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Annotations on Complex Patterns
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1 Dipartimento di Informatica, “Sapienza” Università di Roma, Italy

Abstract: Modelers of systems often want to isolate specific parts of a model to be
treated as a whole, for example to protect them from accidental changes, to constrain
them to specific policies, or to identify them as instances of a general pattern. In par-
ticular, we study here the case in which these parts are annotated with information
from some external model. In a previous paper, we have discussed the use of annota-
tions on individual model elements, represented as nodes in a graph; in this paper we
model annotation processes involving also annotations themselves or whole config-
urations. To address the latter problem, we enrich the notion of graph by introducing
a third sort of elements, called boxes, encompassing subgraphs, and associate them
with annotations, too. We show how annotations on boxes support the modeling
of complex policies, adapting the previous constructions for notation-aware rewrit-
ing to include boxes. The paper illustrates these concepts on the concrete modeling
scenario of an organisation with security and temporal annotations.

Keywords: Annotations, graph configuration, box.

1 Introduction

In system modeling, the need often arises to identify specific configurations within a complex
model, and refer to them as a whole. In many cases, such configurations may involve a number of
model elements which is not known a priori and which may vary dynamically. Such is the case
with pattern-based modeling, especially of software systems, where several software patterns,
usually relying on polymorphism, may be realised by arbitrary numbers of instances, as for
example in the Strategy, Observer or Decorator patterns. While instances of patterns can be
identified on the basis of the typical relations among their elements, constructs are needed to
manipulate them as distinct individual model elements, persisting beyond their usage.

The basic model of graphs, composed of nodes and directed edges, does not support in a
natural way the notion of configuration, in particular where the extent of the configuration is not
definable a priori. Hypergraphs provide a way to deal with such a problem, by allowing multiple
tentacles to touch all the elements involved in a configuration [DKH97]. Triple graphs have
been used to manage instances of patterns, where a specific node in the correspondence graph
is connected to all the nodes establishing the correspondence between a model element in the
model graph and an element representing the element role in the pattern graph [BGL10]. Both
solutions, however, do not scale up to the need for composing configurations into more complex
ones, so as to form configuration hierarchies. Indeed, for the hypergraph-based solution this
would require the ability to define edges between hyperedges, whereas for the pattern-based
solution, this requires that the intended composition of patterns be defined before-hand, while
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the need for composition could be restricted to a specific model. Such a mechanism has been
defined in [BGL10], but is not immediately extendable to configurations defined on the fly.

This problem is particularly relevant in model-to-model transformation, in situations where
the interest is in annotating configurations as a whole, so as to constrain the use of particular
transformations only to elements in some configuration. We argue that the limitations of the
graph-based modeling derive from the use of a single type of diagrammatic relation, connected-
ness, which is not a transitive one. On the contrary, the containment relation, being transitive,
naturally supports the representation of hierarchies, with the important property that removing a
level of containment maintains the relation between the levels adjacent to the one removed.

In this line, we adopt an extension of the notion of graph by introducing boxes, which are
elements including subgraphs and other boxes as well. Boxes are naturally organised in contain-
ment structures, but can also be the source and target of edges. It is to be remarked, however,
that boxes are not organised in a proper hierarchy, as box containment does not induce a partial
order, since anti-symmetry is not required. This allows for configurations where boxes can be
mutually contained into one another, without being identified.

Boxes were originally proposed in an informal way in [PP00], where they were called loops.
We give here a formalisation of them and set them in the framework of model annotation and
transformation, by making them the target of annotation edges. In this way, we extend the
definition of annotation in [BP12], and provide a formal characterisation of annotations of con-
figurations, which, though hinted at there, was not completely developed.

Paper organisation. In Section 2 we formally define the required extension of graphs to con-
tain boxes allowing structured arrangements of nodes and edges, as well as reference to entire
subgraphs, while Section 3 introduces the running example of an organisational model annotated
with temporal and security information. Section 4 presents the metamodel for annotation pro-
cesses and formalises the notion of domain, and Section 5 illustrates the impact on the rewriting
process of the combination of annotations and boxes referring to the running example. The paper
ends with Sections 6 and 7 discussing related work and some concluding remarks, respectively.

2 Preliminaries

We adopt the framework of typed graphs, and we extend the usual notion of graph with elements
of a new sort, called boxes, allowing a nested structuring of graphs.

Definition 1 A (directed) graph with boxes is a tuple G = (V,E,B,s, t,cnt), where: (1) V and E
are sets of nodes and edges as in usual graphs; (2) B is a set of boxes, such that B∩ (V ∪E) = /0;
(3) the source and target functions s and t extend their codomains to V ∪B; (4) cnt : B→℘(V ∪B)
is a function associating a box with its content1 with the property that if x ∈ cnt(b1) and b1 ∈
cnt(b2), then x ∈ cnt(b2).

In the rest of the paper we refer to graphs with boxes as B-graphs or just graphs unless it is
necessary to distinguish them.

1 Here and elsewhere ℘ denotes the powerset.
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Definition 2 A morphism f : G1→ G2 between B-graphs Gi = (Vi,Ei,Bi,si, ti,cnti) is a triple
( fV : V1 → V2, fE : E1 → E2, fB : B1 → B2) that preserves source, target and content function,
i.e., fV∪B ◦ s1 = s2 ◦ fE , fV∪B ◦ t1 = t2 ◦ fE , and if x ∈ cnt1(b), then fV∪B(x) ∈ cnt2( fB(b)) for all
x ∈V ∪B and b ∈ B, where fV∪B is the (disjoint) union of fV and fB.

In a type B-graph T G = (V T ,ET ,BT ,sT , tT ,cntT ), V T , ET and BT are sets of node, edge
and box types, respectively, while the functions sT : ET → V T ∪ BT and tT : ET → V T ∪BT

define source and target node- and box- types for each edge type, and the function cntT : BT →
℘(V T ∪BT ) associates each type of box with the set of types of elements it can contain.

A B-graph G is typed on a type B-graph T G if there is a graph morphism type : G→ T G,
with typeV : V → V T , typeB : B→ BT and typeE : E → ET s.t. typeV (s(e)) = sT (typeE(e))
and typeV (t(e)) = tT (typeE(e)). Moreover, given b ∈ B,x ∈ V ∪B, we have: x ∈ cnt(b) =⇒
typeX(x)∈ cntT (typeB(b)), where X is V or B, depending on x∈V ∪B. A morphism f : G1→G2
between TG-typed graphs preserves the type, i.e. type2 ◦ f = type1. Any type graph morphism
f T : T G1 → T G2 induces two functors, Incl f T from the category of T G1 typed graphs to that
of T G2 typed graphs, and Forget f T in the opposite direction, in the obvious way. The result in
Theorem 1 is already stated in [PP00] without proof.

Theorem 1 [Category of B-graphs] All the B-graphs, typed over the same type B-graph T G,
and all the type-preserving B-morphisms form a category GraphLTG closed under pushouts and
pullbacks.

Proof sketch. It is sufficient to deal with the last component cnt of a B-graph, as the rest can
be viewed as a graph where the set of nodes is distinguished into V and B. The composition
f 3 = f 1 ◦ f 2 : G1→ G3 satisfies the additional property about cnt: if x ∈ cnt(b1) then f 1

V∪B(x) ∈
cnt2( f 1

B(b)) since f 1 is a morphism, and therefore f 3
V∪B(x) = ( f 1

V∪B ◦ f 2
V∪B)(x) ∈ cnt3( f 3

B(b) =
( f 1

B ◦ f 2
B(b)) since f 2 is also a morphism and the content function cnt is ’transitive’ by definition.

Given a span of morphisms G1
f 1

← G0
f 2

→ G2, we construct its pushout G1
g1

→ G3
g2

← G2 in the
usual way for the first five components, with morphisms gi : Gi → G3 preserving the source si

and target ti functions for i = 1,2. To define cnt3 for G3, let b ∈ B3. Then, by construction,
either b = g1(b1) = g1( f 1(b0)) and b = g2(b2) = g2( f 2(b0)) for some bi ∈ Bi and b0 ∈ B0, or
b = g1(b1) for some b1 ∈ B1 and b 6= g2(b2) for any b2 ∈ B2 (the third possibility reversing the
roles of 1 and 2 is similar). In the first case, cnt3(b) = g1(cnt1(b1))∪g2(cnt2(b2)), while in the
second case cnt3(b) = g1(cnt1(b1)). The ’transitivity’ property of cnt3 follows from that of cnt1
and cnt2, while the universal property follows from the universal property of the union in Sets.

Given a cospan of morphisms G1
g1

→ G3
g2

← G2, we construct its pullback G1
f 1

← G0
f 2

→ G2 in
the usual way for the first five components. For b0 ∈ B0, we have g1( f 1(b0)) = g2( f 2(b0)) by
construction and define cnt0(b0) = {x ∈ G0 | f 1(x) ∈ cnt1( f 1(b0))∧ f 2(x) ∈ cnt2( f 2(b0))}.

We adopt the DPO (Double PushOut) approach to graph transformation [EEPT06], extending
it to allow rewriting on B-graphs. A DPO rule consists of three (B-)graphs, called left- and right-
hand side (L and R), and interface graph K. Two injective morphisms l : K → L and r : K → R
model the embedding of K (i.e. the sub B-graph preserved by the rule) in L and R. Figure 1 (left)
shows a DPO direct derivation diagram. Square (1) is a pushout (i.e. G is the union of L and D
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through their common elements in K), modeling the deletion of the elements of L not in K, while
pushout (2) adds the new elements, present in R but not in K. Figure 1 also illustrates the notion
of negative application condition (NAC), of the form n : L→ N that a match m : L→ G should
satisfy. A rule is applicable if there is no morphism q : N→ G such that q◦n = m.

N

q
,,

6=

Lnoo

m
��

(1)

K

(2)

loo r //

k
��

R

m∗

��

Ci j

oi j
//

=

Pi

ni
,,

=

yi joo Lxioo

m
��

(1)

K

(2)

loo r //

k
��

R

m∗

��
G Dfoo g // H G Dfoo g // H

Figure 1: DPO Direct Derivation Diagram for rules with NACs (left) and ACs (right).

We denote the application of the rule p on a match m : L→ G by G⇒m
p H and write G⇒p H

if H can be derived from G by applying p with respect to some match m for L in G. As with
the traditional DPO approach to graph transformation, the existence of a morphism m from L to
G is not sufficient to guarantee the applicability of the rule. The match m : L→ G must satisfy
the Gluing Conditions, which extend naturally the original ones: the Dangling Conditions must
be satisfied by all edges, including those with a box as source/target entity, and the Identification
Condition must be satisfied not only by edges and vertices, but also by boxes.

Theorem 2 (Gluing Conditions) Given a rule p = (L l← K r→ R) (a span of B-graphs and mor-
phisms), and a morphism m : L→G, let IDmX = {x ∈ XL | ∃y ∈ XL[x 6= y∧mX(x) = mX(y)]} with
X = V,B,E, and DANGm = {x ∈ VL∪BL | ∃e ∈ EG \mE(EK)[mV∪(B)(x) = sG(e)∨mV∪(B)(x) =
tG(e)]}. Then the pushout complement D exists iff: (1) DANGm ⊆ l(K), (2) IDmX ⊆ lX(K).

Just as the traditional Gluing Conditions can be extended to B-graphs, it is easy to verify,
by choosing as distinguished class M the injective B-morphisms, that GraphLTG is an HLR1-
category, thus enjoying all the usual properties related to the Church-Rosser and Parallelism The-
orems [EHKP90]. It is still open whether the equivalent of the Amalgamation and Concurrency
Theorems hold. The proof that the HLR1 properties hold can be reconstructed by starting with
the fact that typed graphs form an HLR1-category, and then completing it by noticing that the
added component, the function cnt, for the pushouts and pullbacks in GraphLTG is constructed
using set union and set intersection and that the category Sets is HLR1 as well [EHKP90].

Given T G-typed rules pi : Li
li← Ki

ri→ Ri, i = 1,2, a rule morphism h : p1 → p2 is a triple
hX : X1→X2, with X =V,B,E, of T G-typed morphisms with hR◦r1 = r2◦hK and hL◦ l1 = l2◦hK .

An atomic constraint is a total morphism between typed attributed graphs c : P→C. A graph
G satisfies c, noted G � c, if for each match morphism m : P → G there exists a morphism
y : C→G s.t. y◦c = m. If c : P→C is an atomic constraint, then ¬c is also an atomic constraint,
and G � ¬c iff G 2 c. We call negative atomic constraint2 an atomic constraint of the form
nP = ¬iP : P→ P, where iP is the identity morphism, and G � nP iff @mP : P→ G. We call
M(c) = {G | G � c} the set of models for c, and we work with consistent sets of constraints C ,
i.e.

⋂
ci∈C M(ci) 6= /0. We use different types of morphisms depending on the domain and the

usage, both for constraints and rules. A constraint morphism k : ac1→ ac2 is defined in a way

2 In this paper, we deal only with positive atomic constraints.
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similar to a rule morphism, i.e. it is a pair kX : X1 → X2, X ∈ {P,C}, of T G-typed morphisms
s.t. hC ◦ r1 = r2 ◦ hP. Figure 1 (right) shows that an atomic constraint can be associated with a
rule as an application condition AC, of the form {xi : L→ Pi,{yi j : Pi→Ci j} j∈Ji}i∈I , for a match
m : L→G of the LHS of a rule, where I and Ji are index sets for each i ∈ I. An AC is satisfied by
m if, for each ni : Pi→G s.t. ni ◦xi = m, there exists some oi j : Ci j→G s.t. oi j ◦yi j = ni. A NAC
can also be seen as a particular case of AC where {yi j : Pi→Ci j} j∈Ji}= /0. A general application
condition (GAC) is a composition of nested constraints, together with a formula on their matches,
built with the operators ∃, ∀, ∧ and ∨. From this point on, a rule is a pair p = (r,ac) consisting

of a span of morphisms r = L l←K r→ R = π1(p) and a general application condition ac = π2(p).

3 Running example: security annotations on teams

We present the running model for this paper, discussing the use of boxes and annotations in the
rewriting process with reference to an organisational domain in which members can access areas,
and teams can be formed. Teams are represented as boxes which can include both members and
areas. If a member m and an area a belong to the same team t, the access of m to a is considered
to be within the scope of t as well. We consider the annotation of this domain with contextual in-
formation from two domains. The first, a security domain, is defined for simplicity as a collection
of security levels which can be compared via a reflexive and transitive relation, called dominates.
The second domain provides temporal information, which is defined by periods expressed with
reference to a calendar model of time [BBF01]; a period corresponds to some recurrence in the
calendar at some granularity level (e.g. dayTime, nightTime, or weekDays). Again, a period p1
can dominate a period p2, if p1 completely encompasses p2.

We consider annotation processes where security levels are associated with areas, members,
or teams to establish constraints on access or on inclusion in a team, while calendar periods
are associated with a model configuration, as represented by a box encompassing a graph, to
give information on the current period. Calendar periods can also be used to annotate security
annotations, denoting their periods of validity, thus realising a nested form of annotation.

The setting for the annotation process is summarised by the type graph in Figure 2, presented
as a UML class diagram, where stereotypes have been used to distinguish between types of box
and types of nodes. Another set of stereotypes is used to identify the domain (organisational,
security or temporal) from which the types originate, or to indicate that a node indicates the
presence of an annotation. The cntT function is such that cntT (Conf) = {Member,Area,Team}
and cntT (Team) = {Member,Area}. The edges from the two annotation nodes indicate that
nodes of the organisation domain are annotated with domain elements from the security and
temporal domains. Moreover, nodes representing security annotations can be in turn annotated
with information from the temporal domain, to indicate the periods in which the annotation
is valid. Indeed, the type graph depicted in Figure 2 is the outcome of a complex annotation
process, where the organisational domain is first annotated with security information, and then
the resulting domain is annotated with temporal information.

A number of constraints define the acceptable relations among annotations on the organisa-
tional domain. For example, the constraint isAccessSecure in Figure 3 (left) states that if an
area is accessed by a member and both area and member are annotated with some security level,
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Figure 2: The type graph for the running example.

then the security level of the member must dominate that of the area. Similarly, the constraint
isTeamSecure in Figure 3 (right) requires that an area can be assigned to a team if the team
has the necessary authorisations to use the resources in the area, i.e. has a higher security level.
An analogous constraint is defined for inclusion of members in a team.

C1 

access 

isAccessSecure 

:Team 

P 3:SecAnn 

1:Member 

2:Area 

4:SecAnn 

lev1:Level 

lev2:Level 

dominates 

C 

:Team 

3:SecAnn 

1:Member 

2:Area 

4:SecAnn 

lev1:Level 

lev2:Level 

access 

:Team 

C3 

P 3:SecAnn 

1:Member 

2:Area 

4:SecAnn 

lev1:Level 

lev2:Level 

dominates 

C 

isTeamSecure 

:Team 

3:SecAnn 

1:Member 

2:Area 

4:SecAnn 

lev1:Level 

lev2:Level 

Figure 3: Security constraints on access (left) and teams (right).

We adopt a concrete representation derived from UML instance diagrams, where instances
of the box sort are defined as rectangles surrounding their content, nodes from the organisation
domain are usual instance rectangles, nodes representing annotations are rectangles with rounded
corners, and nodes representing elements from the security and temporal domains are ovals. A
box of type Team has a yellow background, and a box of type Conf has a pale green background3.
When morphisms are involved, they are represented by the matching of numbers in the names
of elements. Edges appearing in both graphs and associated with identified elements in the
morphism are considered to be identified as well. We only show the types of edges from the
various domains, the types of the annotation edges being easily inferrable.

We also show some of the rules by which graphs in the organisational domain can be formed,
leaving details on the annotation process for Section 5. Rule simpleAccessWithoutTeams
in Figure 4 (left) grants members access to areas when both members and areas are outside the
scope of any team, while rule teamAccess in Figure 4 (right) allows access within the scope
of a single team. In this paper, since we deal only with non-deleting rules defined by injective
morphisms, we only indicate the L and R components of the rules, the K component being equal

3 Lighter gray and darker gray in a greytone print, respectively.
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to L. Constants define concrete values for annotations. For the remaining rules, we assume that
a NAC is always present excluding membership in some team, unless this is required, and that
NACs prevent the application of rules where security information is required.

1:Member 

2:Area 

L 

1:Member 

2:Area 

R 

access 

rule1 

1:Member 
N1 

:Team 

simpleAccessWithoutTeams 

2:Area 

N2 

:Team 

1:Member 

2:Area 

L 

access 

3:Team 

1:Member 

2:Area 

R 

3:Team rule2 

teamAccess 

Figure 4: Rules for access for non-teamed elements (left) and within a team (right).

Figure 5 presents a snapshot of an organisation as a graph G, together with some annotations,
with three members and two areas. Two members and one area are within a team, and security
levels are associated with the area and with the team as a whole. Another area is annotated with
two security levels, each valid during a different period. The whole graph is annotated to indicate
that this snapshot is taken at daytime. We do not explicitly present the edges representing the
dominates relation between levels, which can be inferred from the names of the levels.

dayTime:Period :TimeAnn 
G 

paul:Member 
a9:Area 

high:SecLevel 

:SecAnn 

frank:Member 

alex:Member 

:SecAnn 

:SecAnn 

:TimeAnn 

A19:Area 

:SecAnn 

low:SecLevel 

:SecAnn 

top:SecLevel 

nightTime:Period 

:TimeAnn 

fm:Team 

curr:Conf 

:SecAnn 

:SecAnn 

Figure 5: A snapshot of an organisation with security and temporal annotations.

4 Annotatable elements

Figure 6 presents the metamodel at the basis of the proposed extension, refining the one pre-
sented in [BP12]. Annotations represent dynamical relations established between annotatable
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elements and domain entities; annotatable entities are either elements representing annotations
(AnnotationTypeNode) or elements representing some domain notion (DomainConcept).
We consider three types of domain concepts: entities, relations and configurations, recursively
composed of concepts. Constraints on AnnotationTypeNode and the DomainConcept
maintain the notions of domain and of annotation consistent with one another. In particular, a
domain configuration is composed of domain concepts, all belonging to the same domain, while
an annotation relates a domain concept with an entity from a different domain. Note that a do-
main concept can be annotated only with domain entities, not with configurations. The notion of
domain is induced from the notion of type graph, as per Definition 3.

Figure 6: The extended metamodel for complex annotations.

Definition 3 (Domain) Given a type graph T G and a set C of constraints on it, a domain is the
set of graphs typed, by T G, that satisfy all of the constraints in C .

This organisation allows the flexible annotation of subgraphs, besides individual nodes or
edges, with domain elements. Moreover, the DomainConfiguration meta-type realises a
special form of the Composite pattern, one which admits cycles. With reference to the type
graph of Figure 2, we observe that <<Node>> types are instances of DomainEntity, while
<<Box>> types are instances of DomainConfiguration and <<Annotation>> types are
instances of AnnotationTypeNode. Edge types in the type graph conform in the obvious
way with the edge meta-types in the metamodel.

Given a graph G1 = (V1,E1,B1,s1, t1,cnt1) in a domain D1, an annotated version of G1 on the
domain D2 is constructed as G′ = (V ′,E ′,B′,s′, t ′,cnt ′), where V ′=V1∪A∪V2, E ′=E1∪EA∪E2,
with: A the set of nodes whose type is an instance of AnnotationTypeNode, V2 a set of nodes
typed in T G2, EA edges relating annotation nodes with elements in V1∪B1 or V2, E2 edges typed
on T G2 and relating nodes in V2, s′ and t ′ suitable extensions of s1 and t1 to include EA∪E2 and
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VA ∪V2 in their domains and codomains, respectively. Hence, we allow only the use of nodes,
and not of edges or boxes as values for the annotations, while any type of element from the
application domain graph can be annotated (we do not consider edge annotation in this paper).
Moreover, B′=B1∪Ba, where Ba is a new set of nodes containing subgraphs of G1, and associated
with some node in A, i.e. boxes which are not part of the original model, but which are created to
support some annotation. We do not present examples of boxes in Ba in this paper. The previous
definitions of t ′ and cnt ′ are therefore enriched accordingly.

Since AnnotationTypeNode is a type of AnnotatableEntity annotations can be
nested. In particular, an annotation node an1, connecting an element x of a domain D with some
entity v1 of a domain D1, can be annotated, through an annotation node an2, with an element v2
of a third domain D2. We require that nested annotations do not form cycles on domains. Such
an annotation is interpreted as constraining the validity of an1 in the context denoted by v2.

5 Rewriting with annotations

We now discuss the impact of annotation processes on the original rules and constraints in
the organisational domain by presenting a collection of rules derived from rules teamAccess
and simpleAccessWithoutTeams (see Figure 4), as well as an extension of constraint
isAccessSecure (see Figure 3). Since we have rules with K = L, we use the construction
given in [BP12] for the SPO approach, that we summarise here. Hence, for a rule r : L→ R and a
constraint c : P→C, where R has a non-empty intersection Z with P, we build two graphs X and
Y and morphisms x : L→ X and y : X → Y . X contains the elements in L and in P, without con-
sidering elements added by R to L, with potential duplicate elements identified through r and Z,
while Y integrates the elements in C, again with all the necessary identifications. The morphisms
x and y are derived by requesting all compositions to commute. As an example, composing con-
straint isTeamSecure of Figure 3 (right) and rule simpleAccessWithoutTeams above
produces rule securedAccess in Figure 7, where we have left the NACs understood.

rule6 

L 

1:User 

2:Area 

R 

access 

1:User 

2:Area 

X 

3:SecAnn 1:User 

2:Area 4:SecAnn 

lev1:Level 

lev2:Level 

dominates 

Y 

3:SecAnn 1:User 

2:Area 4:SecAnn 

lev1:Level 

lev2:Level 

securedAccess 

Figure 7: Composing simpleAccessWithoutTeams and isAccessSecure.

In a similar way, constraint isTimeConsistent in Figure 8 states that an area annotated
with some period information can be accessed only during that period (i.e. in a configuration
annotated with that period). Its composition with rule simpleAccessWithoutTeams pro-
duces rule timedAccessArea in Figure 9.
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c4 

3:TimeAnn 

4:Period 

:TimeAnn 

P C 

3:TimeAnn 

4:Period 1:Member 

2:Area 

access 

1:Member 

2:Area 

:Conf 

access 

isTimeConsistent 

Figure 8: A temporal constraint on access.

1:Member 

2:Area 

L 

1:Member 

2:Area 

R 

access 

4:TimeAnn 

5:Period 

:TimeAnn 
1:Member 

2:Area 

X 
Y 

4:TimeAnn 

5:Period 1:Member 

2:Area 

rule3 

6:Conf 5:Conf 

timedAccessArea 

Figure 9: Composing simpleAccessWithoutTeams and isTimeConsistent.

The combination of the two constraints above on one area gives rise to a conjunction of the
corresponding application conditions, as exemplified by rule securedTeamTimedAccess in
Figure 10, where ac1 and ac2 stand for the whole application conditions in Figures 9 and 7.

rule5 ac2 

ac1 

1:Member 

2:Area 

L 

1:Member 

2:Area 

R 

access 

securedTeamTimedAccess 

1:Member 

2:Area 

3:Team 

dominates 

4:Ann 

5:SecLevel 

6:SecAnn 7:SecLevel 
10:TimeAnn 

9:Period 

:TimeAnn 
1:Member 

2:Area 

8:Conf 

Figure 10: Combining application conditions.

We now discuss how the progressive nesting of applications causes the modification of the
rules derived from constraints. Figure 11 shows constraint isTimeSecurityConsistent,
which extends constraint isAccessSecure with a temporal annotation on the security anno-
tation of an area, analogous to the one used to derive rule timedAccessArea.

Then, we need to extend the application condition for rule securedTeamAccess. Let
ac : X →Y be the morphism in the application condition derived from isAccessSecure (de-
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C2 

3:SecAnn 1:Member 

2:Area 4:SecAnn 

7:Level 

8:Level 
P 

access 

5:TimeAnn 

6:Period 

C 

3:SecAnn 1:Member 

2:Area 4:SecAnn 

7:Level 

8:Level 

access 

5:TimeAnn 

6:Period :TimeAnn 

:Conf 

isTimeSecurityConsistent 

dominates 

Figure 11: Extending security constraint isAccessSecure with a temporal annotation.

fined by c1 : P1 → C1) and ac2 : Y1 → Y2 be the morphism in the application condition derived
from isTimeSecurityConsistent. The intersection between P1 and Y1 is exactly X . Then
we transform the original atomic application condition into a general application condition re-
sulting from the conjunction of the original case and the extended case, as expressed by the
formula ∀mX [∃mY ∧∀mY1 [∃mY2 ]], where mZ , Z = X ,Y,Y1,Y2, indicates the existence of a match
for the graph Z which extends, according to the morphisms in the application condition, a match
for L in the host graph G. The resulting rule, timedAccess, is shown in Figure 12. rule7 

3:SecAnn 

L 

1:Member 

2:Area 

R 

access 

1:Member 

2:Area 

1:Member 

2:Area 4:SecAnn 

5:Level 

6:Level 

X 

3:SecAnn 1:Member 

2:Area 4:SecAnn 

5:Level 

6:Level 

dominates 

Y 

3:SecAnn 1:Member 

2:Area 4:SecAnn 

5:Level 

6:Level 

Y1 

5:TimeAnn 

7:Period 

Y2 

3:SecAnn :Member 

:Area 4:SecAnn 

5:Level 

6:Level 

5:TimeAnn 

7:Period :TimeAnn 

]]2[[ YY1YX 

:Conf 

timedAccess 

Figure 12: Extending rule securedAccess after isTimeSecurityConsistent.

For the host graph in Figure 5 rule timedAccess is applicable on a match formed by mem-
ber Alex and area 19, while rule securedAccess is applicable twice, to both members Frank
and Paul, for area 9. Thanks to the transitivity of cnt, also rule securedTeamTimedAccess
can be applied in this case. As they belong to a team, they cannot access area 19 outside of it,
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nor can Alex access area 9. Figures 13 and 14 show the resulting graphs.

G=>H (applicando rule7) 

dayTime:Period :TimeAnn 
H 

paul:Member 
a9:Area 

high:SecLevel 

:SecAnn 

frank:Member 

alex:Member 

:SecAnn 

:SecAnn 

:TimeAnn 

A19:Area 

:SecAnn 

low:SecLevel 

:SecAnn 

top:SecLevel 

nightTime:Period 

:TimeAnn 

fm:Team 

curr:Conf 

access 

:SecAnn 

:SecAnn 

Figure 13: The graph H generated by applying the rule of Figure 12 to the graph G.

G=>H (applicando rule4) 

dayTime:Period :TimeAnn 
H 

paul:Member 

a9:Area 

high:SecLevel 

:SecAnn 

frank:Member 

alex:Member 

:SecAnn 

:SecAnn 

:TimeAnn 

A19:Area 

:SecAnn 

low:SecLevel 

:SecAnn 

top:SecLevel 

nightTime:Period 

:TimeAnn 

fm:Team 

curr:Conf 

access 

access 

:SecAnn 

:SecAnn 

Figure 14: The graph H generated by applying twice the rule of Figure 7 to the graph G.

6 Related work

We discuss here literature relative to modeling with boxes. For a discussion of work related
to annotations, see [BP12]. In [PP00], the notion of box was introduced (called there loop),
where a box encloses a subgraph or other graphs recursively, and an extension of the notion of
graph rewriting was proposed to encompass rewriting of graphs with boxes. The proposal in this
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paper capitalises on this notion, allowing boxes to be annotated, thus constraining the possible
transformations in graphs with annotations.

The study of families of diagrammatic relations and of their adequacy to modeling domains
exhibiting specific relations has been conducted in [BG04] and [FB05].

The motivation for boxes is analogous to that for introducing Hierarchical Graphs in [DHP02].
These identify some specific types of hyperedges as containing entire graphs, and of multi-level
graphs [PP95], where some nodes may hide some part of a graph at some level of abstraction. In
this case, the resulting structure is not a strictly hierarchical one. The notion of views, realised
through distributed graphs [GMT99], allows the composition of partial specifications of a model,
not necessarily in a nested way, but considering levels of abstraction separately.

Boxes as proposed in this paper allow both the definition of hierarchies and the composition
of different views, with elements which may belong to different hierarchies.

7 Concluding Remarks

We have presented an approach to enriching models of application domains with constraints
coming from contextual domains through the use of annotations relating values from the latter
one to model elements of the former one.

By extending the notion of graph to include boxes which can be source or target of edges (in
particular, target of annotation edges), we extend the definition of annotation provided in [BP12],
and provide here a formal characterisation of annotations of configurations, which was not com-
pletely developed there but only hinted at. Boxes can be nested, allowing the construction of
complex configurations. This extension allows modelers to express and reason about complex
interplays among annotations exploiting elements from different domains. It is important to no-
tice that boxes are a first-class modeling construct, independent of their content. Hence, two
boxes can have the same exact content, without being identified or without being contained into
one another. Conversely, two boxes can be mutually contained into one another, again sharing
the same content, but maintaining possible independent evolutions. Finally, boxes can be used
as place-holders for collections of elements yet to be defined. For example, teams can be formed
and annotated before assigning members to them.

Among several aspects still to be investigated in details is the question of maintaining con-
sistency with respect to annotations. In particular, if an annotated element is removed, than
the corresponding annotations should be removed as well. This could be accomplished through
units, with a preliminary removal of the annotation followed by a simple DPO rule. Also under
investigation is the possibility of defining boxes within the SPO approach. In this case, repair
actions could be used after removing an annotated node (and the annotation edge which had that
node as a target) to remove the annotating node.
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