured” branching constructs. This one page description
(Figure 1), provides a quick overview of this antipattern together with details on how it can be
identified and resolved.

3 FLOSS Community Antipatterns

FLOSS community antipatterns are very relevant to the certification of FLOSS projects as they
describe ways to build stronger project communities with effective communication, collaboration
and management practices.

O’Brien [O’B] has recently proposed six OSS community antipatterns, which are charac-
terised by six “personalities” that have emerged in the lastyears among FLOSS communities:
Rule maker, Open Source Politician, Attack Dog, Non-contributing Pontificator, Back Room
Dealer and (Apache Way) Ambassador. For each of these antipatterns, O’Brien describes the
causes, symptoms and consequences as well as the refactoredsolution that can make the antipat-
tern beneficial to a FLOSS project. For example, although it is important to have a few rule

Proc. OpenCert 2011 4 / 16



ECEASST

Name Spaghetti Code

Central Concept Due to hurry or some other pressure, some developers and teams in organisations
do not follow any standard software structure of the projectwork.

Dysfunction Several exceptions, threads, or other “unstructured” branching constructs. This leads
to lack of clarity, to the extent that even the developer himself will not be able to follow it
later if any problem arises during the software developmentcycle.

Explanation The main cause for an organisation to get into such a situation is due to either em-
ploying people without having a strong base on design or inadequate training provided to the
developers.

Band-Aid Ruthless diligence combined with constant unit testing

Self-Repair If prevention of Spaghetti Code is an option, or if you have the luxury of fully engi-
neering a Spaghetti Code application, the following preventative measures may be taken:

1. It is crucial that any moderate or large-size project develop a domain model as the basis
of design and development.

2. After developing a domain model that explains the system requirements and the range
of variability that must be addressed, develop a separate design model.

Refactoring Using a formal and predictable style of coding such as that ofStructured Programming.
Refactoring the software includes performing the following operations on the existing code:

1. Gain abstract access to member variables of a class using accessor functions. Write new
and refactored code to use the accessor functions.

2. Convert a code segment into a function that can be reused infuture maintenance and
refactoring efforts. It is vital to resist implementing theCut-and-Paste AntiPattern.
Instead, use the Cut-and-Paste refactored solution to repair prior implementations of
the Cut-and-Paste AntiPattern.

3. Reorder function arguments to achieve greater consistency throughout the code base.

4. Remove portions of the code that may become, or are already, inaccessible. Repeated
failure to identify and remove obsolete portions of code is one of the major contributors
to the Lava Flow AntiPattern.

5. Rename classes, functions, or data types to conform to an enterprise or industry standard
and/or maintainable entity. Most software tools provide support for global renaming.

Identification The following identification instrument can help you determine if your organisation
tends to use one-dimensional management techniques. Please respond to the following state-
ments with Yes or No.

• My code has a complex and tangled structure

• The program has been continuously modified over a long life cycle.

• Interaction between OO objects is minimal.

• Inheritance and polymorphism aspects of OO methods are not used.

Figure 1: Spaghetti Code Antipattern.

5 / 16 Volume 48 (2012)



Using antipatters in FLOSS development

makers within the community, when their growth in numbers ofindividuals and their attempts
to advocate and enforce standards appear to hinder productive community activities, it may be
necessary to split the community up into smaller, more focused teams, each governed by an ac-
tive code contributor, who is expected to have a natural tendency to avoid needless bureaucracy
[O’B].

Josh Berkus [Ber11] has listed ten ways on how to destroy a FLOSS community. These
antipatterns are likely to arise when companies are involved or even are leading FLOSS projects.
For example, a company leading a FLOSS project may permanently prevent anybody outside
the company from having commit access, respond evasively toqueries and/or choose employees
who write no code as commiters on the project.

Leung [Leu08] has identified 22 FLOSS antipatterns and has provided a veryshort description
of each one. Most importantly he identified the lack of management itself as an antipattern
emphasising the need for managing FLOSS projects.

Dave Neary [Nea11] has developed a Community Management Wiki in which he maintains
18 FLOSS community antipatterns. These antipatterns are described in more detail and include
the symptoms of each antipattern together with their refactored solution. For example, the ”anar-
chy” antipattern highlights the problems associated with the ”Free Software is all about absolute
Freedom” way of thinking. This kind of thinking leads to a kind of anarchistic community where
a substantial proportion of members affirm a total right to freedom of speech, freedom of expres-
sion, and other extreme libertarian principles. The resultis a community where no indiscretion
can easily be corrected, because any attempt to do so is perceived as a limit to the absolute free-
dom of speech. Another important antipattern identified by Neary is the “Big Show” antipattern,
for which we give a detailed description in Figure2 using Laplante and Neil’s modified template.
This antipattern describes the problematic practice in which a company will secretly operate on
a FLOSS project behind closed doors for several months before announcing it to the public.

These 56 antipatterns contain valuable knowledge that can be used by the users of a FLOSS
community in order to identify problematic practices or dysfunctional processes that have been
previously documented as antipatterns.

The main source of FLOSS antipatterns is the Web, as no further FLOSS community an-
tipatterns have been published elsewhere at the moment. These antipatterns do not use official
antipattern templates proposed by Brownet al. [BMMM98] or Laplante and Neil [LN06]. They
are documented using a short textual description in order toquickly describe them and allow
users to memorise them easily. An open issue that has not beenresolved for community antipat-
terns is the lack of formalisation of this knowledge, which,in fact, would be essential to enable
the use of software tools to support this technology as well as to quantify the process of their
identification. Furthermore, as far as the authors are awarethere is no single knowledge base
that documents these antipatterns and allows their use by software tools.

Our use of a modified version of Laplante and Neil’s template to document FLOSS community
antipatterns is an attempt to give structure and richness totaxtual descriptions available on the
web. This approach can benefit several types of FLOSS contributors by enabling them to extend
the use of support software tools for antipattern technology to FLOSS community antepattens.
We will describe these different types of FLOSS contributors in Section4 and we will illustrate
the use of support software tools for antipattern technology Section5.

Proc. OpenCert 2011 6 / 16



ECEASST

Name Big Show

Central Concept Describes the scenario in which companies will work for several months on a
software project behind closed doors before announcing it to the public.

Dysfunction The project members are assigned to “secret” projects and interact less with the com-
munity, and the end result is a big code drop, which has not hadpublic peer review and wasn’t
listed on any roadmap before its announcement, resulting inpeople outside the company feel-
ing like second class citizens.

Explanation This behaviour negatively impacts the ability of a FLOSS community to grow outside
corporate walls.

Band-Aid Unfortunately, no short term coping strategy can be used forthose with neither influ-
ence nor time to refactor it. A company can only choose to share a project with the FLOSS
community or can choose to keep it internal.

Self-Repair Adopt an “Open” strategy for company-based FLOSS projects.

Refactoring Try to understand the benefits for the company by sharing a project from its beginning
to its completion. Costs can be cut by increasing the numbersof developers working from
outside the company and additional functionality can be implemented by having more devel-
opers working on the project. As long the license is chosen correctly the company can protect
itself without keeping projects secret.

Identification The following identification instrument can help you determine if your organisation
tends to use one-dimensional management techniques. Please respond to the following state-
ments with Yes or No.

• My projects FLOSS community only communicates internally,within the company.

• No public peer review is taking place and no documentation isshared with other devel-
opers outside the company.

Figure 2: Big Show Antipattern.

4 Antipatterns Users within the FLOSS Development Process

In addition to the 56 community level antipatterns considered in Section3 different kinds of
traditional antipatterns that have been documented in the literature [BMMM98, LN06] and the
Web [Malb, Mala, WCa, WCb] can be used at either development level by FLOSS developers
(active developers or contributors) or at managerial level(by project leaders or the company
which leads the community). Therefore, defining the FLOSS contributor types that could benefit
from this technology is very important. These are:

Developers who are the biggest part of the community by contributing andby reporting bugs.
They can benefit from both development antipatterns that have been already documented
in the literature and antipatterns that are specific to the FLOSS community.

Users of the software, who are also part of the community and download software or exchange

7 / 16 Volume 48 (2012)



Using antipatters in FLOSS development

messages in mailing lists. They mainly benefit from community level antipatterns.

Companies FLOSS might be a crucial element in a product or service provided by a company
and this company will have to be active or even lead the community [Saa]. Companies
benefit from both community level antipatterns [Ber11] and management antipatterns that
have been already documented in the literature.

Leaders or Managers of open source communities can benefit from the existence of project
management antipatterns that exist in the literature and the Web.

Learners Students and free learners that participate in FLOSS projects in order to learn from
more advanced developers or wish to experience FLOSS development. They can benefit
from all kinds of antipatterns.

5 Supporting FLOSS antipatterns using software tools

The antipattern ontology [SMSB11a] has been developed using the Web Ontology Language
(OWL) and defines antipatterns in terms of concepts and relationships. As a first step towards the
use of tool-supported antipattern technology within FLOSScommunities, the OWL antipattern
ontology has been enriched with data from 13 FLOSS communityantipatterns that exist on the
Web.

Antipattern attributes (i.e. causes, symptoms and consequences) are treated as different ontol-
ogy concepts and using ontology properties (i.e. cause-to-symptom) a contributor of an antipat-
tern can define how antipattern concepts are related. The ontology currently contains both closed
and open source software antipatterns. Anyone can become anantipattern author and contributor
by accessing the Web-based version of the antipattern ontology.

This information is then used as the knowledge base of an intelligent system that can detect
which antipatterns exist in a software project using a symptom-based approach [SMSB11b].
SPARSE, the intelligent system that uses this ontology has been released as an open source
project [Sou]. The tool mimics the behaviour of an expert on antipatternsand can be used
to support FLOSS projects by helping any FLOSS contributor type to identify, document and
share antipatterns. In this sense antipatterns can benefit the certification of FLOSS projects by
improving the quality of the software code, the FLOSS project practices and the community
itself.

There are three underlying technologies involved in SPARSE[SMSB11b]:

Ontologies through the use of the OWL ontology language;

Description Logic (DL) reasoners through the use of the Pellet DL reasoner;

Production rule engines through the use of the CLIPS production rule engine.

The tool operates by importing the antipattern ontology file. FLOSS contributors can choose
the visible symptoms that exist in a FLOSS project using the interface shown in Figure3. This
information can then be used from SPARSE in order to detect antipatterns using the reason-
ing mechanism of SPARSE. The result window displays two setsof antipatterns as shown in

Proc. OpenCert 2011 8 / 16



ECEASST

Figure 3: Selecting a set of symptoms that exist in a softwareproject using SPARSE.

Figure4. On the left hand side there are the related symptom-based antipatterns, which are an-
tipatterns linked through their symptoms. Antipatterns that appear on the right hand side are
related through causes or consequences. By clicking on an antipattern SPARSE displays the
description and the refactored solution of the antipattern. By selecting the explanations option,
SPARSE provides explanations to the learner on the reasons that a specific antipattern has been
proposed.

Figure5 illustrates an example of the explanations that SPARSE provides on how a selected
symptom is linked through causes and consequences of other antipatterns. In this example the
symptom ”Big Code Drop” was selected (Figure3), which is a primary symptom in the ”Big
Show” antipattern presented in Figure2. After executing SPARSE, the tool returned the ”Big
Show” antipattern because the ”Big Code Drop” is defined as a symptom of the ”Big Show”
antipattern in the antipattern ontology. However, the toolalso returned other semantically re-
trieved antipatterns which relate antipatterns through causes and consequences. By selecting the
”Road to Nowhere” antipattern and selecting the explanations option, the tool displays the win-
dow shown in Figure5. This window explains why the antipattern ”Road to Nowhere”might be
a relevant result together with the relationships that madethe tool reach this conclusion.

FLOSS contributors can further use the system by visiting the antipattern ontology Webpro-
tege installation [SMSB11a] in order to participate in the enrichment of the content of the ontol-
ogy or edit the existing antipatterns according to their user rights. Moreover, FLOSS contributors

9 / 16 Volume 48 (2012)



Using antipatters in FLOSS development

Figure 4: SPARSE result window for antipatterns related through causes or consequences.

are encouraged and asked to create discussions regarding enrichment and changes to the ontology
in order to further increase the communication within FLOSSprojects.

The antipattern ontology has recently been enriched [SCF12] with probabilistic information
describing the certainty with which a cause, symptom or consequence of an antipattern exists in a
software project. This makes SPARSE even more intelligent and effective as uncertainty is taken
into account. As a result FLOSS developers are also given theoption to populate the ontology
with their belief on the degree of existence of an antipattern cause, symptom or consequence.
This technique is described in detail elsewhere [SCF12].

6 Using Antipatterns to support the FLOSS Certification Process

Community level antipatterns are strongly related to the notion of quality by developmentde-
fined by Shaikh and Cerone [SC09] as specific to the FLOSS development process. Quality by
development aims to measure the efficiency of all development and communication processes
involved in the production, evolution and release of sourcecode, its execution, testing and re-
view, as well as bug reporting and fixing [SC09]. The idea ofquality by development, therefore,
is an attempt to measure the efficiency of such processes and the interaction between them.

Shaikh and Cerone identify factors that characterise the inherent quality aspects of these pro-

Proc. OpenCert 2011 10 / 16



ECEASST

Figure 5: The explanation window of SPARSE describing why anantipattern might be a relevant
result.

cesses, but also observe that it is the overall management ofthe project to play a more central
role, with communication and coordination being the two keyaspects of this. Management qual-
ity aspects that cannot be fully captured by Shaikh and Cerone’s quality model, may instead be
described in terms of antipatterns. “Make the project depend as much as possible on difficult
tools”, “provide no documentation”, “employ large amountsof legalese”, “governance obfusca-
tion” and “don’t answer queries” are examples of community level antipatterns that have been
described by Josh Berkus [Ber11].

Symptoms of these antipatterns may be detected through the analysis of communications and
the activities of the FLOSS project. Collaboration in FLOSSprojects is highly mediated by the
usage of tools, such as versioning systems, mailing lists, reporting systems, etc. These tools serve
as repositories which can be data mined; data can be selectively collected and then analysed not
only by using inferential statistics to identify activity patterns [SC10] but also by using ontol-
ogy engineering formalisms that support the extraction of semantic information. Appropriate
ontologies aiming to identify symptoms of antipatterns as well as the solutions applied to solve
such antipatterns [SMSB11a], together with measures for the severity of the antipatterns and the
effectiveness of the applied solution, can enable the extraction of quantitative information to be
used as a measure for quality by development.

One problem in using antipattern in a formal certification process is that their identification is

11 / 16 Volume 48 (2012)



Using antipatters in FLOSS development

essentially qualitative. Let us consider the “Spaghetti Code” antipattern illustrated in Figure1.
The first statement in the identification instrument

My code has a complex and tangled structure

refers to a code complexity that can be quantified using cyclometric complexity. In general,
more sophisticated metrics for technical quality [CV08] could be customised to detect specific
antipatterns that describe coding problems.

The second statement

The program has been continuously modified over a long life cycle.

can be quantified in terms of the number of changes made to the code. FLOSS repositories, such
as versioning systems, may be data mined to extract this quantitative information. The other two
statements

Interaction between OO objects is minimal.

Inheritance and polymorphism aspects of OO methods are not used.

are very specific to OO programming style. Their quantification can be carried out by parsing the
code to identify and count occurrences of interactions between OO objects as well as occurrences
of usage of inheritance and polymorphism.

One way to foster such a quantitative process of antipatternidentification is to incorporate
quantitative measures and calculation mechanisms in the identification part of the antipattern
description. This is especially important in community antitpattern, for which there is often
no technical basis for identification. In addition, community antipatterns are often too context
specific and usually describe very extreme situations. In reality, between such extreme situations
and an ideal situation there is a whole range of variations, which can be adequately quantified
and thus contribute to a measure of quality by development.

For example, the “Big Show” antipattern illustrated in Figure 2 describes a very extreme situ-
ation in which:

companies will work for several months on a software projectbehind closed doors
before announcing it to the public.

as documented in theCentral Concept of the antipattern. Such a situation may be generalised
to a wider range of cases as follows:

companies limit communication and sharing with developersoutside the company
as well as the commit rights of such external developers.

In this enlarged context, we can identify a new, more generalantipattern, which incorporate the
“Big Show” antipattern as an extreme case and can be identified by considering several measures
that characterise contributors and contributions such as:

• the ratio between internal and external developers;

• the number of external reviewers contributing to the project;

Proc. OpenCert 2011 12 / 16



ECEASST

Name Shyness

Central Concept Describes the scenario in which companies limit communication and sharing with
developers outside the company as well as the commit rights of such external developers.

Dysfunction ...

...

Refactoring ...

Identification Please calculate the following.

• R= the ratio between internal and external developers;

• ER= the number of external reviewers contributing to the project;

• EC= the number of external contributors;

• ...

Then calculateI = f (R,ER,EC, ...)

Figure 6: Shyness Antipattern.

• the number of external contributors.

Such an antipattern can be called “Shyness” antipattern to highlight that developers from the
company appear “shy” in communication and sharing with the external community. A partial
description of such “Shyness” antipattern is given in Figure 6. The key differences with respect
to the “Big Show” antipattern illustrated in Figure2 are theCentral Concept, which is more
general and less extreme, and theIdentification , which consists of a precise measuring mecha-
nisms rather than a mere list of questions. The final calculation of the identification measureI
is given by a functionf , whose value increases when argumentR increases and decreases when
either argumentsERor argumentEC increases.

Once the antipattern is characterised by an identification measureI with respect to the FLOSS
project under certification process, we can define the weightW of the antipattern in the certifica-
tion process as directly proportional toI and to a measureSof the severity of that antipattern and
inversely proportional to the effectivenessE of the refactoring solution provided by the antipat-
tern. In fact, a very effective refactoring solution represents a roadmap towards an improvement
of the quality of the development process, thus decreasing the negative impact of the antipattern
on software quality. Finally, it is important to notice thatseverityS is related to the context of
the FLOSS project, including the structure and compositionof the FLOSS community and the
project aims and application domain.

We summarise our approach to the use of antipatterns within the FLOSS certification pro-
cess in Figure7: the questions-based identification of the template illustrated in in Figure1 is
turned into a quantitative identification based on precise measuring mechanisms, which operate
by applying appropriate quality metrics to quantitative data that can be collected by data mining

13 / 16 Volume 48 (2012)



Using antipatters in FLOSS development

Questions-based
Identification

-

Quantitative

Identification

I = f (R,ER,EC, ...)

FLOSS Repositories

?
data mining

6

apply

Quality
Metrics

� I

� E

Antipattern Measure

W ∝ I∗S
E

Context -S

?
towards

Certification

Figure 7: Quantitative Identification Process.

FLOSS repositories; the quantitative identification process provides an identification measure
of the antipattern that together with the severity of the antipattern and the effectiveness of the
antipattern refactoring solution result in the antipattern measure to be used in the certification
process.

7 Conclusion and Future Work

We have presented the potential benefits of antipatterns usage within the FLOSS development
process to allow various types of users to overcome problemsthat may affect the certification
of the FLOSS product. The enrichment of the OWL antipattern ontology with data from 13
FLOSS community antipatterns provides a way of realising these potential benefits. There are
clear advantages to the certification of FLOSS software thatcome from improving the quality
of the developed software both at a development level and by overcoming FLOSS community
problems. The strong social aspect of the collaborative development of the antipattern ontology
will ultimately increase the communication among the different types of FLOSS contributors and
will provide a platform in which FLOSS users can discuss their problems and possible solutions
using antipatterns.

We have also suggested how to relate antipatterns, especially community level antipatterns,
and their applied solutions to FLOSS quality by developmentas part of a FLOSS certification
process. Development within a FLOSS projects is not dictated by prescriptive rules, but natu-

Proc. OpenCert 2011 14 / 16



ECEASST

rally emerges as the product of community activities. FLOSScommunity antipatterns describe
therefore dysfunctions that negatively affect the qualityof the FLOSS product [Cer12].

Finally, we have proposed a framework to identify the antipatterns that may affect the quality
of the FLOSS product and to provide a measure that quantifies the negative effect of such antipat-
terns on quality. Although we have proposed proportionality relationships between the negative
weight of an antipattern for the quality by development and both the severity of the antipattern
and the effectiveness of the applied solution, it is still anopen problem how to fully characterise
severity and effectiveness in order to completely define theantipattern measure. The use of such
an antipattern measure in the definition of a metric for quality by development is part of our
future work and would be essential in the creation of a FLOSS certification process.

Acknowledgements: This work has been supported by Macao Science and TechnologyDevel-
opment Fund, File No. 019/2011/A1, in the context of the PPAeL project.

Bibliography

[Ber11] J. Berkus. How to destroy your community. 2011.
http://lwn.net/Articles/370157/

[BMMM98] W. Brown, R. Malveau, H. McCormick, T. Mowbray.AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. Wiley Computer publishing, 1998.

[Cer12] A. Cerone. Learning and Activity Patterns in OSS Communities and their Impact
on Software Quality. InProceedings of OpenCert 2011. Volume 48 of Electronic
Communications of the EASST. 2012.

[CV08] J. P. Correia, J. Visser. Certification of Technical Quality of Software Products.
In Proceedings of the OpenCert and FLOSS-FM 2008 joint Workshop. UNU-IIST
Research Report 398, pp. 35–51. 2008.

[Leu08] T. Leung. OReilly OSCON Open Source Convention. 2008.

[LN06] P. Laplante, P. Neil.Antipatterns: Identification, Refactoring and Management.
Taylor and Francis, 2006.

[Mala] N. Malik. Software Project Management Antipattern Blog, Pardon my dust.
http://blogs.msdn.com/nickmalik/archive/2006/01/19/PMAntipattern-Pardon-My-Dust.aspx

[Malb] N. Malik. Software Project Management Antipattern Blog, Project Managers who
write specs.
http://blogs.msdn.com/nickmalik/archive/2006/01/03/508964.aspx

[Nea11] D. Neary. OSS community management Wiki. 2011.
http://communitymgt.wikia.com/wiki/Category:Anti-patterns

15 / 16 Volume 48 (2012)

http://lwn.net/Articles/370157/
http://blogs.msdn.com/nickmalik/archive/2006/01/19/PMAntipattern-Pardon-My-Dust.aspx
http://blogs.msdn.com/nickmalik/archive/2006/01/03/508964.aspx
http://communitymgt.wikia.com/wiki/Category:Anti-patterns


Using antipatters in FLOSS development

[O’B] T. O’Brien. 6 Open Source Community Anti-patterns (orLess Talk. More Do.).
http://www.discursive.com/2010/12/02

[Saa] M. Saastamoinen. Managing OSS As an Integrated Part ofBusiness (OSSI), The
linux foundation.
https://fossbazaar.org/content/managing-oss-integrated-part-business-ossi-final-report

[SC09] S. A. Shaikh, A. Cerone. Towards a metrics for Open Source Software Quality. In
Proceedings of OpenCert 2009. Volume 20 of Electronic Communications of the
EASST. 2009.

[SC10] S. K. Sowe, A. Cerone. Integrating Data from MultipleRepositories to Analyze
Patterns of Contribution in FOSS Projects. InProceedings of OpenCert 2010. Vol-
ume 33 of Electronic Communications of the EASST. 2010.

[SCF12] D. Settas, A. Cerone, S. Fenz. Enhancing ontology-based antipattern de-
tection using Bayesian networks.Expert Systems with Applications, 2012.
doi:10.1016/j.eswa.2012.02.049.
http://www.sciencedirect.com/science/article/pii/S095741741200293X

[SMSB11a] D. L. Settas, G. Meditskos, I. G. Stamelos, N. Bassiliades. Detecting antipatterns
using a Web-based collaborative antipattern ontology knowledge base. InProc. of
ONTOSE 2011. Volume 83, pp. 478–488. Springer, 2011.

[SMSB11b] D. L. Settas, G. Meditskos, I. G. Stamelos, N. Bassiliades. SPARSE: A Symptom-
based Antipattern Retrieval Knowledge-based System UsingSemantic Web Tech-
nologies.Expert Systems with Applications, Elsevier38(6):7633–7646, 2011.

[Sou] Sourceforge. SPARSE – Antipattern detection system.
http://sourceforge.net/projects/sparse-antipatt/?source=directory

[WCa] Wiki-Community. Pattern Community Antipattern Catalogue.
http://c2.com/cgi/wiki?AntiPatternsCatalog

[WCb] Wiki-Community. Wikipedia Antipatterns Community Catalogue.
http://en.wikipedia.org/wiki/Anti-pattern

Proc. OpenCert 2011 16 / 16

http://www.discursive.com/2010/12/02
https://fossbazaar.org/content/managing-oss-integrated-part-business-ossi-final-report
http://www.sciencedirect.com/science/article/pii/S095741741200293X
http://sourceforge.net/projects/sparse-antipatt/?source=directory
http://c2.com/cgi/wiki?AntiPatternsCatalog
http://en.wikipedia.org/wiki/Anti-pattern

	Introduction
	Antipatterns
	FLOSS Community Antipatterns
	Antipatterns Users within the FLOSS Development Process
	Supporting FLOSS antipatterns using software tools
	Using Antipatterns to support the FLOSS Certification Process
	Conclusion and Future Work

