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Abstract: Every long-term used software system ages. Even though intangible goods like 

software do not degenerate in the proper sense, each software system degenerates in 

relation to the everlasting changes of requirements, usage scenarios and environmental 

conditions. Accordingly, operational software is commonly situated in a continuous 

evolution process in which manually conducted modifications and adaptations try to 

preserve or reinforce its quality. Unfortunately, such an unmanaged evolution inevitably 

leads to a discrepancy between the obsolete originally documented requirements and the 

updated software itself. For this reason, our contribution presents a coherent vision of an 

anti-aging cycle that preserves (non-)functional requirements as explicit runtime artefacts. 

The fulfilment of these requirements is validated based on conditionally triggered online 

test cases. In order to achieve an enhanced semantic test coverage, these test cases are 

adapted by monitoring, analysing and learning typical system behaviours. To explain our 

vision in more detail and demonstrate the benefit of a managed software evolution, our 

anti-aging cycle is exemplarily applied on the domain of manufacturing automation.1 

 

Keywords: Runtime testing, requirement validation, manufacturing automation 

1 Introduction 

Long-term used software systems suffer from degeneration and must be repeatedly adapted to 

avoid a progressive decrease of quality and productivity of the system [Le80]. Nevertheless, 

many of today's software development projects neglect gradual software aging, because of the 

general assumption that intangible goods like software never suffer from any wearing [En09]. 

Even though the software itself does not degenerate in the proper sense, this assumption is a 

common fallacy, since software always degenerates in relation to the everlasting changes of 

requirements, usage scenarios and its underlying infrastructure. Naturally, not every software 

system is equally affected by software aging, as a matter of fact systems with a relatively long 

life cycle are more affected. One suitable example of long-living and aging software are 

automation systems of production facilities. Production facilities have high investment costs 

                                                      
1 The authors acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG) for the project 

"Forever Young Production Automation with Active Components" (“Design for Future” SPP 1593). 



 
 
 ECEASST 

2 / 12 Volume 56 (2013) 

and hence are often operated many years or even decades. Such systems have short downtimes 

and are operated in high cost pressure. Therefore, frequently occurring changes of the 

hardware configuration or the functionalities must be carried out during a very restricted time 

period or even during operation. In addition, production facilities are generally separated in 

distributed components which are often embedded in specific technical environments. This 

distribution exacerbates software aging by making it more difficult to access system 

knowledge. Accordingly, operational software is commonly situated in a continuous evolution 

process in which manually conducted software modifications and adaptations are performed to 

satisfy changing requirements in order to preserve the existing quality [RB02]. In 

consequence, the phase in which value is added to software products is shifting from the 

development phase to later phases of the lifecycle [So12]. 

For this reason our contribution presents a coherent vision of how knowledge of the 

development phase can be represented in software artefacts to be used at runtime. This enables 

to perpetuate and use this information during the evolutionary enhancement of the system. In 

order to present this vision, Chapter 2 illustrates our targeted evolution of requirements and 

software, and the underlying hardware system by presenting two fundamental evolution 

scenarios with which system operators need to deal nowadays. Subsequently, an anti-aging 

cycle, which considers these scenarios and aims at providing a systematic evolution assistance 

at runtime, is introduced. Chapter 3 then discusses the current research by presenting related 

software engineering approaches. For a deeper understanding, Chapter 4 motivates and 

introduces the production automation domain as a suitable application domain for studying 

evolutionary systems. This chapter clarifies and demonstrates the benefits of our vision by 

relating the various phases of the anti-aging cycle to a concrete production facility. The final 

chapter draws the conclusions and presents further research goals. 

2 Vision of a Managed Software Evolution 

Since the decisive factor for evolution of operational software systems are general enterprise 

objectives and processes [HAN99], this contribution proposes to separate software evolution 

into two evolution scenarios originally inspired by Business Process Management [SS08]. The 

first scenario describes continuous improvements in which software systems are adapted at 

runtime. In this case modifications do not only include direct code changes, but also any other 

adaptation activities that influence the system behaviour. The second scenario deals with 

extensive updates which concern much more the internal structure of the software. These 

recurrently occurring updates often affect several functionalities by extending or modifying 

various aspects of the software. The main differences compared to continuous improvements 

are that extensive updates are typically performed concurrently to the actual operation and 

often include a planned requirements engineering process. The progress of software evolution 

highly depends on the considered system. Nevertheless, both scenarios are usually necessary, 

because without continuous improvements the software cannot keep up with the operational 

usage, and without extensive updates the constant evolution may be limited to an insufficient 

architecture or a fixed range of functionalities.  

Regardless of the different evolution scenarios, the overall goal of any evolution must be to 

preserve the fulfilment of its requirements. Since an explicit documentation is generally 

considered as an annoying duty, changes of the requirements and of the software during 

operational phases are often represented only implicitly in the actual system behaviour. This 

leads to the conclusion that the software itself must take care of the fulfilment of its current 
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requirements, and is to allow changes of the behaviour only if these are explicitly intended. 

Self-modifying software has already made considerable progress; however in some operational 

domains like production automation, self-modification is still not accepted due to strict safety 

restrictions, the necessity of high expertise or the impossibility to project the system behaviour 

on code level. Therefore, this contribution aims at introducing a concept for self-adapting 

software under a (human) supervisor. This concept extends the system under consideration 

(i.e. the physical system and the current control system) by adding a requirement-aware 

supervising system. The latter allows for the specification, validation and learning of 

requirements based on its current state, while all crucial decisions remains in the (human) 

supervisor’s responsibility. 

The Anti-Aging Cycle 

The main vision of this paper is to establish a (semi)automatic anti-aging cycle that prevents or 

at least counteracts the aging effect by establishing an adaptive monitoring and supervising 

mechanism at runtime. As depicted in Figure 1, the anti-aging cycle consists of four different 

phases which are needed to close the gap between originally specified requirements and the 

degree to which the current system usage still corresponds to these documented requirements. 

Phase 1 - Explicit representation of requirements: In order to allow for a general evolution 

of requirements and software, the relevant knowledge must be identified, which is 

indispensable for the longevity of the system under consideration. Therefore this knowledge 

must be expressed in a requirement meta-model. In contrast to many existing approaches, the 

meta-model allows for domain dependent requirement extensions. In addition, the meta-model 

must provide means for evaluating their validity at runtime.  

Phase 2 - Validation of the fulfilment of requirements: To validate software systems 

different test cases have always been an essential and popular method. Hence, the second 

phase of the cycle tries to exploit the method of test cases by introducing conditionally 

triggered runtime test cases serving as a validation mechanism for their associated 

requirements. In this context test cases have a quite wide meaning, since any activity that 

compares an observed with a designated system behaviour can be a test case. The specification 

of test-based requirements allows for an online abnormality detection engine which 
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Figure 1: The Anti-Aging Cycle 
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continuously observes the system behaviour in order to match actual behaviour against 

expected behaviour. Since our approach does not associate observed behaviours with specific 

code sections but reports detected abnormalities to be inspected, it leaves the responsibility of 

modification decisions in the hands of a human supervisor. It is important to highlight that this 

approach alone does not decide if an observed unknown and unforeseen behaviour is part of an 

intended code modification or if the system itself produces an unintended behaviour. This 

decision must be made by a supervisor which generally would be a human software operator, 

but can possibly be replaced by decision approaches like software agents. Nonetheless, the 

first two phases of the cycle provide a crucial support for adaption and evolution of software 

systems, because with explicit requirement artefacts and conditional triggered test cases the 

system can validate if its current requirements are still satisfied by the modified software. 

Phase 3 - Learning and extension of test cases: Since test-based checks of requirements 

alone do not allow for both studied evolution scenarios, the software must be able to learn the 

system’s typical behaviour and identify which test cases are most important. Therefore, the 

anti-aging cycle includes a supervised learning mechanism which on the one hand can analyse 

and compact system behaviour in order to generate new test cases, and on the other hand can 

parameterize and modify existing test cases. Such a learning mechanism must deal with huge 

amounts of information, which, therefore, must be pre-processed by filtering the relevant 

knowledge, disposing redundancies as well as abstracting and compressing information. Based 

on this pre-processed information various conditions and behaviours must be recognized. This 

recognition could for example be realised by (domain specific) methods for pattern detection 

and matching, data clustering or case-based reasoning techniques. The goal of the learning 

approach is to recognise implicitly contained system behaviours in order to express the 

characteristics of the system in adapted parameter ranges or new types of test cases. In 

conclusion, when a change is applied to the software, it can be tested against its designated 

behaviour (represented by manually generated test cases associated with the requirements) as 

well as against common usage scenarios of the software represented by the learned test cases. 

Phase 4 - Enhanced test coverage: The combination of requirement validation at runtime and 

supervised learning of system behaviours in test cases leads to a semantic and adaptive test 

coverage which  reflects and validates the current system behaviour. In order to close the anti-

aging cycle, a link from learned test cases to requirements should be established by providing 

the learned results to a human operator, such that the system can understand how a successful 

or failed test case affects the software quality. This step can probably be automated by using 

(potentially domain specific) heuristics for proposing (or automatically establishing) mappings 

between learned test cases and requirements. As a result, the test case learning could be better 

directed towards requirements with poor test coverage. This approach supports both studied 

evolution scenarios. Continuous improvement is assisted by validating requirements with 

online test cases which detect relevant software modification due to resulting behaviour 

changes. In doing so, software operators are immediately and comprehensibly informed about 

intended as well as unintended requirement violations and (manual) counter measures can be 

taken to satisfy endangered requirements. Furthermore, this approach also assists with 

extensive updates, i.e. within a testing environment (for example a simulation model similar 

enough to the real system) all explicit specified or learned test cases of the real system can be 

performed on the updated software in order to check if the software is still operating in 

accordance to the original as well as new requirements. 



 
 
Keeping Pace with Changes 

Proc. SACS/SoCoDiS 2013 5 / 12 

General design of the anti-aging cycle: In order to clarify the connection between 

specification, validation and learning, Figure 2 shows the envisioned architecture of long-

living software. Every software system contains specifications of requirements as system 

metadata following a domain-specific expended meta-model. For evaluation purposes, these 

requirements are provided with test cases to check their compliance with an evaluation runtime 

module. This module triggers conditional test cases and reports abnormalities to the human 

operator. If the observed behaviour is unintended, (manual) countermeasures can be initiated; 

otherwise the learning module can learn the intended behaviour (automatically). By extracting 

the test cases from real runtime data, the coverage of the software requirements is continuously 

kept up-to-date. This approach provides a further step towards systems that are aware of their 

requirements and enables a systematic solution for software evolution at runtime that serves as 

a good starting point for further software adaptation mechanisms. 

3 Related Work 

Initially the research in software evolution began with investigations performed to understand 

change processes in software code. Since then, various research fields have been developed 

providing suitable programming concepts for the evolution of software systems and system 

architectures, and the exchange of components in complex software systems [MD08]. Our 

approach focuses on a comprehensive handling and evolution of requirements knowledge at 

runtime. In the following, different software engineering approaches are discussed which aim 

at explicitly representing knowledge within software artefacts and using this knowledge to 

ensure software quality. Important categories are reengineering, requirements traceability and 

testing. 

Reengineering aims at providing methods to analyse existing software as well as to adapt and 

further develop this software towards new requirements. The field of reengineering has a lot of 

different branches. For example, reverse engineering deals with tools to extract knowledge 

from existing software systems and its source code [CC90]. Refactoring and migration focus 

on restructuring, adaptation and improvement of existing software systems [Me04, Le03]. 

However, our contribution provides a more general approach in which these methods and tools 

 
Figure 2: Envisioned architecture 
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will be helpful, e.g. to provide possibilities to extract implicit system knowledge in order to 

generate test cases.  

Furthermore, our approach deals with requirement engineering by aiming at establishing some 

kind of requirements traceability. According to [GF94] "requirements traceability refers to the 

ability to describe and follow the life of a requirement, in both forwards and backwards 

directions". In this way, requirements traceability can be seen as a knowledge carrying 

approach for evolutionary software and helps with quality assurance and maintenance. 

Unsolved problems with respect to requirements traceability mainly concern the missing 

standardization of requirement types and their characteristics, leading to heterogeneous 

languages and informally described requirements. On the one hand this complicates the 

systematic requirement elicitation, and on the other hand it hinders to a large extent the 

automatic runtime exploitation. In order to alleviate this drawback to some degree, it has been 

proposed to connect requirements to test scenarios [Eg03]. The test scenarios allow for a 

validation of the requirements as they represent executable software artefacts. This general 

approach has inspired our vision of an anti-aging cycle, which will follow this idea and extend 

it towards online test execution and automatic test learning.  

In testing, a suite of test cases is executed in order to validate system behaviour. A test case 

itself represents a well-known type of software knowledge. Automated test cases represent an 

executable specification of software functionality and therefore implicitly contain knowledge 

about expected software behaviour. Although this knowledge is only implicit, it is directly 

accessible to developers by executing the test case and observing the result. The importance of 

testing for software evolution is e.g. highlighted by [Mo08]. Regression testing is an approach 

supporting software evolution through testing. A test suite representing previously correct 

system behaviour is executed against changed software, thus ensuring that such  change does 

not break the existing functionality. A major problem of regression testing is, however, that the 

approach performance is directly dependent of the quality of the test suite. Developing a good 

test suite is often as complicated as building the software itself, especially if it is generated 

manually. Therefore, some approaches use techniques to generate test cases automatically. For 

instance, [BM08] proposes an approach for generating test data for improved test coverage. 

Moreover, in user interface testing tools allow to record interactions with the system and to use 

playback for testing against the recorded interactions. Behavioural regression testing [JOX10] 

uses the software itself to generate a test suite that directly resembles currently implemented 

system behaviour. Therefore, behavioural regression testing reduces defects when the software 

is changing, even when insufficient test cases are available beforehand. A disadvantage of the 

approach is that existing defects cannot be detected in this way. Model-based testing [AD97] 

allows for generating provable complete test cases, but requires a formal specification of all 

software requirements. Suitable specifications include finite state machines, finite state 

grammars or Markov chains. The opposite direction is approached in [WG11] by using 

learning techniques for extracting a system model from existing test cases, as a way of 

transferring the implicit knowledge of the test cases into explicit knowledge. The extracted 

formal model is then used to monitor the running system, therefore making sure that the 

system behaviour remains in line with its test cases, even when changes are applied to an 

already deployed system. Similar to our approach of an anti-aging cycle, here online 

monitoring is used to improve software quality. Yet, unlike our anti-aging cycle, learning is 

based on manually specified test cases instead of observed system behaviour and no relation to 

requirements is established. 
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4 Anti-Aging Cycle in Production Automation 

The longevity of automation systems is increasingly important for the competitiveness of 

producing companies. Today’s companies have to be able to react to changing customer 

requirements and environmental conditions. This includes changing demands for different 

products and changing conditions because of shorter product lifecycles [SJF11]. Automated 

production systems have to be able to follow these changes and hence are subjected to various 

modifications during their lifetime.  

It is industrial practice to modify software in production machines directly in reaction to 

changing application requirements, this without proper documentation, requirements 

engineering approaches, and model-based or model-driven software engineering. As a 

consequence, the software becomes increasingly complex and difficult to manage which is 

why code modification is prone to errors, often resulting in production standstills and 

operational losses. The alternative approach, i.e. a complete re-programming of the machine, is 

not desirable either, since much technician expertise is implicitly included in the software and 

would be lost in case of re-programming. In order to counteract such problems, it is a major 

goal of software engineering research in production automation to develop methods which 

make the knowledge contained in this software accessible and manageable. Therefore, 

knowledge should be represented in the software system allowing for long-term maintenance 

and software development according to new and unforeseeable requirements. 

4.1 Description of an exemplary anti-aging cycle for a production facility 

In the following all four phases of the anti-aging cycle are applied on a concrete application 

example that demonstrates the benefits of our approach by motivating three adaption cases. In 

this example a medium-sized automotive supplier produces air tubes for installation in engine 

compartments in order to supply the engine with air. These tubes are mainly composed of 

rubber, are strengthened by fabric strings and are produced basically in three production stages 

arranged in sequence. The resulting facility initially can produce three tube variations.  

Phase 1 - Explicit representation of requirements in production automation: In 

accordance to the first phase of the anti-aging cycle all relevant requirements need to be 

specified in a requirement meta-model. As the ISO/IEC standard 25010 [Is11] shows, a wide 

range of requirements for software systems exists. The meanings and priorities of 

requirements, however, differ substantially within each application domain. Thus, every 

requirement has to be interpreted within the context of an application domain and only within 

this domain requirements can be precisely described. In production automation, requirements 

are not only concerning the control software but also the plant’s physics. Hence, the system 

including the software as well as the interacting physical plant needs to be considered as a 

whole when defining requirements. For distributed automation systems, the non-functional 

requirements (NFRs) analysability, testability, time behaviour and resource utilisation are of 

high importance [Fr11]. Further important NFRs are e.g. fault tolerance, scalability, reusability 

or adaptability [SJF11]. With regard to our demonstration example, the automotive supplier 

considers quality of the production and adaptability in its requirement model.  

Phase 2 - Validation of the fulfilment of requirements in production automation: In the 

second phase of the cycle, the production system must be validated and check if it still fulfils 

all current requirements. While functional requirements (FRs) in production automation can 

often be directly validated, NFRs in production automation as well as NFRs in general are 

http://de.pons.eu/englisch-deutsch/as
http://de.pons.eu/englisch-deutsch/consequence
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difficult to evaluate, because many requirements are imprecisely described. In a first approach 

we try to decompose NFRs into corresponding process variables in order to make them 

automatically measurable (this is one of our further research topics). In the demonstration 

example, the quality requirement is measured by the absolute length difference between 

produced air tubes and its expected tube length. This fact can be checked in a conditional test 

case which can for example be triggered by a rule engine. Whenever this conditional test case 

fails, a quality requirement violation is reported. Within our approach a more advanced test 

case contains the possibility to be evaluated within a simulation application. For instance, the 

adaptability requirement can be tested by observing the production of a significant sample of 

air tubes with different lengths on a simulated production system. The sample shall cover 

lengths within the possible future customer´s demand. If the sample can be produced in 

simulation, then the requirement is fulfilled. To present the benefits of our approach we 

assume in a first adaptation case that one stage of the air tube production process was 

modified to decrease the production time. In such a scenario the conditional test cases should 

enable the system to evaluate if the modification is still in line with the quality and adaptability 

requirements and inform the operator about any violation.  

Phase 3 - Learning and extension of test cases in production automation: Over time, the 

air tube supplier has to face changing market conditions and will deliver to further car 

manufacturers or will produce for new car models. Hence the supplier has to evolve and 

modify its production system, which probably already has grown over years, to meet new 

requirements. Some of the requirements could not be foreseen beforehand and surely new 

requirements will appear in the future which cannot be foreseen by now. The resulting 

continuous improvements and extensive updates are then considered in the third phase by 

applying test case learning techniques. 

Software evolution by continuous improvements: In daily usage of the production system, 

errors are handled, improvements in the process are done, and it is reacted on changes of the 

requirements. This fact requires modifications and changes in hardware and software which 

are mostly performed directly by the production technicians. In terms of our example, the 

control software for the tube production is initially developed for a fixed set of tube lengths 

and therefore test cases are provided only for these known parameters. But in accordance to 

our second adaptation case, a new tube type is added to the portfolio and a technician changes 

the production system to include that tube length. This modification will lead to supposedly 

false tube length and a quality violation will occur. As a consequence a human operator is 

alerted (see phase 2) and classifies the changes as desired. Therefore, the quality test cases 

should learn the new parameter range without any changes to the control software itself. 

Software evolution by extensive updates: The control software is developed for a constant 

winding density of the fabric strings. In the third adaptation case it is assumed that the 

supplier has to adapt its production in order to produce air tubes with a new winding density. 

This requirement was not foreseen beforehand but the control system has to be updated 

correspondingly. When applying extensive updates, it is important to consider if these changes 

will conflict with the previous requirements. Therefore, it is desirable to be able to test if a 

planned software update will limit the ability of the software to produce the current tube 

lengths or to adapt to other tube lengths. Based on the current test cases of the system, such 

extensive updates can be checked beforehand in a simulated environment of the considered 

system in which the updated software is tested against the new functionalities as well as the 

current requirements.  
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Phase 4 - Provide enhanced test coverage in production automation: The continuous 

improvements in phase 3 lead to an enhanced semantic and adaptive test coverage, which 

reflects current system behaviour more comprehensive and hence allows for a better validation 

of the specified requirements. It is desirable to be capable of connecting a learned test case to 

its corresponding requirement in order to address the non-fulfilment of the right requirement if 

a test case fails. While this probably can only be done manually, test cases can, in conjunction 

with domain specific heuristics, give valuable hints why a modification violates a system 

requirement. However, since test cases are the mayor knowledge carriers, it is even 

conceivable to utilize the anti-aging cycle without any predefinition of requirements. Instead, 

test cases learned during well operating production periods are used for future production 

periods (continuous improvements) or for the evaluations of planed software or hardware 

modification (extensive updates) 

4.2 Results of the demonstration example based on a prototype 
implementation 

In the following an initial case study based on a prototypical implementation is presented that 

demonstrates the feasibility of our anti-aging cycle along the three aforementioned adaptation 

test cases. Therefore, we carry out a first “proof of concept” prototype that is realised as an 

extension for active components using the Jadex middleware [BP12]. This prototype connects 

test cases triggered by a rule engine to the quality and adaptively requirement. The prototype 

also contains a simple mechanism to parameterise test cases out of observed variables. 

Furthermore, the underlying Jadex platform allows for a separated simulation environment in 

order to execute simulation-based test cases. It must be stated that the used prototype has only 

few simple and limited functionalities and it is used only for demonstration purposes. The 

example of an automotive supplier is realised by a simulation model that produces 

approximately one tube every minute.  

Figure 4 shows the eight hour progress of the executed simulations presenting the absolute 

length difference (quality test) and the number of tests cases carried out. The simulation was 

repeated 30 times and the average values of these runs are indicated. The upper graphic 

illustrates the absolute length difference average ΔL between the produced length Lprod and the 

expected length Lexp of finished tubes, calculated according to (1)  





P

i

iprodj
j

LL
P

L
1

,exp,min
1

 (1) 

where P is the number of products manufactured within 10 minutes, and j=1,...,3 corresponds 

to the three different quality test cases considered. The bottom graphic illustrates the number 

of test cases carried out. Here, each bar corresponds to the total test cases executed within 10 

minutes. For instance, after 10 min of simulation, 30 tests cases were executed and a length 

difference average of 1 was obtained. 

In addition, after every simulated hour, the control system checks for the adaptability 

requirement and executes a corresponding subset of 10 test cases on a separated simulation 

(crossed squares shown every 60 min in Fig.4). According to the first adaptation case, after a 

simulated time of 80 min the production is modified to decrease the production time. We 

assume in the underlying simulation model, that this modification causes a simultaneous 

increase in the absolute difference of the tube lengths. As expected the recurrent triggered 
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quality test cases notice this increase and after multiple test failures a requirement violation is 

reported. This violation is registered by the human operator, who therefore reverses the 

modification in minute 110. 

The second adaptation case is initialised after 3.5 hours of operation. In this case a new tube 

length is introduced into the system. After indicating a quality violation, the human operator 

classifies this violation as intended. The software system therefore learns that a new tube 

length is intended and generates an additional test case. The additionally learned test case is 

evident in the bottom of the figure (starting from minute 250), since now 40 test cases per 10 

min are carried out in average, instead of 30 as before. Apart from these continuous 

improvements in the third adaptation case, an extensive software update is initialised. In this 

case air tubes of a new winding density are demanded and hence the production shall be 

updated. To ensure that the updated software still fulfils the already existing requirements a 

simulation-based approach is used. Therefore, in a separated test environment (with a 

synchronised clock) the updated software is validated with the previously learned test cases. At 

the separated test environment a new test case is used to evaluate the new winding density 

functionality (see bottom figure starting from minute 300). Until the update is finally 

introduced (at minute 420), twice as many test cases are carried out as before, since they are 

executed in the still operating system (thin frames) and in the separated test environment (thick 

frames). In this way the update is concurrently validated and can afterwards be safely 

introduced into the system. 

It needs to be emphasized that this first prototyped is only used to demonstrate the feasibility 

of our vision and the anti-aging cycle’s ability to handle both considered types of evolution 

scenarios. More complex evolutionary and adaptive mechanisms will be part of our upcoming 

work. Nevertheless, in this contribution we have already shown that our approach of an anti-

aging cycle can provide significant benefits towards requirement-aware systems and thus an 

increasingly managed evolution and adaptation of software systems. 

 

Figure 3: Results of the adaptation scenarios 
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5 Conclusion and Future Work 

In this contribution we have presented an anti-aging cycle as a mechanism to manage the 

evolutionary enhancement of long-living software systems. In order to prevent evolving 

software from aging, our coherent concept supports two kinds of evolution scenarios, 

continuous improvements and extensive updates, and provides constantly support for keeping 

the implicit behaviour of the evolved software in line with its explicit requirements. First, a 

validation mechanism is used to detect requirement violations and hence to keep the system 

behaviour in line with the stored requirements. Furthermore, a learning process is applied to 

keep stored knowledge up-to-date and therefore to reach an enhanced test coverage to allow 

for improved validation mechanisms. To present the benefits of our vision, the anti-aging cycle 

is exemplary applied on a production facility. Further research towards this vision should 

include a comprehensive representation of requirements and test cases, an automatic 

mechanism to extract relevant system behaviour into test cases and finally a possibility to 

automatically link learned test cases to requirements. 
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