
Electronic Communications of the EASST
Volume 56 (2013)

Guest Editors: Michael Zapf, Florian Evers
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the Combined workshop on

Self-organizing, Adaptive, and Context-

Sensitive Distributed Systems

and

Self-organized Communication in Disaster Scenarios

(SACS/SoCoDiS 2013)

Keeping Pace with Changes
Towards Supporting Continuous Improvements and Extensive Updates in

Production Automation Software

C. Haubeck, I. Wior, L. Braubach, A. Pokahr, J. Ladiges, A. Fay, W. Lamersdorf

12 Pages

Keeping Pace with Changes

Proc. SACS/SoCoDiS 2013 1 / 12

Keeping Pace with Changes
Towards Supporting Continuous Improvements and Extensive Updates

in Manufacturing Automation Software

C. Haubeck*, I. Wior
+
, L. Braubach*, A. Pokahr*, J. Ladiges

+
, A. Fay

+
, W. Lamersdorf*

* Distributed Systems and Information Systems, University of Hamburg

Vogt-Kölln-Straße 30, 22527 Hamburg, Germany

{haubeck, braubach, pokahr, lamersd}@informatik.uni-hamburg.de

+ Automation Technology Institute, Helmut-Schmidt-University

Holstenhofweg 85, 22043 Hamburg, Germany

{wior, ladiges, fay}@hsu-hh.de

Abstract: Every long-term used software system ages. Even though intangible goods like

software do not degenerate in the proper sense, each software system degenerates in

relation to the everlasting changes of requirements, usage scenarios and environmental

conditions. Accordingly, operational software is commonly situated in a continuous

evolution process in which manually conducted modifications and adaptations try to

preserve or reinforce its quality. Unfortunately, such an unmanaged evolution inevitably

leads to a discrepancy between the obsolete originally documented requirements and the

updated software itself. For this reason, our contribution presents a coherent vision of an

anti-aging cycle that preserves (non-)functional requirements as explicit runtime artefacts.

The fulfilment of these requirements is validated based on conditionally triggered online

test cases. In order to achieve an enhanced semantic test coverage, these test cases are

adapted by monitoring, analysing and learning typical system behaviours. To explain our

vision in more detail and demonstrate the benefit of a managed software evolution, our

anti-aging cycle is exemplarily applied on the domain of manufacturing automation.1

Keywords: Runtime testing, requirement validation, manufacturing automation

1 Introduction

Long-term used software systems suffer from degeneration and must be repeatedly adapted to

avoid a progressive decrease of quality and productivity of the system [Le80]. Nevertheless,

many of today's software development projects neglect gradual software aging, because of the

general assumption that intangible goods like software never suffer from any wearing [En09].

Even though the software itself does not degenerate in the proper sense, this assumption is a

common fallacy, since software always degenerates in relation to the everlasting changes of

requirements, usage scenarios and its underlying infrastructure. Naturally, not every software

system is equally affected by software aging, as a matter of fact systems with a relatively long

life cycle are more affected. One suitable example of long-living and aging software are

automation systems of production facilities. Production facilities have high investment costs

1 The authors acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG) for the project

"Forever Young Production Automation with Active Components" (“Design for Future” SPP 1593).

 ECEASST

2 / 12 Volume 56 (2013)

and hence are often operated many years or even decades. Such systems have short downtimes

and are operated in high cost pressure. Therefore, frequently occurring changes of the

hardware configuration or the functionalities must be carried out during a very restricted time

period or even during operation. In addition, production facilities are generally separated in

distributed components which are often embedded in specific technical environments. This

distribution exacerbates software aging by making it more difficult to access system

knowledge. Accordingly, operational software is commonly situated in a continuous evolution

process in which manually conducted software modifications and adaptations are performed to

satisfy changing requirements in order to preserve the existing quality [RB02]. In

consequence, the phase in which value is added to software products is shifting from the

development phase to later phases of the lifecycle [So12].

For this reason our contribution presents a coherent vision of how knowledge of the

development phase can be represented in software artefacts to be used at runtime. This enables

to perpetuate and use this information during the evolutionary enhancement of the system. In

order to present this vision, Chapter 2 illustrates our targeted evolution of requirements and

software, and the underlying hardware system by presenting two fundamental evolution

scenarios with which system operators need to deal nowadays. Subsequently, an anti-aging

cycle, which considers these scenarios and aims at providing a systematic evolution assistance

at runtime, is introduced. Chapter 3 then discusses the current research by presenting related

software engineering approaches. For a deeper understanding, Chapter 4 motivates and

introduces the production automation domain as a suitable application domain for studying

evolutionary systems. This chapter clarifies and demonstrates the benefits of our vision by

relating the various phases of the anti-aging cycle to a concrete production facility. The final

chapter draws the conclusions and presents further research goals.

2 Vision of a Managed Software Evolution

Since the decisive factor for evolution of operational software systems are general enterprise

objectives and processes [HAN99], this contribution proposes to separate software evolution

into two evolution scenarios originally inspired by Business Process Management [SS08]. The

first scenario describes continuous improvements in which software systems are adapted at

runtime. In this case modifications do not only include direct code changes, but also any other

adaptation activities that influence the system behaviour. The second scenario deals with

extensive updates which concern much more the internal structure of the software. These

recurrently occurring updates often affect several functionalities by extending or modifying

various aspects of the software. The main differences compared to continuous improvements

are that extensive updates are typically performed concurrently to the actual operation and

often include a planned requirements engineering process. The progress of software evolution

highly depends on the considered system. Nevertheless, both scenarios are usually necessary,

because without continuous improvements the software cannot keep up with the operational

usage, and without extensive updates the constant evolution may be limited to an insufficient

architecture or a fixed range of functionalities.

Regardless of the different evolution scenarios, the overall goal of any evolution must be to

preserve the fulfilment of its requirements. Since an explicit documentation is generally

considered as an annoying duty, changes of the requirements and of the software during

operational phases are often represented only implicitly in the actual system behaviour. This

leads to the conclusion that the software itself must take care of the fulfilment of its current

Keeping Pace with Changes

Proc. SACS/SoCoDiS 2013 3 / 12

requirements, and is to allow changes of the behaviour only if these are explicitly intended.

Self-modifying software has already made considerable progress; however in some operational

domains like production automation, self-modification is still not accepted due to strict safety

restrictions, the necessity of high expertise or the impossibility to project the system behaviour

on code level. Therefore, this contribution aims at introducing a concept for self-adapting

software under a (human) supervisor. This concept extends the system under consideration

(i.e. the physical system and the current control system) by adding a requirement-aware

supervising system. The latter allows for the specification, validation and learning of

requirements based on its current state, while all crucial decisions remains in the (human)

supervisor’s responsibility.

The Anti-Aging Cycle

The main vision of this paper is to establish a (semi)automatic anti-aging cycle that prevents or

at least counteracts the aging effect by establishing an adaptive monitoring and supervising

mechanism at runtime. As depicted in Figure 1, the anti-aging cycle consists of four different

phases which are needed to close the gap between originally specified requirements and the

degree to which the current system usage still corresponds to these documented requirements.

Phase 1 - Explicit representation of requirements: In order to allow for a general evolution

of requirements and software, the relevant knowledge must be identified, which is

indispensable for the longevity of the system under consideration. Therefore this knowledge

must be expressed in a requirement meta-model. In contrast to many existing approaches, the

meta-model allows for domain dependent requirement extensions. In addition, the meta-model

must provide means for evaluating their validity at runtime.

Phase 2 - Validation of the fulfilment of requirements: To validate software systems

different test cases have always been an essential and popular method. Hence, the second

phase of the cycle tries to exploit the method of test cases by introducing conditionally

triggered runtime test cases serving as a validation mechanism for their associated

requirements. In this context test cases have a quite wide meaning, since any activity that

compares an observed with a designated system behaviour can be a test case. The specification

of test-based requirements allows for an online abnormality detection engine which

(N)FRs

Conditional
Online Test Cases

Learning Test Cases
and Variations

Semantic
Test Coverage

monitored by

automatically

extended
allows for

verifies

Figure 1: The Anti-Aging Cycle

 ECEASST

4 / 12 Volume 56 (2013)

continuously observes the system behaviour in order to match actual behaviour against

expected behaviour. Since our approach does not associate observed behaviours with specific

code sections but reports detected abnormalities to be inspected, it leaves the responsibility of

modification decisions in the hands of a human supervisor. It is important to highlight that this

approach alone does not decide if an observed unknown and unforeseen behaviour is part of an

intended code modification or if the system itself produces an unintended behaviour. This

decision must be made by a supervisor which generally would be a human software operator,

but can possibly be replaced by decision approaches like software agents. Nonetheless, the

first two phases of the cycle provide a crucial support for adaption and evolution of software

systems, because with explicit requirement artefacts and conditional triggered test cases the

system can validate if its current requirements are still satisfied by the modified software.

Phase 3 - Learning and extension of test cases: Since test-based checks of requirements

alone do not allow for both studied evolution scenarios, the software must be able to learn the

system’s typical behaviour and identify which test cases are most important. Therefore, the

anti-aging cycle includes a supervised learning mechanism which on the one hand can analyse

and compact system behaviour in order to generate new test cases, and on the other hand can

parameterize and modify existing test cases. Such a learning mechanism must deal with huge

amounts of information, which, therefore, must be pre-processed by filtering the relevant

knowledge, disposing redundancies as well as abstracting and compressing information. Based

on this pre-processed information various conditions and behaviours must be recognized. This

recognition could for example be realised by (domain specific) methods for pattern detection

and matching, data clustering or case-based reasoning techniques. The goal of the learning

approach is to recognise implicitly contained system behaviours in order to express the

characteristics of the system in adapted parameter ranges or new types of test cases. In

conclusion, when a change is applied to the software, it can be tested against its designated

behaviour (represented by manually generated test cases associated with the requirements) as

well as against common usage scenarios of the software represented by the learned test cases.

Phase 4 - Enhanced test coverage: The combination of requirement validation at runtime and

supervised learning of system behaviours in test cases leads to a semantic and adaptive test

coverage which reflects and validates the current system behaviour. In order to close the anti-

aging cycle, a link from learned test cases to requirements should be established by providing

the learned results to a human operator, such that the system can understand how a successful

or failed test case affects the software quality. This step can probably be automated by using

(potentially domain specific) heuristics for proposing (or automatically establishing) mappings

between learned test cases and requirements. As a result, the test case learning could be better

directed towards requirements with poor test coverage. This approach supports both studied

evolution scenarios. Continuous improvement is assisted by validating requirements with

online test cases which detect relevant software modification due to resulting behaviour

changes. In doing so, software operators are immediately and comprehensibly informed about

intended as well as unintended requirement violations and (manual) counter measures can be

taken to satisfy endangered requirements. Furthermore, this approach also assists with

extensive updates, i.e. within a testing environment (for example a simulation model similar

enough to the real system) all explicit specified or learned test cases of the real system can be

performed on the updated software in order to check if the software is still operating in

accordance to the original as well as new requirements.

Keeping Pace with Changes

Proc. SACS/SoCoDiS 2013 5 / 12

General design of the anti-aging cycle: In order to clarify the connection between

specification, validation and learning, Figure 2 shows the envisioned architecture of long-

living software. Every software system contains specifications of requirements as system

metadata following a domain-specific expended meta-model. For evaluation purposes, these

requirements are provided with test cases to check their compliance with an evaluation runtime

module. This module triggers conditional test cases and reports abnormalities to the human

operator. If the observed behaviour is unintended, (manual) countermeasures can be initiated;

otherwise the learning module can learn the intended behaviour (automatically). By extracting

the test cases from real runtime data, the coverage of the software requirements is continuously

kept up-to-date. This approach provides a further step towards systems that are aware of their

requirements and enables a systematic solution for software evolution at runtime that serves as

a good starting point for further software adaptation mechanisms.

3 Related Work

Initially the research in software evolution began with investigations performed to understand

change processes in software code. Since then, various research fields have been developed

providing suitable programming concepts for the evolution of software systems and system

architectures, and the exchange of components in complex software systems [MD08]. Our

approach focuses on a comprehensive handling and evolution of requirements knowledge at

runtime. In the following, different software engineering approaches are discussed which aim

at explicitly representing knowledge within software artefacts and using this knowledge to

ensure software quality. Important categories are reengineering, requirements traceability and

testing.

Reengineering aims at providing methods to analyse existing software as well as to adapt and

further develop this software towards new requirements. The field of reengineering has a lot of

different branches. For example, reverse engineering deals with tools to extract knowledge

from existing software systems and its source code [CC90]. Refactoring and migration focus

on restructuring, adaptation and improvement of existing software systems [Me04, Le03].

However, our contribution provides a more general approach in which these methods and tools

Figure 2: Envisioned architecture

 ECEASST

6 / 12 Volume 56 (2013)

will be helpful, e.g. to provide possibilities to extract implicit system knowledge in order to

generate test cases.

Furthermore, our approach deals with requirement engineering by aiming at establishing some

kind of requirements traceability. According to [GF94] "requirements traceability refers to the

ability to describe and follow the life of a requirement, in both forwards and backwards

directions". In this way, requirements traceability can be seen as a knowledge carrying

approach for evolutionary software and helps with quality assurance and maintenance.

Unsolved problems with respect to requirements traceability mainly concern the missing

standardization of requirement types and their characteristics, leading to heterogeneous

languages and informally described requirements. On the one hand this complicates the

systematic requirement elicitation, and on the other hand it hinders to a large extent the

automatic runtime exploitation. In order to alleviate this drawback to some degree, it has been

proposed to connect requirements to test scenarios [Eg03]. The test scenarios allow for a

validation of the requirements as they represent executable software artefacts. This general

approach has inspired our vision of an anti-aging cycle, which will follow this idea and extend

it towards online test execution and automatic test learning.

In testing, a suite of test cases is executed in order to validate system behaviour. A test case

itself represents a well-known type of software knowledge. Automated test cases represent an

executable specification of software functionality and therefore implicitly contain knowledge

about expected software behaviour. Although this knowledge is only implicit, it is directly

accessible to developers by executing the test case and observing the result. The importance of

testing for software evolution is e.g. highlighted by [Mo08]. Regression testing is an approach

supporting software evolution through testing. A test suite representing previously correct

system behaviour is executed against changed software, thus ensuring that such change does

not break the existing functionality. A major problem of regression testing is, however, that the

approach performance is directly dependent of the quality of the test suite. Developing a good

test suite is often as complicated as building the software itself, especially if it is generated

manually. Therefore, some approaches use techniques to generate test cases automatically. For

instance, [BM08] proposes an approach for generating test data for improved test coverage.

Moreover, in user interface testing tools allow to record interactions with the system and to use

playback for testing against the recorded interactions. Behavioural regression testing [JOX10]

uses the software itself to generate a test suite that directly resembles currently implemented

system behaviour. Therefore, behavioural regression testing reduces defects when the software

is changing, even when insufficient test cases are available beforehand. A disadvantage of the

approach is that existing defects cannot be detected in this way. Model-based testing [AD97]

allows for generating provable complete test cases, but requires a formal specification of all

software requirements. Suitable specifications include finite state machines, finite state

grammars or Markov chains. The opposite direction is approached in [WG11] by using

learning techniques for extracting a system model from existing test cases, as a way of

transferring the implicit knowledge of the test cases into explicit knowledge. The extracted

formal model is then used to monitor the running system, therefore making sure that the

system behaviour remains in line with its test cases, even when changes are applied to an

already deployed system. Similar to our approach of an anti-aging cycle, here online

monitoring is used to improve software quality. Yet, unlike our anti-aging cycle, learning is

based on manually specified test cases instead of observed system behaviour and no relation to

requirements is established.

Keeping Pace with Changes

Proc. SACS/SoCoDiS 2013 7 / 12

4 Anti-Aging Cycle in Production Automation

The longevity of automation systems is increasingly important for the competitiveness of

producing companies. Today’s companies have to be able to react to changing customer

requirements and environmental conditions. This includes changing demands for different

products and changing conditions because of shorter product lifecycles [SJF11]. Automated

production systems have to be able to follow these changes and hence are subjected to various

modifications during their lifetime.

It is industrial practice to modify software in production machines directly in reaction to

changing application requirements, this without proper documentation, requirements

engineering approaches, and model-based or model-driven software engineering. As a

consequence, the software becomes increasingly complex and difficult to manage which is

why code modification is prone to errors, often resulting in production standstills and

operational losses. The alternative approach, i.e. a complete re-programming of the machine, is

not desirable either, since much technician expertise is implicitly included in the software and

would be lost in case of re-programming. In order to counteract such problems, it is a major

goal of software engineering research in production automation to develop methods which

make the knowledge contained in this software accessible and manageable. Therefore,

knowledge should be represented in the software system allowing for long-term maintenance

and software development according to new and unforeseeable requirements.

4.1 Description of an exemplary anti-aging cycle for a production facility

In the following all four phases of the anti-aging cycle are applied on a concrete application

example that demonstrates the benefits of our approach by motivating three adaption cases. In

this example a medium-sized automotive supplier produces air tubes for installation in engine

compartments in order to supply the engine with air. These tubes are mainly composed of

rubber, are strengthened by fabric strings and are produced basically in three production stages

arranged in sequence. The resulting facility initially can produce three tube variations.

Phase 1 - Explicit representation of requirements in production automation: In

accordance to the first phase of the anti-aging cycle all relevant requirements need to be

specified in a requirement meta-model. As the ISO/IEC standard 25010 [Is11] shows, a wide

range of requirements for software systems exists. The meanings and priorities of

requirements, however, differ substantially within each application domain. Thus, every

requirement has to be interpreted within the context of an application domain and only within

this domain requirements can be precisely described. In production automation, requirements

are not only concerning the control software but also the plant’s physics. Hence, the system

including the software as well as the interacting physical plant needs to be considered as a

whole when defining requirements. For distributed automation systems, the non-functional

requirements (NFRs) analysability, testability, time behaviour and resource utilisation are of

high importance [Fr11]. Further important NFRs are e.g. fault tolerance, scalability, reusability

or adaptability [SJF11]. With regard to our demonstration example, the automotive supplier

considers quality of the production and adaptability in its requirement model.

Phase 2 - Validation of the fulfilment of requirements in production automation: In the

second phase of the cycle, the production system must be validated and check if it still fulfils

all current requirements. While functional requirements (FRs) in production automation can

often be directly validated, NFRs in production automation as well as NFRs in general are

http://de.pons.eu/englisch-deutsch/as
http://de.pons.eu/englisch-deutsch/consequence

 ECEASST

8 / 12 Volume 56 (2013)

difficult to evaluate, because many requirements are imprecisely described. In a first approach

we try to decompose NFRs into corresponding process variables in order to make them

automatically measurable (this is one of our further research topics). In the demonstration

example, the quality requirement is measured by the absolute length difference between

produced air tubes and its expected tube length. This fact can be checked in a conditional test

case which can for example be triggered by a rule engine. Whenever this conditional test case

fails, a quality requirement violation is reported. Within our approach a more advanced test

case contains the possibility to be evaluated within a simulation application. For instance, the

adaptability requirement can be tested by observing the production of a significant sample of

air tubes with different lengths on a simulated production system. The sample shall cover

lengths within the possible future customer´s demand. If the sample can be produced in

simulation, then the requirement is fulfilled. To present the benefits of our approach we

assume in a first adaptation case that one stage of the air tube production process was

modified to decrease the production time. In such a scenario the conditional test cases should

enable the system to evaluate if the modification is still in line with the quality and adaptability

requirements and inform the operator about any violation.

Phase 3 - Learning and extension of test cases in production automation: Over time, the

air tube supplier has to face changing market conditions and will deliver to further car

manufacturers or will produce for new car models. Hence the supplier has to evolve and

modify its production system, which probably already has grown over years, to meet new

requirements. Some of the requirements could not be foreseen beforehand and surely new

requirements will appear in the future which cannot be foreseen by now. The resulting

continuous improvements and extensive updates are then considered in the third phase by

applying test case learning techniques.

Software evolution by continuous improvements: In daily usage of the production system,

errors are handled, improvements in the process are done, and it is reacted on changes of the

requirements. This fact requires modifications and changes in hardware and software which

are mostly performed directly by the production technicians. In terms of our example, the

control software for the tube production is initially developed for a fixed set of tube lengths

and therefore test cases are provided only for these known parameters. But in accordance to

our second adaptation case, a new tube type is added to the portfolio and a technician changes

the production system to include that tube length. This modification will lead to supposedly

false tube length and a quality violation will occur. As a consequence a human operator is

alerted (see phase 2) and classifies the changes as desired. Therefore, the quality test cases

should learn the new parameter range without any changes to the control software itself.

Software evolution by extensive updates: The control software is developed for a constant

winding density of the fabric strings. In the third adaptation case it is assumed that the

supplier has to adapt its production in order to produce air tubes with a new winding density.

This requirement was not foreseen beforehand but the control system has to be updated

correspondingly. When applying extensive updates, it is important to consider if these changes

will conflict with the previous requirements. Therefore, it is desirable to be able to test if a

planned software update will limit the ability of the software to produce the current tube

lengths or to adapt to other tube lengths. Based on the current test cases of the system, such

extensive updates can be checked beforehand in a simulated environment of the considered

system in which the updated software is tested against the new functionalities as well as the

current requirements.

Keeping Pace with Changes

Proc. SACS/SoCoDiS 2013 9 / 12

Phase 4 - Provide enhanced test coverage in production automation: The continuous

improvements in phase 3 lead to an enhanced semantic and adaptive test coverage, which

reflects current system behaviour more comprehensive and hence allows for a better validation

of the specified requirements. It is desirable to be capable of connecting a learned test case to

its corresponding requirement in order to address the non-fulfilment of the right requirement if

a test case fails. While this probably can only be done manually, test cases can, in conjunction

with domain specific heuristics, give valuable hints why a modification violates a system

requirement. However, since test cases are the mayor knowledge carriers, it is even

conceivable to utilize the anti-aging cycle without any predefinition of requirements. Instead,

test cases learned during well operating production periods are used for future production

periods (continuous improvements) or for the evaluations of planed software or hardware

modification (extensive updates)

4.2 Results of the demonstration example based on a prototype
implementation

In the following an initial case study based on a prototypical implementation is presented that

demonstrates the feasibility of our anti-aging cycle along the three aforementioned adaptation

test cases. Therefore, we carry out a first “proof of concept” prototype that is realised as an

extension for active components using the Jadex middleware [BP12]. This prototype connects

test cases triggered by a rule engine to the quality and adaptively requirement. The prototype

also contains a simple mechanism to parameterise test cases out of observed variables.

Furthermore, the underlying Jadex platform allows for a separated simulation environment in

order to execute simulation-based test cases. It must be stated that the used prototype has only

few simple and limited functionalities and it is used only for demonstration purposes. The

example of an automotive supplier is realised by a simulation model that produces

approximately one tube every minute.

Figure 4 shows the eight hour progress of the executed simulations presenting the absolute

length difference (quality test) and the number of tests cases carried out. The simulation was

repeated 30 times and the average values of these runs are indicated. The upper graphic

illustrates the absolute length difference average ΔL between the produced length Lprod and the

expected length Lexp of finished tubes, calculated according to (1)





P

i

iprodj
j

LL
P

L
1

,exp,min
1

 (1)

where P is the number of products manufactured within 10 minutes, and j=1,...,3 corresponds

to the three different quality test cases considered. The bottom graphic illustrates the number

of test cases carried out. Here, each bar corresponds to the total test cases executed within 10

minutes. For instance, after 10 min of simulation, 30 tests cases were executed and a length

difference average of 1 was obtained.

In addition, after every simulated hour, the control system checks for the adaptability

requirement and executes a corresponding subset of 10 test cases on a separated simulation

(crossed squares shown every 60 min in Fig.4). According to the first adaptation case, after a

simulated time of 80 min the production is modified to decrease the production time. We

assume in the underlying simulation model, that this modification causes a simultaneous

increase in the absolute difference of the tube lengths. As expected the recurrent triggered

 ECEASST

10 / 12 Volume 56 (2013)

quality test cases notice this increase and after multiple test failures a requirement violation is

reported. This violation is registered by the human operator, who therefore reverses the

modification in minute 110.

The second adaptation case is initialised after 3.5 hours of operation. In this case a new tube

length is introduced into the system. After indicating a quality violation, the human operator

classifies this violation as intended. The software system therefore learns that a new tube

length is intended and generates an additional test case. The additionally learned test case is

evident in the bottom of the figure (starting from minute 250), since now 40 test cases per 10

min are carried out in average, instead of 30 as before. Apart from these continuous

improvements in the third adaptation case, an extensive software update is initialised. In this

case air tubes of a new winding density are demanded and hence the production shall be

updated. To ensure that the updated software still fulfils the already existing requirements a

simulation-based approach is used. Therefore, in a separated test environment (with a

synchronised clock) the updated software is validated with the previously learned test cases. At

the separated test environment a new test case is used to evaluate the new winding density

functionality (see bottom figure starting from minute 300). Until the update is finally

introduced (at minute 420), twice as many test cases are carried out as before, since they are

executed in the still operating system (thin frames) and in the separated test environment (thick

frames). In this way the update is concurrently validated and can afterwards be safely

introduced into the system.

It needs to be emphasized that this first prototyped is only used to demonstrate the feasibility

of our vision and the anti-aging cycle’s ability to handle both considered types of evolution

scenarios. More complex evolutionary and adaptive mechanisms will be part of our upcoming

work. Nevertheless, in this contribution we have already shown that our approach of an anti-

aging cycle can provide significant benefits towards requirement-aware systems and thus an

increasingly managed evolution and adaptation of software systems.

Figure 3: Results of the adaptation scenarios

Keeping Pace with Changes

Proc. SACS/SoCoDiS 2013 11 / 12

5 Conclusion and Future Work

In this contribution we have presented an anti-aging cycle as a mechanism to manage the

evolutionary enhancement of long-living software systems. In order to prevent evolving

software from aging, our coherent concept supports two kinds of evolution scenarios,

continuous improvements and extensive updates, and provides constantly support for keeping

the implicit behaviour of the evolved software in line with its explicit requirements. First, a

validation mechanism is used to detect requirement violations and hence to keep the system

behaviour in line with the stored requirements. Furthermore, a learning process is applied to

keep stored knowledge up-to-date and therefore to reach an enhanced test coverage to allow

for improved validation mechanisms. To present the benefits of our vision, the anti-aging cycle

is exemplary applied on a production facility. Further research towards this vision should

include a comprehensive representation of requirements and test cases, an automatic

mechanism to extract relevant system behaviour into test cases and finally a possibility to

automatically link learned test cases to requirements.

6 References

[AD97] Apfelbaum, L.; Doyle, J.: Model Based Testing. In Software Quality Week

Conference, 1997; S. 296-300.

[BM08] Beer, A.; Mohacsi, S.: Efficient Test Data Generation for Variables with Complex

Dependencies. In Proc. of 2008 Int. Conf. on Software Testing, Verification, and

Validation, 2008; S. 3-11.

[BP12] Braubach, L.; Pokahr, A.: Developing Distributed Systems with Active Components

and Jadex. In Scalable Computing: Practice and Experience, 13(2), 2012; S. 3-24.

[CC90] Chikofsky, E.J.; Cross, J.H.: Reverse engineering and design recovery: a taxonomy.

Software. In IEEE Software, 7(1), 1990; S. 13-17.

[Eg03] Egyed, A.: A Scenario-Driven Approach to Trace Dependency Analysis. In IEEE

Transactions on Software Engineering, 29(2), 2003; S. 116-132.

[En09] Engels, G. et al.: Design for Future. Legacy-Probleme von morgen vermeidbar? In

Informatik Spektrum, 32(5), 2009, S. 393–397.

[Fr11] Frank, T. et.al.: Dealing with non-functional requirements in Distributed Control

Systems Engineering. In Proc. of 16th Conf. on Emerging Technologies and Factory

Automation, 2011; S. 1-4.

[GF94] Gotel, O.C.Z; Finklestein, A.C.W.: An analysis of the requirements traceability

problem. In Proc. 1st Int. Conf.on Requirements Engineering, 1994; S. 94-101.

[HAN99] Hegering, H.G.; Abeck, S.; Neumair, B.: Integrated Management of Networked

Systems: Concepts, Architectures, and Their Operational Application. Morgan

Kaufmann, 1999.

[Is11] ISO/IEC 25010, Systems and software engineering. Systems and software Quality

Requirements and Evaluation (SQuaRE). System and software quality models, 2011.

[JOX10] Jin, W.; Orso, A.; Xie, T.: Automated Behavioral Regression Testing. In Proc. of 3rd

Int. Conf. on Software Testing, Verification, and Validation, 2010; S. 137-146.

 ECEASST

12 / 12 Volume 56 (2013)

[Le03] Lee, E. et al.: A reengineering process for migrating from an objectoriented legacy

system to a component-based system. In Proc of 27th Annual International Computer

Software and Applications Conference, 2003; S. 336-341.

[Le80] Lehman, M.M.: On understanding laws, evolution and conservation in the large

program life cycle. In: System and Software 1980 (1(3)), S. 213–221.

[MD08] Mens, T.; Demeyer, S.: Software Evolution. 2008.

[Me04] Mellor, S.J.: MDA Distilled: Principles of Model-Driven Architecture. 2004.

[Mo08] Moonen, L. et.al.: On the Interplay Between Software Testing and Evolution and its

Effect on Program Comprehension. In Software Evolution, 2008; S. 173-202.

[RB02] Rausch, A.; Broy, M.: Evolutionary Development of Software Architectures. In:

Technology for Evolutionary Software Development, 2002; S. 16-33.

[SS08] Schmelzer, H.; Sesselmann, W.: Geschäftsprozessmanagement in der Praxis, 2008.

[SJF11] Schreiber, S.; Jerenz, S.; Fay, A.: Anforderungen an Steuerungskonzepte für

moderne Fertigungsanlagen. In Automation 2011, VDI-Bericht 2143, 2011; S. 7-11.

[So12] Sommerville, I.: Software Engineering, 2012.

[WG11] Werner, E.; Grabowski, J.: Model Reconstruction: Mining Test Cases. In Proc. of 3rd

Int. Conf. on Advances in System Testing and Validation Lifecycle, 2011; S. 97-102.

