Electronic Communications of the EASST

Volume 48 (2012)

Proceedings of the
Fifth International Workshop on on Foundations
and Techniques for Open Source Software Certification
(OpenCert 2011)

Using antipatterns to improve the quality of FLOSS develepm
Antonio Cerone and Dimitrios Settas

16 pages

Guest Editors: Luis Soares Barbosa, Dimitrios Settas

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Using antipatterns to improve the quality of FLOSS developnent

Antonio Cerone! and Dimitrios Settas?

1 antonio@iist.unu.edu 2 settdimi@iist.unu.edu
UNU-IIST — International Institute for Software Technolog
United Nations University, Macau SAR China

Abstract: Antipatterns have been mostly reported in closed sourdsvamd en-
vironments. With the advent of Free/Libre Open Source So#wFLOSS), re-
searchers have started analysing popular FLOSS projesking vitality indica-
tors and success patterns. However, an impressively higtempage of FLOSS
projects are unsuccessful. Moreover, even in the sucdessses of FLOSS there
can be found tracks of failed attempts, dead-ends, forks)ddnments etc. FLOSS
antipatterns can help developers to improve their code mptdave the communi-
cation and collaboration within the FLOSS community. Irsthaper, we present
some example of FLOSS antipatterns and discuss the behefithey bring to var-
ious FLOSS user roles. Furthermore, we present ontologgebéechnology and
software tools that can be used to assist FLOSS developérsoammunity users to
identify, document, share antipatterns and use these misohs to assist FLOSS
projects conform to specified requirements. Finally, weppse a framework for
the quantitative identification of the antipatterns to usejaality indicators in the
certification of FLOSS products.

Keywords: FLOSS development, antipatterns, certification, ontology

1 Introduction

An antipattern is a new form of pattern that has two solut{@dMM98]. The firstis a problem-
atic solution with negative consequences and the otherafaatored solution, which describes
how to change the antipattern into a healthy solution. Thersesolution is what makes antipat-
terns beneficial. The difference is in the context: An artgra is a pattern with inappropriate
context and is particularly useful in the case of knowledg®esentation, because it captures ex-
perience and provides information on commonly occurrinigt&ms to problems that generate
negative consequencesNO06]. The process that is followed by a pattern to change itstieolu
into a better one is called refactoring. This solution hasrgroved structure that provides more
benefits than the original solution and refactors the systsvard minimised consequences.
FLOSS anti-patterns are not yet explored to the same exsent@osed source. In addition,
because FLOSS and closed source software produce codevasjngjfferent development pro-
cesses, FLOSS antipatterns are quite different in natora their closed source counterparts.
There exist different categories of antipatterns. Acamydb the literature BMMM98, LNOG]
closed source software antipatterns exist at a developraestiitectural and managerial level.
FLOSS antipatterns mostly exist at a community level andriles social and managerial is-
sues regarding communication, interaction and coordinagimong developers that participate

1/16 Volume 48 (2012)

mailto:antonio@iist.unu.edu
mailto:settdimi@iist.unu.edu

Using antipatters in FLOSS development @

in FLOSS projects. However, closed source software dewsdop antipatterns are also applica-
ble in FLOSS projects and can greatly affect the quality afiltmbosed and open source software
projects.

This paper describes how antipatterns can be used in FLO$& & by defining the sources
of these antipatterns and the different user roles of FLO@Baiterns. While antipatterns cannot
be used as a formal certification approach, different kinfdandipatterns (i.e. development,
community level) can be used

1. within the FLOSS development process to directly overepnoblems that may affect the
certification of the FLOSS product;

2. as part of the certification process to define indicatorthefquality of the development
process and the resultant FLOSS product.

Development antipatterns may help developers overcomenomy occurring coding problems.
For example, the “Spaghetti Code” antipatteBi[MM98] can be used to describe code that has
a complex and tangled control structure, especially onle séteral exceptions, threads, or other
“unstructured” branching constructs. Spaghetti code @andused by several factors, includ-
ing inexperienced programmers and a complex program wtashbken continuously modified
over a long life cycle. A solution proposed to resolve thepattern is using a formal and pre-
dictable style of coding such as that of Structured ProgramgmCommunity antipatterns can
help developers overcome problematic FLOSS practice$y asarticipation and motivation
problems, which are crucial to FLOSS development. For exaniphe Big Show” antipattern
[Neal] describes the scenario in which companies will work foresalmonths on a software
project behind closed doors before announcing it to theipuflhis behaviour negatively im-
pacts the ability of a FLOSS community to grow outside coapomvalls. The project members
are assigned to “secret” projects and interact less witlcdin@munity, and the end result is a big
code drop which has not had public peer review and was netlish any roadmap before its
announcement, resulting in people outside the compannelite second class citizens.

Since encountered coding problems and problematic contynpirgictices highlighted by such
antipatterns affect the quality of the FLOSS product, ontaripattern has been identified, it
may be incorporated in the certification process as a negqtiglity indicator.

One problem is that identifying antipatterns is essemtialjualitative process, in which symp-
toms are associated to antipatterns either directly oreaty by means of existing causal re-
lationships between antipatterns. Such a qualitativereatfl antipattern identification is not
adequate to the accuracy required by a formal certificatioegss. In order to overcome this
problem, metrics for technical quality, based on the ISG/EA.26 standard, that have been suc-
cessfully applied to proprietary software as well as to FBQSVO08] could be customised to
detect specific antipatterns that describe coding probsrois as the Spaghetti Code antipattern.

The rest of the paper is organised as follows. In Sediare give a short introduction to an-
tipatterns and to the way they are identified and used. Se8tiwesents an overview of FLOSS
community antipatterns whose descriptions are publiciilalile at the moment. Sectidriden-
tifies FLOSS contributor types that could benefit from aritgga technology. Sectios illus-
trates the tool support available for the antipattern tetdgy. Sectior6 proposes an approach
to a quantitative identification of antipatterns and to tkeérdtion of an antipattern measure to

Proc. OpenCert 2011 2/16

@ ECEASST

be used in the certification process of a FLOSS product.

2 Antipatterns

Brown et al.[BMMM98] define an antipattern as

a literary form that describes a commonly occurring sohutma problem that gen-
erates decidedly negative consequences.

When properly documented, an antipattern describgereeral form that defines the generic
characteristics of the antipatterns as well as

causeswhich led to the general form;

symptoms describing how to recognise the general form;

consequenceof the general form;

refactored solution describing how to change the antipattern into a healthieaton.

The general form of the antipattern provides an easily iflabte template for the class of prob-
lems addressed by the antipattern. Such general form camtherf structured and enriched with
additional template elements to best characterise theexbfar the existence of a particular
antipattern in order to reduces the most common mistakeiig ukesign patterns: applying a
particular design pattern in the improper context.

The first official template that can be used to document attdipes was provided by Brown
et al. [BMMM98]. The authors highlighted the importance of a template dkeoto define what
can be considered as an antipattern. This antipattern &enpbnsists of 18 elements. Some
of these elements are optional but others, such as the dertet characterise thgeneral
form and theRefactored Solution are required to be completed. Although this is the most
detailed template to describe antipatterns, it is not renended for FLOSS antipatterns, as it
requires background knowledge on completing specific @estsuch as the scale and the root
causes of the antipattern, which are not available for thetimmformally documented FLOSS
antipatterns.

Several other templates are available for documenting FE.@f&tipatterns. The Pseudo-
Antipattern template includes only the name of the antpatand what problems are addressed
[BMMM98]. This template is not very useful but has appeared on tleeriat to quickly describe
an antipattern. A more detailed version is the Mini-Anttpat template, which describes the two
solutions of the antipattern, the problematic solution #relrefactored solutiorBMMMZ98].
These informal templates can be used in order to quicklyridesan antipattern but they do not
capture important elements of FLOSS antipatterns suchusesasymptoms and consequences.

An appropriate compromise to address both the informalemtasion style of FLOSS an-
tipatterns and the information completeness and structaegled in a certification process is
the Laplante and Neil's templaté.l06] illustrated in Tablel. Here Dysfunction provide a
contextual description afyntomswhile Explanation describecausesandconsequences

3/16 Volume 48 (2012)

Using antipatters in FLOSS development @

Table 1: Laplante’s Antipattern template.

Name A short name that conveys the antipattern’s meaning.
Central Concept | The short synopsis of the antipattern in order to make the
antipattern identifiable.

Dysfunction The problems and symptoms with the current practice.
Vignette The antipattern in a real or prototypical situation,

it provides context and richness to the antipattern.

Explanation The expanded explanation including causes and consemience
Band-Aid A short term coping strategy for those who don't have the

influence nor time to refactor it.

Self-Repair The first step for someone perpetuating the antipattern.

Refactoring The required changes in order to remedy the situation and

their rationale.

Observations | Optional section for additional comments or items of note.

Identification An assessment instrument consisting of a list of questions

for diagnosis of the antipattern.

We will consider a slightly simplified version of LaplantecaNeil’s template consisting of 8
rather than 10 elements. We remove @lgservationselement, which is anyway optional in La-
plante and Neil's template, and thégnette element, since in a freedom-centred ecosystems as
a FLOSS community prototypical situations rarely occur arsihgle real situation may provide
an incomplete and possibly misleading context.

In order to exemplify how our modified template can be usedmchent a FLOSS antipat-
tern, the “Spaghetti Code” antipatterBNIMM98] has been documented (Figud§ using this
template. As already mentioned in the previous sectiondimglopment antipattern can be used
to describe code that has a complex and tangled controltsteyeespecially one with several
exceptions, threads, or other “unstructured” branchingstracts. This one page description
(Figure 1), provides a quick overview of this antipattern togethethvaetails on how it can be
identified and resolved.

3 FLOSS Community Antipatterns

FLOSS community antipatterns are very relevant to thefmation of FLOSS projects as they
describe ways to build stronger project communities witbaifve communication, collaboration
and management practices.

O’Brien [O’B] has recently proposed six OSS community antipatternsctwhre charac-
terised by six “personalities” that have emerged in the yasrs among FLOSS communities:
Rule maker, Open Source Politician, Attack Dog, Non-ctiting Pontificator, Back Room
Dealer and (Apache Way) Ambassador. For each of these tatipg O’Brien describes the
causes, symptoms and consequences as well as the refarioh that can make the antipat-
tern beneficial to a FLOSS project. For example, althoughk itmportant to have a few rule

Proc. OpenCert 2011 4/16

@ ECEASST

Name Spaghetti Code

Central Concept Due to hurry or some other pressure, some developers and tearganisation
do not follow any standard software structure of the projemtk.

Dysfunction Several exceptions, threads, or other “unstructured”direng constructs. This lea
to lack of clarity, to the extent that even the developer leiingill not be able to follow i
later if any problem arises during the software developrogcie.

Explanation The main cause for an organisation to get into such a situaiaue to either e
ploying people without having a strong base on design orégaéte training provided to t
developers.

Band-Aid Ruthless diligence combined with constant unit testing

Self-Repair If prevention of Spaghetti Code is an option, or if you have lilxury of fully engi-
neering a Spaghetti Code application, the following préative measures may be taken:

1. Itis crucial that any moderate or large-size project tgyva domain model as the bagis
of design and development.

2. After developing a domain model that explains the systequirements and the ranfie
of variability that must be addressed, develop a separaigrenodel.

Refactoring Using a formal and predictable style of coding such as th&tmictured Programming.
Refactoring the software includes performing the follogvaperations on the existing cod

1. Gain abstract access to member variables of a class ugiagsor functions. Write n
and refactored code to use the accessor functions.

2. Convert a code segment into a function that can be reuskdure maintenance a
refactoring efforts. It is vital to resist implementing tiBt-and-Paste AntiPatte
Instead, use the Cut-and-Paste refactored solution tarrepar implementations
the Cut-and-Paste AntiPattern.

3. Reorder function arguments to achieve greater consigtlnoughout the code base
4. Remove portions of the code that may become, or are alresbcessible. Repeatfld

failure to identify and remove obsolete portions of coderis of the major contributo
to the Lava Flow AntiPattern.

5. Rename classes, functions, or data types to conform totarpeise or industry stand
and/or maintainable entity. Most software tools providemrt for global renaming.

Identification The following identification instrument can help you detarenif your organisatio
tends to use one-dimensional management techniquesePé&sond to the following stat§l-
ments with Yes or No.

My code has a complex and tangled structure
The program has been continuously modified over a long liedecy

Interaction between OO objects is minimal.
Inheritance and polymorphism aspects of OO methods areseat u

Figure 1: Spaghetti Code Antipattern.

5/16 Volume 48 (2012)

Using antipatters in FLOSS development @

makers within the community, when their growth in numbersndividuals and their attempts
to advocate and enforce standards appear to hinder preelwctimmunity activities, it may be
necessary to split the community up into smaller, more fedusams, each governed by an ac-
tive code contributor, who is expected to have a naturalelecyl to avoid needless bureaucracy
[O'B].

Josh BerkusBerl]] has listed ten ways on how to destroy a FLOSS community. &hes
antipatterns are likely to arise when companies are ingdbbresven are leading FLOSS projects.
For example, a company leading a FLOSS project may pernlgrenevent anybody outside
the company from having commit access, respond evasivelydades and/or choose employees
who write no code as commiters on the project.

Leung [Leu0q has identified 22 FLOSS antipatterns and has provided askerst description
of each one. Most importantly he identified the lack of managat itself as an antipattern
emphasising the need for managing FLOSS projects.

Dave Neary Neal] has developed a Community Management Wiki in which he raaist
18 FLOSS community antipatterns. These antipatterns a@ided in more detail and include
the symptoms of each antipattern together with their refact solution. For example, the "anar-
chy” antipattern highlights the problems associated with"Free Software is all about absolute
Freedom” way of thinking. This kind of thinking leads to a &iaf anarchistic community where
a substantial proportion of members affirm a total right éffom of speech, freedom of expres-
sion, and other extreme libertarian principles. The rasudt community where no indiscretion
can easily be corrected, because any attempt to do so isysatess a limit to the absolute free-
dom of speech. Another important antipattern identified iy is the “Big Show” antipattern,
for which we give a detailed description in Figuitesing Laplante and Neil's modified template.
This antipattern describes the problematic practice irctvlai company will secretly operate on
a FLOSS project behind closed doors for several months éafionouncing it to the public.

These 56 antipatterns contain valuable knowledge that earséd by the users of a FLOSS
community in order to identify problematic practices or fiygtional processes that have been
previously documented as antipatterns.

The main source of FLOSS antipatterns is the Web, as no fuRb®SS community an-
tipatterns have been published elsewhere at the momenseTdmipatterns do not use official
antipattern templates proposed by Brogtral. [BMMM98] or Laplante and NeilllNO6]. They
are documented using a short textual description in ordguickly describe them and allow
users to memorise them easily. An open issue that has notéselned for community antipat-
terns is the lack of formalisation of this knowledge, whithfact, would be essential to enable
the use of software tools to support this technology as wetbaguantify the process of their
identification. Furthermore, as far as the authors are atta@re is no single knowledge base
that documents these antipatterns and allows their useftwase tools.

Our use of a modified version of Laplante and Neil’s templatdcument FLOSS community
antipatterns is an attempt to give structure and richnesaxtaal descriptions available on the
web. This approach can benefit several types of FLOSS caturibby enabling them to extend
the use of support software tools for antipattern technotog-LOSS community antepattens.
We will describe these different types of FLOSS contribsitor Section4 and we will illustrate
the use of support software tools for antipattern techno®gctions.

Proc. OpenCert 2011 6/16

@ ECEASST

Name Big Show

Central Concept Describes the scenario in which companies will work for savmonths on
software project behind closed doors before announcimgtiie public.

Dysfunction The project members are assigned to “secret” projects darhirt less with the co
munity, and the end result is a big code drop, which has nophatic peer review and was
listed on any roadmap before its announcement, resultipgaple outside the company fej§l-
ing like second class citizens.

Explanation This behaviour negatively impacts the ability of a FLOSS ommity to grow outsid
corporate walls.

Band-Aid Unfortunately, no short term coping strategy can be usedhfose with neither influ
ence nor time to refactor it. A company can only choose toeshasroject with the FLOS
community or can choose to keep it internal.

Self-Repair Adopt an “Open” strategy for company-based FLOSS projects.

Refactoring Try to understand the benefits for the company by sharingjagrivom its beginnin
to its completion. Costs can be cut by increasing the numifedgvelopers working fro
outside the company and additional functionality can beémgnted by having more dev-
opers working on the project. As long the license is choserecty the company can protegt
itself without keeping projects secret.

Identification The following identification instrument can help you deterenif your organisatio
tends to use one-dimensional management techniquesePé&sgond to the following stat§l-
ments with Yes or No.

e My projects FLOSS community only communicates internallighin the company.

e No public peer review is taking place and no documentatish#&ed with other dev
opers outside the company.

Figure 2: Big Show Antipattern.

4 Antipatterns Users within the FLOSS Development Process

In addition to the 56 community level antipatterns congdein Section3 different kinds of
traditional antipatterns that have been documented initdrature BMMM98, LNO6] and the
Web [Malb, Mala, WCa WCh] can be used at either development level by FLOSS developers
(active developers or contributors) or at managerial I€kgl project leaders or the company
which leads the community). Therefore, defining the FLOSS8rdautor types that could benefit
from this technology is very important. These are:

Developers who are the biggest part of the community by contributing bypdeporting bugs.
They can benefit from both development antipatterns that baen already documented
in the literature and antipatterns that are specific to th@ & community.

Users of the software, who are also part of the community and domchkoftware or exchange

7116 Volume 48 (2012)

Using antipatters in FLOSS development @

messages in mailing lists. They mainly benefit from comnyulleitel antipatterns.

Companies FLOSS might be a crucial element in a product or service peaviby a company
and this company will have to be active or even lead the conimm{iSad. Companies
benefit from both community level antipatterrizef 11 and management antipatterns that
have been already documented in the literature.

Leaders or Managers of open source communities can benefit from the existenceapég
management antipatterns that exist in the literature ami\tbb.

Learners Students and free learners that participate in FLOSS pgreojecorder to learn from
more advanced developers or wish to experience FLOSS geweltt. They can benefit
from all kinds of antipatterns.

5 Supporting FLOSS antipatterns using software tools

The antipattern ontologygMSB114 has been developed using the Web Ontology Language
(OWL) and defines antipatterns in terms of concepts andoakdtips. As a first step towards the
use of tool-supported antipattern technology within FL@88munities, the OWL antipattern
ontology has been enriched with data from 13 FLOSS commuamitipatterns that exist on the
Web.

Antipattern attributes (i.e. causes, symptoms and comse®s) are treated as different ontol-
ogy concepts and using ontology properties (i.e. caussatgetom) a contributor of an antipat-
tern can define how antipattern concepts are related. Tldoggtcurrently contains both closed
and open source software antipatterns. Anyone can becoargtipattern author and contributor
by accessing the Web-based version of the antipatternagytol

This information is then used as the knowledge base of alligatet system that can detect
which antipatterns exist in a software project using a sypmpbased approactsMSB111.
SPARSE, the intelligent system that uses this ontology &g beleased as an open source
project [Soy. The tool mimics the behaviour of an expert on antipatteand can be used
to support FLOSS projects by helping any FLOSS contribugpe tto identify, document and
share antipatterns. In this sense antipatterns can bemefiettification of FLOSS projects by
improving the quality of the software code, the FLOSS promactices and the community
itself.

There are three underlying technologies involved in SPARBESB11H:

Ontologies through the use of the OWL ontology language;
Description Logic (DL) reasoners through the use of the Pellet DL reasoner;
Production rule engines through the use of the CLIPS production rule engine.

The tool operates by importing the antipattern ontology #ieOSS contributors can choose
the visible symptoms that exist in a FLOSS project using titerface shown in Figurg. This
information can then be used from SPARSE in order to detetipaterns using the reason-
ing mechanism of SPARSE. The result window displays two skentipatterns as shown in

Proc. OpenCert 2011 8/16

@ ECEASST

|£) Semantic Antipattern Application EI

File

Symptoms

Available Symptoms Selected Symptoms

Automating_Development_tasks_with_abstraction Big code drop
B.ad Mews Intermediary

MEE

Bad design

Bathroom Meeded Before And After A Meeting With The
Blind Data Collection

Blind Metrics Collection

Blind implementaton Of Major Tasks

Boss s Mot Sought For Advice

Boss Meeded For Important Decisions

] 1 | [*]

[4]

Execute
Symptom Description

The end result is a big code drop, which has not had public peer review and wasn® tlisted on any roadmap before its
announcament

Figure 3: Selecting a set of symptoms that exist in a softwesgect using SPARSE.

Figure4. On the left hand side there are the related symptom-bagsgzhtierns, which are an-
tipatterns linked through their symptoms. Antipatternatthppear on the right hand side are
related through causes or consequences. By clicking on tpatiarn SPARSE displays the
description and the refactored solution of the antipatt®y selecting the explanations option,
SPARSE provides explanations to the learner on the reabanhs specific antipattern has been
proposed.

Figure5 illustrates an example of the explanations that SPARSEigeswon how a selected
symptom is linked through causes and consequences of attipatéerns. In this example the
symptom "Big Code Drop” was selected (Figusg which is a primary symptom in the "Big
Show” antipattern presented in Figu2e After executing SPARSE, the tool returned the "Big
Show” antipattern because the "Big Code Drop” is defined agngptom of the "Big Show”
antipattern in the antipattern ontology. However, the t&leb returned other semantically re-
trieved antipatterns which relate antipatterns througlses and consequences. By selecting the
"Road to Nowhere” antipattern and selecting the explanatigption, the tool displays the win-
dow shown in Figuré. This window explains why the antipattern "Road to Nowherggjht be
a relevant result together with the relationships that mihdeool reach this conclusion.

FLOSS contributors can further use the system by visitirgathtipattern ontology Webpro-
tege installation$MSB113in order to participate in the enrichment of the contenthaf dntol-
ogy or edit the existing antipatterns according to their dagéts. Moreover, FLOSS contributors

9/16 Volume 48 (2012)

Using antipatters in FLOSS development @

|) fesult Wircla - Retiewed Antipatterns

symptom-Matched Antipatterns (ordered by relevane) fll Other Useful Antipatterns (ordered by relevance)

i Show Road To Mowhere

All You Have Is A Hammer
Three-Headed Knight
Fruitess Hoops

Spineless Executive

Cage Match Megotator
Leader Mot Manager

D

1

Why?

Drescribes the scenario in which companies will wark for several months on a soffware project behind closed doors before announcing
it o the public. Refactoring Try to understand the benefits for the company by sharing a project from its beginning to its completion.
Costs can be cut by increasing the numbers of developers working from outside the company and additional functionality can be
implementad by having more developers working on the project. As long the license is chosen correctly the company can protect
itself withoUt keeping projects secret,

Close |

Figure 4: SPARSE result window for antipatterns relatedufjh causes or consequences.

are encouraged and asked to create discussions regardictyneent and changes to the ontology
in order to further increase the communication within FLQB&§ects.

The antipattern ontology has recently been enrict®@H12 with probabilistic information
describing the certainty with which a cause, symptom orequence of an antipattern exists in a
software project. This makes SPARSE even more intelligedtedfective as uncertainty is taken
into account. As a result FLOSS developers are also givepgtien to populate the ontology
with their belief on the degree of existence of an antipatte&ause, symptom or consequence.
This technique is described in detail elsewh&€IF13.

6 Using Antipatterns to support the FLOSS Certification Progess

Community level antipatterns are strongly related to thttonoof quality by developmerde-

fined by Shaikh and Ceron&{09 as specific to the FLOSS development process. Quality by

development aims to measure the efficiency of all developrard communication processes

involved in the production, evolution and release of sourade, its execution, testing and re-

view, as well as bug reporting and fixingC09. The idea ofquality by developmentherefore,

is an attempt to measure the efficiency of such processesarnatéraction between them.
Shaikh and Cerone identify factors that characterise therent quality aspects of these pro-

Proc. OpenCert 2011 10/16

@ ECEASST

| £:| Explanation Window EI@

& The anfipattern might be a relevant result, since the folowing relatonships hold with the
symptom-based retrieved anfipattern

Consequence Relationships

o The [Faillre to deliver" is a semanticalli—derived consequence in HROad ToNOwWHeres and &

semantically-derived consequence in

o The [Frlsiration" is a secondary consequence in fRoad ToMowhers: and a semantically-derived
consequence in

o The [Rediced motivaton" is a semanticalli—derived consequence in MROaC T o Nowheres and a

semantically-derived consequence in

Figure 5: The explanation window of SPARSE describing whguatipattern might be a relevant
result.

cesses, but also observe that it is the overall managemehe giroject to play a more central
role, with communication and coordination being the two &sgects of this. Management qual-
ity aspects that cannot be fully captured by Shaikh and @&sajuality model, may instead be
described in terms of antipatterns. “Make the project ddpes much as possible on difficult
tools”, “provide no documentation”, “employ large amouafdegalese”, “governance obfusca-
tion” and “don’t answer queries” are examples of commurgtyel antipatterns that have been
described by Josh BerkuB¢ri11].

Symptoms of these antipatterns may be detected througmétigsés of communications and
the activities of the FLOSS project. Collaboration in FLOSBSjects is highly mediated by the
usage of tools, such as versioning systems, mailing lisg®rting systems, etc. These tools serve
as repositories which can be data mined; data can be selgatllected and then analysed not
only by using inferential statistics to identify activityaierns §C1Q but also by using ontol-
ogy engineering formalisms that support the extractioneshantic information. Appropriate
ontologies aiming to identify symptoms of antipatterns &l &s the solutions applied to solve
such antipatternsSMSB113, together with measures for the severity of the antipagiend the
effectiveness of the applied solution, can enable the eidraof quantitative information to be
used as a measure for quality by development.

One problem in using antipattern in a formal certificationgass is that their identification is

11/16 Volume 48 (2012)

Using antipatters in FLOSS development @

essentially qualitative. Let us consider the “Spaghetti€@ntipattern illustrated in Figurke
The first statement in the identification instrument

My code has a complex and tangled structure

refers to a code complexity that can be quantified using ayetdc complexity. In general,
more sophisticated metrics for technical quali§M08] could be customised to detect specific
antipatterns that describe coding problems.

The second statement

The program has been continuously modified over a long liédecy

can be quantified in terms of the number of changes made tothe ELOSS repositories, such
as versioning systems, may be data mined to extract thigitatare information. The other two
statements

Interaction between OO objects is minimal.
Inheritance and polymorphism aspects of OO methods areseaot u

are very specific to OO programming style. Their quantif@atan be carried out by parsing the
code to identify and count occurrences of interactions betwOO objects as well as occurrences
of usage of inheritance and polymorphism.

One way to foster such a quantitative process of antipatteEmtification is to incorporate
guantitative measures and calculation mechanisms in giftation part of the antipattern
description. This is especially important in communityitgaittern, for which there is often
no technical basis for identification. In addition, commuyrantipatterns are often too context
specific and usually describe very extreme situations. dlityebetween such extreme situations
and an ideal situation there is a whole range of variatiorgchvcan be adequately quantified
and thus contribute to a measure of quality by development.

For example, the “Big Show” antipattern illustrated in HigQ describes a very extreme situ-
ation in which:

companies will work for several months on a software proledtind closed doors
before announcing it to the public.

as documented in th@entral Concept of the antipattern. Such a situation may be generalised
to a wider range of cases as follows:

companies limit communication and sharing with develomenside the company
as well as the commit rights of such external developers.

In this enlarged context, we can identify a new, more gerargpattern, which incorporate the
“Big Show” antipattern as an extreme case and can be idehkifi€onsidering several measures
that characterise contributors and contributions such as:

e the ratio between internal and external developers;

e the number of external reviewers contributing to the prpjec

Proc. OpenCert 2011 12/16

@ ECEASST

Name Shyness

Central Concept Describes the scenario in which companies limit commuitinatnd sharing wit
developers outside the company as well as the commit ridtsisaln external developers.

Dysfunction ...

Refactoring ...
Identification Please calculate the following.
¢ R=the ratio between internal and external developers;
e ER=the number of external reviewers contributing to the pripjec

e EC = the number of external contributors;

Then calculaté = f(R EREC,...)

Figure 6: Shyness Antipattern.

e the number of external contributors.

Such an antipattern can be called “Shyness” antipatterrigidight that developers from the
company appear “shy” in communication and sharing with tktereal community. A partial
description of such “Shyness” antipattern is given in Fegaur The key differences with respect
to the “Big Show” antipattern illustrated in Figuiare theCentral Concept, which is more
general and less extreme, and ttentification, which consists of a precise measuring mecha-
nisms rather than a mere list of questions. The final caliomaif the identification measute

is given by a functionf, whose value increases when argunmiRiticreases and decreases when
either argument& Ror argumen€E&C increases.

Once the antipattern is characterised by an identificatieasurd with respect to the FLOSS
project under certification process, we can define the w#igbf the antipattern in the certifica-
tion process as directly proportionalltand to a measurgof the severity of that antipattern and
inversely proportional to the effectivenelsof the refactoring solution provided by the antipat-
tern. In fact, a very effective refactoring solution re@nes a roadmap towards an improvement
of the quality of the development process, thus decreabimgégative impact of the antipattern
on software quality. Finally, it is important to notice theveritySis related to the context of
the FLOSS project, including the structure and compositibthe FLOSS community and the
project aims and application domain.

We summarise our approach to the use of antipatterns witleir-t. OSS certification pro-
cess in Figure’: the questions-based identification of the template ilaist in in Figurel is
turned into a quantitative identification based on precisasaring mechanisms, which operate
by applying appropriate quality metrics to quantitativéaddat can be collected by data mining

13/16 Volume 48 (2012)

Using antipatters in FLOSS development @

FLOSS Repositories
data mining

Quantitative

Questions-based Identification

Identification | = f(REREC,...
I apply
S Antipattern Measure
Context .
) W O 15S E Quality
E Metrics
towards
Certification

Figure 7: Quantitative Identification Process.

FLOSS repositories; the quantitative identification pescprovides an identification measure
of the antipattern that together with the severity of thepattern and the effectiveness of the
antipattern refactoring solution result in the antipattereasure to be used in the certification
process.

7 Conclusion and Future Work

We have presented the potential benefits of antipatterrgeusdhin the FLOSS development
process to allow various types of users to overcome probteatsmay affect the certification
of the FLOSS product. The enrichment of the OWL antipattemtology with data from 13
FLOSS community antipatterns provides a way of realisirgg¢hpotential benefits. There are
clear advantages to the certification of FLOSS software ¢bate from improving the quality
of the developed software both at a development level andvbscoming FLOSS community
problems. The strong social aspect of the collaborativeldement of the antipattern ontology
will ultimately increase the communication among the défe types of FLOSS contributors and
will provide a platform in which FLOSS users can discussrtpepblems and possible solutions
using antipatterns.

We have also suggested how to relate antipatterns, edgemimhmunity level antipatterns,
and their applied solutions to FLOSS quality by developnanpart of a FLOSS certification
process. Development within a FLOSS projects is not didtate prescriptive rules, but natu-

Proc. OpenCert 2011 14 /16

@ ECEASST

rally emerges as the product of community activities. FL@8®munity antipatterns describe
therefore dysfunctions that negatively affect the qualitthe FLOSS productQer1d.

Finally, we have proposed a framework to identify the artgras that may affect the quality
of the FLOSS product and to provide a measure that quantifeesdgative effect of such antipat-
terns on quality. Although we have proposed proportiopatifationships between the negative
weight of an antipattern for the quality by development anthlihe severity of the antipattern
and the effectiveness of the applied solution, it is stilbpen problem how to fully characterise
severity and effectiveness in order to completely definattigpattern measure. The use of such
an antipattern measure in the definition of a metric for qudliy development is part of our
future work and would be essential in the creation of a FLO&S8fcation process.

Acknowledgements: This work has been supported by Macao Science and TechnDlegsi-
opment Fund, File No. 019/2011/A1, in the context of the APA®ject.

Bibliography

[Berll] J. Berkus. How to destroy your community. 2011.
http://lwn.net/Articles/370157/

[BMMM98] W. Brown, R. Malveau, H. McCormick, T. MowbrayAntiPatterns: Refactoring
Software, Architectures, and Projects in Crisigiley Computer publishing, 1998.

[Cer12] A. Cerone. Learning and Activity Patterns in OSS @amities and their Impact
on Software Quality. IrProceedings of OpenCert 201%lume 48 of Electronic
Communications of the EASST. 2012.

[CVO08] J. P. Correia, J. Visser. Certification of Technicalafty of Software Products.
In Proceedings of the OpenCert and FLOSS-FM 2008 joint WorkdiblU-IIST
Research Report 398, pp. 35-51. 2008.

[Leu08] T. Leung. OReilly OSCON Open Source Convention.&00

[LNO6] P. Laplante, P. NeilAntipatterns: Identification, Refactoring and Management
Taylor and Francis, 2006.
[Mala] N. Malik. Software Project Management Antipatterto@ Pardon my dust.
http://blogs.msdn.com/nickmalik/archive/2006/01AANtipattern-Pardon-My-Dust.aspx
[Malb] N. Malik. Software Project Management Antipatterfo8, Project Managers who
write specs.

http://blogs.msdn.com/nickmalik/archive/2006/01B18964.aspx

[Neall] D. Neary. OSS community management Wiki. 2011.
http://communitymgt.wikia.com/wiki/Category:Anti-fiarns

15/16 Volume 48 (2012)

http://lwn.net/Articles/370157/
http://blogs.msdn.com/nickmalik/archive/2006/01/19/PMAntipattern-Pardon-My-Dust.aspx
http://blogs.msdn.com/nickmalik/archive/2006/01/03/508964.aspx
http://communitymgt.wikia.com/wiki/Category:Anti-patterns

Using antipatters in FLOSS development @

[O'B]

[Saa]

[SCO9]

[SC10]

[SCF12]

T. O’Brien. 6 Open Source Community Anti-patterns (ass Talk. More Do.).

http://www.discursive.com/2010/12/02

M. Saastamoinen. Managing OSS As an Integrated P8&usihess (OSSI), The
linux foundation.
https://fossbazaar.org/content/managing-oss-intedtpart-business-ossi-final-report

S. A. Shaikh, A. Cerone. Towards a metrics for Openr@o8oftware Quality. In
Proceedings of OpenCert 2009olume 20 of Electronic Communications of the
EASST. 2009.

S. K. Sowe, A. Cerone. Integrating Data from MultiRepositories to Analyze
Patterns of Contribution in FOSS ProjectsAroceedings of OpenCert 201¥0l-
ume 33 of Electronic Communications of the EASST. 2010.

D. Settas, A. Cerone, S. Fenz. Enhancing ontolageth antipattern de-
tection using Bayesian network€Expert Systems with Applicatign2012.
doi:10.1016/j.eswa.2012.02.049.
http://www.sciencedirect.com/science/article/piBS041741200293X

[SMSB11a] D. L. Settas, G. Meditskos, I. G. Stamelos, N. Biases. Detecting antipatterns

using a Web-based collaborative antipattern ontology kedge base. Ifroc. of
ONTOSE 2011Volume 83, pp. 478-488. Springer, 2011.

[SMSB11b] D. L. Settas, G. Meditskos, I. G. Stamelos, N. Bases. SPARSE: A Symptom-

[Sou]

[WCa]

[WCb]

based Antipattern Retrieval Knowledge-based System Usargantic Web Tech-
nologies.Expert Systems with Applications, Else\@&(6):7633—7646, 2011.

Sourceforge. SPARSE — Antipattern detection system.
http://sourceforge.net/projects/sparse-antipattiftss=directory

Wiki-Community. Pattern Community Antipattern Clatgue.
http://c2.com/cgi/wiki? AntiPatternsCatalog

Wiki-Community. Wikipedia Antipatterns Communityatalogue.
http://en.wikipedia.org/wiki/Anti-pattern

Proc. OpenCert 2011 16/16

http://www.discursive.com/2010/12/02
https://fossbazaar.org/content/managing-oss-integrated-part-business-ossi-final-report
http://www.sciencedirect.com/science/article/pii/S095741741200293X
http://sourceforge.net/projects/sparse-antipatt/?source=directory
http://c2.com/cgi/wiki?AntiPatternsCatalog
http://en.wikipedia.org/wiki/Anti-pattern

	Introduction
	Antipatterns
	FLOSS Community Antipatterns
	Antipatterns Users within the FLOSS Development Process
	Supporting FLOSS antipatterns using software tools
	Using Antipatterns to support the FLOSS Certification Process
	Conclusion and Future Work

