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Abstract: Integration of robots into wireless networks is important for a number
of scenarios. One of the tasks is network exploration for which the most basic case
is finding the physical outline of the network. We propose a robust algorithm for
exploring the outline of a network with a mobile robot. For this algorithm we study
robustness against noise for several sensory inputs.
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1 Introduction

Wireless networks, ranging from cellular networks to ad hoc networks as used in car-to-car com-
munication, are becoming a crucial part of our communication infrastructure. Furthermore the
paradigm of the internet of things will add network capabilities to many objects, often via wire-
less interfaces [MF10]. These objects then will commence machine-to-machine communication.

Robots have to be able to integrate themselves in these different wireless networks for a lot
of usage scenarios like reading out the data of a decentralized sensor network. This enables
on the one hand machine-to-machine communication during which the robot can gather useful
information. On the other hand, integration into such networks or even constructing the networks
only from robots can offer third parties an ad hoc communication infrastructure as it is needed
for example in disaster scenarios.

All wireless technologies share the air as a physical medium. Many of these technologies work
in unlicensed Industrial, Scientific and Medical (ISM) bands which implies a lot of competition
for bandwidth between network technologies and also between users. This in turn leads to very
noisy characteristics of the network parameters of these networks which is on the one hand a
problem and offers interesting dynamics for new algorithms on the other hand. For static nodes
many algorithms and techniques exist that try to deal with these challenges. However robots,
as mobile network nodes, offer new ways of simplifying these tasks by exploiting sensorimotor
interaction. Most of the time this is done by letting the robot move and make use of correlations
between the gathered sensory data and knowledge about its egomotion.

Integration into these networks also means physical integration of the robot. Wireless com-
munication has more degrees of freedom than wired communication since no direct physical
connection is needed but it still poses some restrictions on the positioning of the robot depend-

1 / 12 Volume 56 (2013)

mailto:blum@informatik.hu-berlin.de
mailto:hafner@informatik.hu-berlin.de
http://koro.informatik.hu-berlin.de/


Robust Exploration Strategies for a Robot exploring a Wireless Network

ing on the task. These tasks include finding a position with good reception or localizing other
network nodes.

Since these tasks should be solved in an autonomous manner, no prior knowledge about the
network, i.e. topology, physical location of nodes, etc., should be necessary for the robotic
algorithms. Additionally all algorithms should only be based on local information in order to
enable scaling-up to several robots and arbitrary network sizes.

1.1 Problem Statement

Assuming no prior knowledge about the network, the first step of integrating a robot into a
wireless network is to gain knowledge about the physical and topological characteristics of this
network. This means exploration of the network. The first tasks to be solved for this include
finding the nodes and outlining the network. We assume that some very basic knowledge about
the position of the network is available insofar as the robot knows in which general direction the
network is located or that it is located in communication range of some network node.

We propose not to employ actual localization techniques for the network nodes because lo-
calization — in most cases trilateration — of nodes using only data from network parameters
is a difficult task. These difficulties are caused by the nonlinear relationship between Received
Signal Strength Indication (RSSI) and node distance which is especially pronounced in non-
line-of-sight scenarios. Furthermore most of these techniques use known positions of so called
anchor-nodes.

Thus, our algorithm consists of measuring only the relative direction of the nodes and to use
RSSI measurements only in a very basic and thus robust way. The direction measurements can
be performed in an arbitrary way, two of which are gradient estimation [HAK+09] and usage of a
directional antenna. The usage of RSSI should be restricted in a way which avoids the difficulties
of actual localization techniques in order to have low computational load and a robust algorithm.

We then determine the robustness of our algorithm in terms of sensory noise for both direc-
tion estimation and RSSI measurements. For this we perform a number of simulation runs and
conduct a parameter study in the amount of noise for both parameters.

1.2 Related Work

Localization of network nodes is a topic which has been extensively studied in the past for
wireless (sensor) networks [PAK+05]. Most of the related research is concerned with static
networks and cooperative localization of the static nodes or with localization of one mobile node
using the knowledge of the static nodes.

Robotic applications of exploration or navigation in wireless networks are often concerned
with ground based robots. Rotatable directional antennas on fixed nodes [EAM07] can be seen
as first very basic robotic nodes exploiting sensorimotor interaction. This approach has further
been explored for the usage with mobile robots [DFK11]. Directional antennas are not necessary
in order to extract directions from sensory information. Spatial gradients in RSSI measurements
can be extracted using odometry in order to get directions to network nodes [DGS09]. With even
more sophisticated statistical methods and a good a priori model of signal propagation, nodes
can even be accurately localized using RSSI measurements, odometry and information from a
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laser range finder [FK10].
For flying robots, more basic but also more robust algorithms are used because environmental

influences like wind are more pronounced and odometry is less reliable. RSSI based tethering
and also swarming has been explored extensively in projects like SMAVNET [HLZF10] or Air-
Shield [DRGW10]. Both use RSSI in a basic way to estimate distance to neighboring nodes and
thus maintain connectivity between the swarm nodes.

Our general idea of network robotics and the basic wireless network properties are described
in [BH12]. Further details and signal propagation models as well as noise models for wireless
communication are discussed in [Gol05].

We propose a new algorithm to explore the outlines of a wireless network. This is an im-
portant task when for example the coverage of a sensor network has to be evaluated or when a
mesh network is partly destroyed after a disaster. Our algorithm is computationally simple, uses
only directions to network nodes and uses RSSI measurements only in a very basic way. This
algorithm is very robust against different kins of noise for both sensory inputs. Furthermore, no
highly accurate odometry information is necessary.

2 Problem Setting

2.1 Robot Model

This algorithm is designed for a flying robot in open space which does not have to be concerned
with collision avoidance related to walls or other objects. Furthermore, we do not take special
dynamic characteristics of some typed of flying robots like fixed-wing flying robots into account
but assume a holonomic platform such as a multicopter.

No local positioning or odometry is necessary for this algorithm. Nevertheless, gradient esti-
mation algorithms may be based on odometry. Furthermore, odometry may be necessary in order
to use the information gathered by this exploration algorithm, i.e., measuring network coverage.
Most methods for estimating odometry employed on flying robots are based on vision.

Directional information needed for this algorithm is not assumed to come from a specific
source. The noise characteristics are assumed to be Gaussian which is true for a wide range
of (virtual) sensors. For this scenario a directional antenna can easily be exploited because we
assume a holonomic robot. Gradient based direction estimation needs basic odometry but has
been shown to also work well [DGS09].

2.2 Wireless Communication

In most cases direct signal-to-noise plus interference (SNIR) measurements are not possible be-
cause commodity radios such as those based on IEEE 802.11 are used. These radios do not allow
user access of actual physical parameters such as noise measurements or signal strengths. Nev-
ertheless, they often allow the user to access the so-called RSSI value of each received packet.
This value is sufficiently correlated with the real SNIR to use it as an estimator for basic tasks.
Actual localization using only this value however is a rather difficult task. The advantage of
using RSSI is that the measured values can uniquely be assigned to a specific network node. In-
formation about packages that were only partly received or were not strong enough to be decoded
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completely are mostly lost.
Most wireless communication technologies work in so called unlicensed ISM bands. Because

they are unlicensed, there can be a lot of competition for bandwidth resulting in very space- and
time-varying characteristics of network parameters. Thus, algorithms using these parameters
have to be very robust.

Even in free-space, RSSI measurements cannot easily be used for distance estimation. This is
due to the nonlinear relationship between RSSI and distance [Gol05]. For realistic scenarios this
relationship can also become very noisy because of physical characteristics such as multipath
fading or by interference from external sources. Sophisticated models such as those used in
[FK10] can partly deal with these problems but they are often computationally costly and rely
on accurate odometry and local self-localization.

Measuring directions to network nodes is more robust than distance measurements because it
needs less information but can nevertheless be very noisy. The algorithm has to be designed to
be able to deal with rather high levels of noise in the direction measurements.

3 Algorithm

Algorithm 1 Network exploration algorithm using direction measurements. The robot is moving
with a speed of ~v ( here |~v| = 1 for simplicity) and has some inertia abstracted by the use of α

(< 1). Network nodes are denoted by nodei. Parameters of the algorithm are lowThreshold and
highThreshold respectively. The user is required to have a general idea of the location of the
network in order to set the robot off into its general direction as a starting point for the algorithm.
Require: move with constant speed~v in general direction of network

while not reached starting point do
if some node in communication range then

measure RSSI of visible nodes {nodei}vis
choose node with highest RSSI node j

estimate direction ~d to node j (with |~d|= 1)
if RSSI of node j < lowThreshold then

~v← (1−α)~v+α~d . move in direction of node j
else if RSSI of node j > highThreshold then

~v← (1−α)~v−α~d . move away from direction of node j
else

~q =

(
q1
q2

)
=

(
−d2
d1

)
~v← (1−α)~v+α~q . move perpendicular to direction of node j to the left

move one step with~v

As discussed above, we only want to use directions to network nodes and no explicit distance
estimation. The idea of this algorithm is to use RSSI measurements in order to keep some fixed
distance to the closest node while circling it until the next node becomes the closest one. This
fixed distance is unknown and does not actually matter for the algorithm as long as it is in some
sensible range determined by the mean distance between neighboring nodes of the network and
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the maximum communication distance. The algorithm is described in Algorithm 1 and a typical
run is depicted in Fig. 1.

Figure 1: A typical run of the algorithm for a typical node placement is depicted. Shown are
the nodes as dots where their color denotes if they have been visited or not. Cyan nodes were in
communication range of the robot and blue nodes were not. Additionally, the maximum RSSI
value from all nodes is shown for every point as the underlying color plot. The black line is
the path the robot took in this run. In the shown simulation the measurements of the robot were
noise-free.

This algorithm is designed for two dimensions but can trivially be extended to arbitrary di-
mensions. Typical values for lowThreshold and highThreshold are −65dBm and −60dBm re-
spectively. We chose an abstracted robot inertia α = 0.1 as well as the aforementioned values
for the two parameters of the algorithm for the quantitative analysis.

This algorithm exhibits several elegant characteristics. Since the movement is asymmetric,
i.e., the robot always moves perpendicular to the left or on the axis of the direction of the node
but never perpendicular to the right, it can never get stuck. This is the same effect as solving a
maze by always keeping to the left wall [Sha51]. Because of the nondeterministic noise, the robot
can get stuck in very tight situations for some time due to the noise in the RSSI measurements
as shown in Fig. 2 but ultimately it will always escape due to noise again.

todo: reference to ants paper: always going to the left
The algorithm operates directly on the noisy direction measurement, which in this simulation
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Figure 2: A situation is shown where the robot got stuck in a narrow cavity between several
nodes forming some kind of cavity inside of the network. As can be seen, the robot does one
additional turn before it can escape this situation. This is a fully random process since it is mainly
due to the noise in RSSI measurements. The black line is the path the robot took, the nodes are
shown as black dots and the maximal RSSI value from all nodes is shown for every point as the
underlying color plot.

comes from some abstract sensor. In principle the movement of the robot should therefore also
be very noisy. This effect is however partly compensated by the inertia of the robot which acts
as a kind of mechanical low pass filter smoothing out some of the noise.

This algorithm could be trivially further improved by explicit averaging of the sensory input
and thus decreasing of the effective noise but this would only result in a speed increase and not
in an increased robustness. Since we were only interested in the robustness characteristics of this
algorithm, we chose not to employ this method.

4 Simulator

The simulator used here is strictly two dimensional which is a good approximation of a flying
robot at some fixed altitude. The robot is simulated as a point-like entity which is a good approx-
imation since we assume a holonomic robot and since the length scale of the communication
distance is of orders of magnitudes longer in relation to the size of the robot. The dynami-
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cal characteristics of the robot were abstracted to only using inertia. We chose not to simulate
environmental factors such as wind.

Our main goal was to investigate the robustness of the algorithm against noise so we chose
to abstract from actual signal propagation models and to only use the so called simplified path
loss model with an exponent of 3 [Gol05]. Additionally signal propagation models for a flying
robot are in general more simple because they often operate under line-of-sight conditions. We
also tested more complex — and thus more computationally costly — models which yielded
qualitatively identical results.

We chose to work with a flying robot because we are not interested in obstacle avoidance in this
scenario. Furthermore, having to rely on obstacle avoidance implies non-line-of-sight conditions
which in turn would necessitate much more complex signal propagation models which don’t
change our results qualitatively.

Noise was simulated by simply adding a random variable with the correct distribution to the
output of the simulator and feeding these values to the virtual sensors of the robot. The random
number generation was carried out by Pythons random package.

The nodes where placed in a random manner while guaranteeing a connected network. The
algorithm was inspired by NPART [MM09]. We modified this algorithm to get a more uniform
distribution of the nodes more typical of sensor or mesh networks. A typical distribution is
depicted in Fig. 1.

The simulated area was 4km by 4km with 200 simulated nodes with a communication range
of 150m. The simulator was implemented in Python using the standard packages NumPy/Scipy
[JOP+ ] and multiprocessing. Visualization was done using the matplotlib [Hun07] package.

5 Simulation

We are interested in the robustness of the algorithm against noise. The algorithm takes two kinds
of measurements, namely direction and RSSI. We model the noise on both sensory inputs as
Gaussian with zero mean and some standard deviation. The noise on the direction measurement
acts directly on the relative bearing angle between the robot and the network node for which the
direction is measured.

We performed a parameter study in the standard deviations of the two kinds of noise. For
the noise of the direction we chose an interval from approximately 9◦ to 72◦. The RSSI noise
spanned an interval from 0.5dBm to 4dBm. Both intervals were sampled at 8 positions yielding
64 different noise configurations. For both kinds of noise the two most extreme cases are depicted
in Fig. 3 in order to get a graphical intuition of the noise intervals used.

5.1 Effectiveness

For all runs we checked if the outline was a closed loop which is a measure of the effectiveness
of the algorithm. A closed look implies that the network was outlined correctly. This is true
because the network in simulation is known to be finite and by construction connected. The
initial movement towards the network, which can be seen as a straight line in Fig. 1, was not
taken into account in order to only assess the real outline of the exploration algorithm.
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150 100 50 0 50 100 150
direction [deg]

direction error 9 deg
direction error 72 deg

10 5 0 5 10
RSS [dBm]

RSSI noise 0.5 dBm
RSSI noise 4.0 dBm

Figure 3: Shown are the two most extreme noise distributions from the parameter study for the
two kinds of noise respectively. Remarkable is the most wide bearing angle distribution for
the direction measurements which spreads from −150◦ to 150◦ rendering a measured direction
almost worthless.

During our parameter study we performed 1000 simulations for each noise configuration in
order to be able to make statistically sound statements. Thus we performed a total of 64000
simulation runs. Every one of these simulations resulted in a closed loop independent of the
amount of noise.

From examination of results of single runs we know that the robot can get stuck in narrow
cavities between nodes as discussed above and depicted in Fig. 2. This figure shows a rather
short episode where the robot does one additional loop before being able to escape. Depending
on the actual node placement and noise realization, the robot can get stuck for an extended period
of time going in circles. Nevertheless, in each and every of the simulation runs the robot could
escape after some time thanks to the exploratory qualities noise brings into the system.

5.2 Robustness

Node placement as well as both noise components are random allowing statistical statements
about robustness. We ran 1000 simulation runs per noise configuration and for each run, i.e., for
each node configuration, we executed the algorithm once without noise as a baseline and once
with noise in order to study the effect of noise.

As metrics we choose the number of nodes which were in communication range of the robot
and the time it took to complete one loop in relation to the respective numbers generated by the
run without noise. Thus, the two metrics are fractions of the number of visible nodes and relative
algorithm speed.

The results of these simulations are depicted in Fig. 4. The plots show mean and standard
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deviation of both metrics, respectively.
The relative speed of the algorithm decreases as a function of noise where the increase is

independent of the kind of noise. The standard deviation shows roughly the same behavior. This
is to be expected since more noise in the sensory input also means more noise in the movement
of the robot leading to more jitter and a longer effective travelled distance.
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(a) Speed metric of the simulation data. Depicted are mean and standard deviation.
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(b) Fraction of visited nodes metric of the simulation data. Depicted are mean and standard deviation.

Figure 4: Results of the parameter study simulations. Depicted are the two metrics speed 4(a) and
fraction of visited nodes 4(b) with their mean and standard deviation respectively as a function
of the two kinds of noise. For each of the noise configurations (direction bearing angle noise and
RSSI noise) 1000 simulations were used as basis for each distribution.

The fraction of visited nodes shows a more interesting behavior. This metric is largely in-
dependent of the direction noise and only a function of noise in the RSSI measurements. The
standard deviation seems to be rather independent of both. For low RSSI noise levels this metric
is even greater than one, meaning that more nodes were discovered than the noise-free run did.
For larger noise levels, this metric again drops below one. There seems to be some optimal small
noise which in a way encourages exploration while degrading speed only in a minimal way.
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Remarkable is how much noise the algorithm actually can tolerate. A standard deviation of
72◦ means that very little information is actually transported in the sensory data (as can be seen
in Fig. 3). The results further suggest that even higher — but unrealistic — levels of RSSI noise
could be tolerated.

6 Summary

We presented an algorithm to explore the outline of a wireless network for a mobile robot and
the simulation framework in which this algorithm was evaluated. We did a parameter study in
simulation and were able to confirm the expected characteristics of the algorithm.

6.1 Conclusion

The algorithm is very robust against noise as expected. The performance naturally degrades
with increasing noise but its effectiveness is not affected. Small amounts of noise in the RSSI
measurements, which control the distance to the network nodes, can even be benefiting because
they increase exploratory behavior of the robot.

This very basic and computationally cheap algorithm can cope with very noisy measurements
and work with minimal information. Neither complex distance estimations nor odometry or self-
localization are necessary to complete this task. Algorithms such as the one presented which
try to work with as little explicit information as possible are best suited for a future world with
cheap autonomous robotic applications.

6.2 Future Work

The next step building on this algorithm will be to localize the network nodes. By exploiting
the sensorimotor interaction, this may be achieved without actual complex localization via RSSI
measurements but using the direction data gathered while outlining the network. Combining
this information with odometry of some kind could facilitate some rough localization of network
nodes which can be precise enough for a number of applications.

Enabling a robot to integrate itself into a wireless network in an autonomous way is our long-
term goal of this work. Further algorithms have to be developed or existing ones extended taking
more realistic physical scenarios like non-line-of-sight and obstacles into account and maybe
even exploiting these effects.

Acknowledgements: We thank everybody who contributed to the success of this project. This
includes the complete Lehrstuhl Kognitive Robotik and the DFG graduate research training
group METRIK, which also funds one of the authors.
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