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Abstract: Many software-intensive systems consist of multiple components that
provide complex functionality by their interaction. The scenario-based languages
LSCs and MSDs are intuitive, but precise means to specify interactions; the engi-
neers can specify how a system can, must, or must not react to events in its envi-
ronment. A key benefit of LSCs/MSDs is that they can be executed via the play-
out algorithm, which allows engineers to perform an early automated analysis of
the specification. However, LSCs/MSDs lack support for expressing also what can
or cannot happen in the environment. This is crucial especially in embedded sys-
tems: very often, the software will only be able to satisfy its requirements if certain
assumptions are made about the behavior of mechanical parts or the physical en-
vironment. We extend MSD specifications to formally express such environment
assumptions, and propose a corresponding extension of the play-out algorithm. The
concepts are implemented in a novel, Eclipse-based tool.

Keywords: scenario-based specification, visual modeling, reactive systems, embed-
ded systems, simulation algorithm

1 Introduction

Modern embedded systems in areas like transportation, traffic, or production typically consist
of multiple components that interact to provide complex functionality in diverse and some-
times safety-critical situations. The scenario-based languages Live Sequence Charts (LSCs)
[DH01, HM03] and a recent variant, Modal Sequence Diagrams (MSDs) [HM08], give engi-
neers intuitive, but precise means for specifying the interaction of the system components. For
particular situations, the engineers can specify how a system can, must, or must not react.
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One key benefit of using LSCs/MSDs is that the specification can be executed via the play-out
algorithm [HM02]. This supports engineers in the early validation of a specification: by simu-
lation, the engineers can check for contradictions among the scenarios and whether the behavior
that emerges from the interplay of multiple scenarios reflects the stakeholders’ intentions.

The original definition of LSCs and MSDs, however, does not include any means to also de-
scribe what can or cannot happen in the environment. But especially in embedded systems,
where software controls physical processes, it is crucial to also consider that, due to the mechan-
ical principles and the laws of physics, events in the environment cannot occur in arbitrary ways.
In fact, often a software cannot satisfy its requirements unless certain assumptions about its
environment are made. For a meaningful simulation, such constraints must also be considered.

As an example, we consider the simplified specification of the RailCab system1, which is de-
veloped at the University of Paderborn. Here, small, autonomous rail vehicles, called RailCabs,
transport passengers and goods on demand. They travel on track sections, each controlled by a
track section control. Imagine the case of a RailCab approaching a crossing, which is a special
kind of track section. The crossing control is responsible for closing the barriers before a Rail-
Cab is allowed to enter the crossing. The requirements, simplified, are as follows: When the
RailCab approaches the end of its current track section, it must send a request to the crossing
control for the permission to enter. The crossing control must then order the barriers to close
and, if this was successful, should allow the RailCab to enter the crossing. The barriers can also
be blocked; then the RailCab must not be allowed to enter. The reply, however, must be sent
before the RailCab is no longer able to brake before the crossing, in case that there is a problem.

In this example, we need to assume that the barriers, once ordered to be closed, will eventually
be closed or blocked. Also, we assume that the barriers close or block before the RailCab reaches
the point beyond which it is no longer able to brake before entering the crossing. If these assump-
tions are not modeled explicitly, we have to assume that environment events occur in arbitrary
order, which could easily violate the requirements and leads to meaningless simulations.

The contribution of this paper is threefold. First, we present an extension of MSDs to specify
not only system requirements, but also environment assumptions. These assumptions can be
specified by assumption MSDs, which allow the engineer to flexibly describe what can or cannot
happen in the environment of a system, or how the environment of a system in turn reacts to
events in the system. Second, we describe a novel extension to the play-out algorithm, which
considers the environment assumptions. Third, we present a new, model-based tool suite, called
SCENARIOTOOLS, which integrates the extended play-out in the Eclipse Debug-Framework.

Our paper is structured as follows. After explaining the foundations in Sect. 2, we introduce
our extension to model environment assumptions in MSD specifications in Sect. 3. Section 4
presents the extended play-out algorithm and Sect. 5 reports on the tool implementation. We
discuss related work in Sect. 6 and conclude in Sect. 7.

2 Foundations

MSDs were proposed by Harel and Maoz as a formal interpretation of UML sequence diagrams,
based on the concepts of LSCs [HM08]. MSDs also generalize some concept of LSCs (see

1 http://www-nbp.upb.de/
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[HM08] for details). In the following, we explain the basics of MSDs and the play-out algorithm.

2.1 MSD Specifications

An MSD specification consists of a set of MSDs. An MSD can be existential or universal
[HM03]. We focus on universal MSDs in this paper, by which engineers can specify temporal
properties for all sequences of events that occur in the system. Each lifeline in an MSD represents
an object in an object system; an object can be an environment object or a system object. The set
of system objects is called the system; the set of environment objects is called the environment.

The objects can interchange messages. A message has a sending and receiving object and
refers to an operation which must be defined for the receiving object. The name of the operation
is also that of the message. Here we consider only synchronous messages where both sending
and receiving is a single event. We call the sending and receiving of a message a message event
or simply event.

A message in an MSD, also called a diagram message, has a name and a sending and a receiv-
ing lifeline. The messages in an MSD have a temperature and an execution kind. The temperature
can be either hot or cold; the execution kind can be either monitored or executed.

Intuitively, an MSD progresses as messages occur in the system as described in the MSD. If
the progress reaches a message that is monitored, this message may or may not occur. If the
message is executed, the message must eventually occur. If the message is hot, no message must
occur that the scenario specifies to occur earlier or later. If the message is cold and a message
occurs that is specified to occur earlier or later, this “aborts” the progress of the MSD. Messages
that are not specified in the MSD are ignored.

More specifically, the semantics of the messages is as follows: An event can be unified with
a message in an MSD iff the event name equals the message name and the sending and the
receiving objects are represented by the sending resp. receiving lifelines of the message. When
an event occurs in the system that can be unified with the first message in an MSD, an active
MSD is created. As further events occur that can be unified with the subsequent messages in
the diagram, the active MSD progresses. This progress is captured by the cut, which marks for
every lifeline the locations of the messages that were unified with the message events. If the cut
reaches the end of an active MSD, the active MSD is terminated.

If the cut is in front of a message on its sending and receiving lifeline, the message is enabled.
If a hot message is enabled, the cut is also hot. Otherwise the cut is cold. If an executed message
is enabled, the cut is also executed. Otherwise the cut is monitored. An enabled executed message
is called an active message. A violation occurs if a message event occurs that can be unified with
a message in the MSD that is not currently enabled. If the cut is hot, it is a safety violation;
if the cut is cold, it is called a cold violation. Safety violations must never happen, while cold
violations may occur and result in terminating the active MSD. If the cut is executed, this means
that the active MSD must progress and it is a liveness violation if it does not. Instead, an active
MSD is not required to progress in a monitored cut.

Figure 1 shows an MSD. We indicate the temperature and execution kind of diagram messages
by labels (e.g. (c/m) or (h/e)). Additionally, the red/blue color indicates the hot/cold temperature
of a message; monitored messages have a dashed arrow, executed messages have a solid arrow.

The dashed horizontal lines in the MSD RequestEnterAtEndOfTrackSection also show the
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reachable cuts, which are cold and monitored or hot and executed, labeled accordingly. Intu-
itively, this MSD expresses the following requirements. We consider a scenario where a RailCab
moves along its current track section. At some point the RailCab rc detects that it reaches the
end of the current track section. This is modeled as the message endOfTS sent between the
environment and the RailCab rc. Now the RailCab rc must send requestEnter to the next
track section control tsc2, which must reply with enterAllowed. These two messages must
be sent before the RailCab reaches a point where it is possible for the last time to safely brake
before entering the switch (modeled by the environment message lastBrake).

rc tsc2

illustration

endOfTS
lastBrakeenterNext

tsc1 rc:RailCab tsc2:TrackSectionControl

MSD RequestEnterAtEndOfTrackSection

1. (h/e)

2. (h/e)

3. (c/m)

inactive
endOfTS

requestEnter

enterAllowed
(isAllowed)lastBrake

env:Environment

(h/e)

(h/e)
(c/m)

(c/m)

Figure 1: The MSD RequestEnterAtEndOfTrackSection with illustration

Messages are typically either cold and monitored or hot and executed, but they can for ex-
ample also be hot and executed to express that something need not necessarily ever happen, but
until it does, something else is not allowed to happen. We will discuss an example in Sect. 3.
Our message semantics differs slightly from the original definition of MSDs [HM08] where hot
messages represent both the safety and the liveness aspects, i.e., it must eventually occur and
must not be violated. Separating the two aspects makes the formalism more versatile.

Messages can also have parameters of certain types. Message events must then carry corre-
sponding parameter values. In our approach, we only allow messages with at most one parameter.
This simplifies certain concepts explained in Sect. 4 and poses no fundamental restriction. Mes-
sages in the MSDs can either specify a concrete value for parameters, or they can be symbolic
and specify no concrete parameter value [HM03, pp. 91]; this is done by specifying as param-
eter value an unbound variable. Here the message enterAllowed has a Boolean parameter,
representing the choice to allow or deny the RailCab to enter. In this MSD, the message specifies
as parameter value the unbound variable isAllowed, thus the message is symbolic.

A message event and a diagram message that are unifiable are also parameter unifiable iff the
diagram message is symbolic or specifies the same parameter value as the message event. If a
parametrized message is enabled, the cut progresses if the event is parameter unifiable with the
enabled diagram message. In the case of a symbolic message, the unbound variable is then bound
to the parameter value of the sent message. It is a violation (in addition to the previous notion
of violation) if the event is unifiable, but not parameter unifiable with the an enabled diagram
message.

2.2 Play-Out

Harel and Marelly defined an executable semantics for the LSCs, called the play-out algo-
rithm [HM02], that was later also defined for MSDs [MH06]. The basic principle is that if
an environment event occurs and this results in one or more active MSDs with active system
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messages, then the algorithm non-deterministically (or by user interaction) chooses to send a
corresponding message if that will not lead to a safety violation. The algorithm will repeat
sending system messages until no active MSDs with active system messages remain. Then the
algorithm will wait for the next environment event, and this process continues. (It is assumed
that the system is always fast enough to send any finite number of messages before the next en-
vironment event occurs.) If the play-out algorithm reaches a state where there are active system
messages, but they all lead to safety violations, the algorithm terminates unsuccessfully. The
play-out algorithm is implemented in the PLAY ENGINE [HM03] and the PLAYGO tool [Pla].

2.3 MSDs with Symbolic Lifelines

For systems like the RailCab, we can imagine many different instances, with different track
layouts and different numbers of RailCabs. In addition, through the movement of RailCabs, the
communication relationships among the objects can change.

When specifying the behavior of such dynamic systems, it is often impractical to consider
MSDs where each lifeline refers to a concrete object. Instead, symbolic lifelines were intro-
duced by Marelly et al. [MHK02, HM03], which refer to a class of objects; there can also be
inheritance relationships among classes [Mao09]. MSDs with symbolic lifelines are also called
symbolic MSD; MSDs with non-symbolic lifelines, also called concrete lifelines, are called con-
crete MSDs. Here, concrete lifelines, in contrast to symbolic ones, have an underlined label.

In an active MSD with symbolic lifelines, a symbolic lifeline can be bound to an object that
is an instance of the class referenced by the lifeline. For a given object system, the semantics of
a symbolic MSD is equivalent to a set of concrete MSDs where for each possible combination
of bindings of the symbolic lifelines, there exists a corresponding concrete MSD. Typically, we
want to restrict a symbolic MSD to specify the behavior only for objects with certain relation-
ships or properties. Then, binding expressions are added to restrict the possible lifeline bindings.

Harel and Marelly extended the play-out algorithm to handle the dynamic binding of symbolic
lifelines, supporting a simple form of binding expressions [HM03, pp. 209]. In SCENARIO-
TOOLS, we implement similar mechanisms and consider binding expressions of the form <life-
line-name> := <expr> where <lifeline-name> is the name of a lifeline, also called
the slot lifeline, and <expr> is an OCL expression, also called the value expression. The value
expression can evaluate to an object that is an instance of the slot lifeline’s class. Lifeline names
can be used as variables within value expressions. If a lifeline is bound to an object, so is the
corresponding variable. Also variables bound in the course of progressing symbolic diagram
messages (see Sect. 2.1) can be used in the binding expressions. Value expressions can only be
evaluated when all the variables in the value expression are bound.

During play-out, symbolic MSDs and binding expressions are interpreted as follows: As a
message event can be (parameter) unified with a first message in an MSD, an active MSD is
created with the sending and receiving lifelines of the first message bound to the sending and
receiving object of the message event. Then the value expressions of the binding expressions
are evaluated as soon as possible, and the corresponding slot lifelines are bound to the resulting
objects. It must not happen that a cut is before a message on its sending or receiving lifeline, but
the receiving resp. sending lifeline is unbound.

As an example, consider the symbolic variant of the MSD RequestEnterAtEndOfTrackSection
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shown on the right of Fig. 2, executed in the context of an object system as illustrated on the left.
If the message endOfTS is sent from the environment object e to the RailCab rc1, an active
MSD is created with the lifeline env bound to e and the lifeline rc bound to rc1. Now the binding
expression can be evaluated, which results in binding the lifeline next to the object tsc2.

endOfTS

rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed
(isAllowed)

MSD RequestEnterAtEndOfTrackSection

lastBrake

next := rc.current.next

tsc2:Track
SectionControl

nextnexttsc1:Track
SectionControl

rc1:RailCab

... next

registered-
RailCabs

current

...

(dynamic) object system

e:EnvironmentendOfTS

link
message event

env:Environment

(c/m)

(c/m)

(h/e)

(h/e)

Figure 2: A dynamic object system and the symbolic version of the MSD RequestEnterAtEnd-
OfTrackSection

We also consider that the value expression can evaluate to a set of objects. Then for each
object in the set a copy of the active MSD is created with the slot lifeline bound to that object (as
already defined by Harel and Marelly [HM03, pp. 215]).

3 Environment Assumptions and Other Extensions

While the concepts described above are already very powerful, they only allow us to specify
constraints on the system behavior, but not over the possible environment behavior.

This is a limitation, as already motivated in the introduction by the example of a RailCab
approaching a crossing. Let us consider this example in more detail. Figure 3 illustrates the
example on the right. Upon notification that the RailCab approaches the end of its current track
section (1), it must send a request to the crossing control for the permission to enter the crossing
(2). The crossing control must then order the barriers to close (3) and, if this was successful (4),
should allow the RailCab to enter the crossing (5). The barriers can also be blocked (4); then the
RailCab must not be allowed to enter (5). The reply, however, must be sent before the RailCab
reaches the point where it is no longer able to brake before the crossing (6).

enter
Next

requestEnter
enterAllowed(t/f)

close
Barriers

closed/
blocked

2

4

5

3

true if closed, 
false if blocked rc:RailCab crc:CrossingControl

MSD CloseBarriers

requestEnter

enterAllowed
(true)

(h/e)
(c/m) closeBarriers

barriersClosedalt

enterAllowed
(false)

barriersBlocked

(h/m)

(h/m)

(c/e)

(h/e)

b := crc.barriers

b:Barriers

endOfTS

lastBrake

1 6
noReturn

Figure 3: The MSD defining the requirements for closing the barriers and an illustration

These requirements are captured formally by the MSD CloseBarriers shown on the right in
Fig. 1 and its interplay with the MSD RequestEnterAtEndOfTrackSection (Fig. 2): Upon notifi-
cation that the RailCab approaches the end of its current track section, the MSD RequestEnter-
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AtEndOfTrackSection requires the RailCab to send requestEnter to the next track section,
which is in this case the crossing control. The crossing control class inherits from the track
section control class; we omit the class diagram for brevity. In this case, where the recipient of
requestEnter is a crossing control, an active MSD of CloseBarriers is created.

We suppose that the crossing control has a barriers object linked to it via the association
barriers, so the lifeline b:Barriers is bound immediately to this object. This object is an actua-
tor/sensor component that closes the barriers and detects whether the barriers are closed, opened,
or blocked. It is an environment object, because we, from the perspective of the software, can
send commands to this component, but cannot control whether the barriers will be closed or
blocked.

Next, the crossing control must send the message closeBarriers. Now there are two
alternatives, modeled by an alternative fragment. An alternative fragment can span several life-
lines and contains two or more sub-interactions, divided graphically by solid horizontal lines. If
no conditions are specified, they model non-deterministic choices. If the first messages inside the
sub-interactions are system messages, the choice can be made by the system; if the first messages
are environment messages, the environment makes the choice, i.e., the system has to react dif-
ferently to different things that can happen in the environment. In this case, the sub-interactions
model that, when ordered to be closed, the barrier must either be closed or blocked, and then
the crossing control should either allow or must deny the RailCab to enter the next track section.
(Note that should allow is modeled by a cold message, which may be violated if yet another
MSD would specify that for some other reason the RailCab must not be allowed to enter.)

Unfortunately, there are two problems with the above requirements. First, the MSDs Request-
EnterAtEndOfTrackSection and CloseBarriers (Fig. 1 and 2) can be easily violated as follows. In
a state where the crossing control sent the message closeBarriers, the system must wait
for the environment events barriersClosed or barriersBlocked to occur, before the
crossing control can send the reply enterAllowed to the RailCab. However, it is not guar-
anteed that the environment (the barriers, more specifically) will send barriersClosed or
barriersBlocked. The environment could, for example, send lastBrake instead. This
would lead to a safety violation in the MSD RequestEnterAtEndOfTrackSection. The require-
ments can only be satisfied if we can assume, for example, that the barriers will report to be
closed or blocked before lastBrake occurs. Thus far, we are not able to express this formally.

Second, the play-out algorithm, even if we consider such an assumption, will not be able to
execute the MSDs successfully. This is because, as described in Sect. 2.2, the system must always
immediately send active system messages without waiting for the environment. However, after
the crossing control sent the message closeBarriers, sending the active message enter-
Allowed before barriersClosed or barriersBlocked occurred would lead to a safety
violation. Thus, the regular play-out algorithm is not suited to execute such specifications.

To overcome these problems, we propose, first, a more flexible extension of the play-out
algorithm that allows the system to wait for environment events also in the presence of active
system messages. Second, we propose to explicitly model assumptions about the environment
behavior through assumption MSDs.

The syntax and semantics of assumption MSDs is the same as for requirement MSDs, with
only the following differences. Syntactically, assumption MSDs have an additional stereotype
«assumption MSD». Semantically, a sequence of events satisfies an MSD specification if it does
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not lead to a safety or liveness violation in any requirement MSD or if it leads to a safety or
lifeness violation in at least one assumption MSD.

In practice, requirement MSDs are typically used to specify constraints over system messages,
or how the system must react to environment events. Assumption MSDs are, by contrast, typ-
ically used to specify constraints over environment events or how the environment will again
react to system messages. Intuitively, we can then say that the system is only obliged to satisfy
the requirement MSDs if the environment satisfies all assumption MSDs.

Figure 4 shows two assumption MSDs which explicitly formulate environment assumptions
that are necessary to make it possible for the system to satisfy the specification. Details on the
play-out of MSD specifications with assumption MSDs are explained in the next section.

endOfTS

rc:RailCab

lastBrake

«EnvironmentAssumption»  
PassingPointsOnTrack  

enterNext

noReturn

(c/m)

(h/e)

(h/e)

(h/e)

«EnvironmentAssumption»  
TimelyBarriersStatus

rc:RailCab crc:CrossingControl

b := crc.barrierscrc := rc.current.next

endOfTS requestEnter closeBarriers

alt barriersClosed

barriersBlocked

b:Barriersenv:Environment

true
lastBrake

env:Environment

(c/m)

(h/e)

(c/m)

(c/m)
(c/m)

(h/e)

(h/e)

Figure 4: Assumption MSDs for the RailCab crossing example

Figure 4 shows on the left the assumption MSD PassingPointsOnTrack. It expresses the as-
sumption that the RailCab will pass the points on the track section as shown in Fig. 3 always in
the indicated order. (We assume, simplified, that the RailCab will not brake or reverse.)

On the right, Fig. 4 shows the MSD TimelyBarriersStatus. It specifies that the environment’s
reaction to closeBarriers (i.e., barriersClosed or barriersBlocked) will occur
before the RailCab passes the point of the last safe brake.

With these environment assumptions, the system can satisfy its requirements. By considering
these assumptions also in the play-out algorithm, the specification can be executed successfully.
The extension of the play-out algorithm to also consider environment assumptions is explained
in the next section.

4 Extended Play-out

The play-out algorithm of SCENARIOTOOLS differs from the play-out algorithm in the PLAY

ENGINE and the PLAYGO tool conceptually in two ways. First, it explicitly considers environ-
ment assumptions that can be specified as introduced above. Second, after each step, it collects
for each message event information about its effect in the next step. This way, the user can for
example see whether a message will progress cold or hot messages, or whether the message will
lead to a cold or safety violation in an assumption or requirement MSD. This information is
highly valuable for the user to understand the consequences of choosing particular steps.

The SCENARIOTOOLS play-out algorithm basically consists of repeated executions of mes-
sage events (selected by the user, randomly, or by some other logic). The side-effect of a message
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event is computed by calls of the performStep operation. The activity diagram in Fig. 5 gives
an overview of the steps within this operation. First, a message event can have side effects
on a receiving object in the object system. SCENARIOTOOLS uses a convention that messages
of the form set<feature-name>(<value>) will assign the receiving object’s attribute or reference
with the name <feature-name> the value specified by <value>. Of course the parameter type
must match the type of the feature. SCENARIOTOOLS currently supports Boolean, Integer, and
String attributes. Set-operations for single-valued links are supported and support for modifying
many-valued links e.g. via add/remove<feature-name>(<value>) is under development.

Second, it is checked whether the event leads to a cold or safety violation in any active MSD.
As usual, cold violations of an active MSD lead to its termination. Safety violations in assump-
tion MSDs lead to a termination of the play-out algorithm since, if the assumptions are violated,
the system does not need to fulfill its requirements anymore, which renders a further simulation
pointless. Instead, and different from usual play-out algorithm, safety violations in requirement
MSDs do not lead to a termination of the play-out algorithm. The reason is that, subsequently, it
may turn out that it is impossible for the environment to satisfy the environment assumptions, i.e.
the environment drove the system to violate the requirements, but at the expense of inevitably
violating the environment assumptions later. To check for such a case, the execution is there-
fore continued after safety violations in requirement MSDs. The occurrence of the requirement
safety violation is remembered, but, similar to cold violations, just lead to the termination of the
respective active MSD.

performStep(MessageEvent msgEvent)

perform side effects on 
receiving object

check for violations of 
active MSDs

progress cuts of active MSD 
beyond the message that is 

parameter unifiable with 
msgEvent

initialize active MSDs where 
the first message is parameter 

unifiable with msgEvent

[safety violation in 
assumption MSD]

evaluate conditions and 
execute variable assignments 
in active MSDs, progress cut 
accordingly, evaluate binding 
expressions and bind lifelines

update relevant message 
events (enabled, cold/safety 

violating) for each active MSD

update message events 
information for current state

Figure 5: Overview of the performStep operation

Third, the active MSDs are progressed where the message event can be parameter unified with
an enabled message. Fourth, active MSDs are created where the message event can be param-
eter unified with the first message. Fifth, any enabled assignments are executed and conditions
are evaluated. Furthermore, lifeline binding expressions are evaluated, which may lead to new
lifeline bindings. This step is repeated (internally, not shown in the diagram) as long as cuts
are progressed or new lifelines are bound. Sixth, for every active MSDs, it is determined which
message events are enabled in it and which ones will lead to a cold or safety violation.

Last, the operation collects the following global information about the message events in the
state after the step. A message event is assumption/requirements, hot/cold, monitored/executed
enabled and/or assumption/requirements safety/cold violating if it has the corresponding status
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in at least one active assumption/requirements MSD. Furthermore, a message event is assump-
tion/requirements initializing if it is the initial message of at least one assumption/requirement
MSD. This results in 14 different flags that we decorate each message event with.

More specifically, collecting the global information about the message events works as fol-
lows. We iterate over all enabled and violating events of all active MSDs as well as all events
that initialize active MSDs. These messages are added to a list and annotations are created, de-
pending on whether they are for example initializing a requirement MSD or hot and executed
enabled in an assumption MSD. We call this list the annotaton list in the following. If a message
event is already contained in the annotation list, its annotations are updated, for example the
same message event that is initializing a requirement MSD may also be safety violating in an
assumption MSD.

Collecting the information about message events in the presence of parametrized and symbolic
messages requires some extra care, especially if corresponding symbolic and concrete message
events may be enabled at the same time. Corresponding here means that they have the same mes-
sage name, but they carry a different (or no) parameter value. For example, if a hot parametrized
concrete message is enabled, like enterAllowed(false), this implies that the other con-
crete enterAllowed message events, with another parameter value, are safety violating. (In
the case of a Boolean parameter, there can of course only be one other concrete message event,
enterAllowed(true)). An enabled parametrized and concrete or symbolic message event
is added/updated to the annotation list according to the following rules:

1. the enabled message is parametrized and concrete:

(a) If the concrete message event is not yet in the annotation list, add it. Set/update the
annotations according to the enabled message.

(b) Also add an entry representing the corresponding symbolic message event to the an-
notation list, if not already such an entry exists. For example, if enterAllowed(-
true) is enabled, we will also add enterAllowed(?) to the list.

(c) If there are already annotations for the corresponding symbolic message event in the
annotation list, the concrete message event inherits these annotations. For example,
if enterAllowed(?) is already contained in the annotation list, because it is
hot+executed enabled in some requirement MSD, these annotations would also be set
for the message event enterAllowed(true) when we add it to the annotation
list. The reason for this is that an occurrence of any corresponding concrete message
event will also progress the enabled symbolic messages.

(d) The corresponding symbolic message event is set to be cold/safety violating an as-
sumption/requirements MSD if the concrete message is hot/cold enabled in an as-
sumption/requirements MSD. Furthermore, so are update all the annotations for all
other corresponding concrete message events (because of to the explanation already
given above).

2. the enabled message is parametrized and symbolic:

(a) If not yet an entry representing the symbolic message event exists in the annotation
list, add it. Set/update the annotations according to the enabled message.
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(b) If there are corresponding concrete message events in the annotation list, these inherit
the annotations created for the symbolic message event.

SCENARIOTOOLS uses this information in the two different play-out modes as described
above. First, SCENARIOTOOLS supports the classical play-out as described in Sect. 2.2, where
the system must always immediately send active system messages. More specifically, in the
presence of assumption MSDs, the play-out executes system messages if they are requirement
active. Second, SCENARIOTOOLS supports the play-out mode where the system can also decide
to wait for environment events if there are active system messages.

The simulation can be driven by step-by-step user interaction or by an automated, repeated
random choice of events. In the second play-out mode, however, the random choice of the
system will never be to wait for the environment, with one exception: this choice is only taken
if all requirement active system messages are also requirement safety violating. SCENARIO-
TOOLS also supports an execution where the system can also execute message events that are
not requirement active.

The process of gathering the above information is essential to determine all events that can
have a side effect on the simulation state: unless a message event has a side effect on the receiving
object, messages where all flags are false will not change the simulation state. It is immensely
useful to display for the user only message events that could be relevant, i.e, state-changing.

5 Realization

SCENARIOTOOLS consists of several Eclipse plug-ins. The simulation’s user interface is based
on the Debug Framework of Eclipse to provide a familiar look-and-feel. Editing and visualization
of MSDs is supported by a profile for the UML editor Papyrus.

Figure 6: A Screenshot of the simulation in SCENARIOTOOLS

Figure 6 shows a screenshot of the simulation’s user interface in the SCENARIOTOOLS per-
spective in Eclipse. On the top left, the Debug view shows the current runtime state of a
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SCENARIOTOOLS simulation for the specification of our RailCab example. It lists the currently
active assumption and requirement MSDs. For each active MSD, it displays the current lifeline
bindings in the form [lifeline->object]. It also shows the current position of the cut on
each lifeline in the form lifeline:index (not visible in this screenshot). After the active
MSDs, the list displays all objects in the simulation.

On the bottom left, the MessageEvent Selection View shows the currently enabled, violat-
ing, or initializing message events. In the shown situation, all message events except enter-
Allowed(false) are safety violating in the requirements and therefore “greyed-out”. The
icons on the left of the message name visualize the flags introduced in Section 4 for assump-
tions and requirements, respectively. Note that enterAllowed is only non-violating for the
parameter true, while false leads to a safety violation. For parametrized messages, all message
events referring to same operation and with the same sending and receiving object, but different
parameter values are grouped together.

On the right, the UML editor Papyrus shows an MSD. SCENARIOTOOLS extends Papyrus by
a plug-in to correctly display temperature (red/blue color) and execution kind (dashed or soil
arrow) of messages.

6 Related Work

The PLAY ENGINE [HM03] and PLAYGO tool [Pla] support the play-out of LSC specifications,
very similar to SCENARIOTOOLS. In the PLAYGO tool, the play-out is based on a compila-
tion of LSCs to AspectJ [MH06], different from the direct interpretation of the UML models
in SCENARIOTOOLS. PLAYGO is also Eclipse-based and also supports rich LSC constructs.
However, to the best of our knowledge, SCENARIOTOOLS presents the first tool to extend the
play-out to also regard environment assumptions. A more in-depth comparison of the tools would
be interesting, but exceeds the scope of this paper.

Brill et al. [BBD+04] were the first to mention the use of LSCs to also describe environment
assumptions. They, however, did not consider the execution of LSCs, but only their use for
verification.

The second-listed author introduced assumption MSDs and described an automated approach
for consistency-checking MSD specifications with assumption MSDs [Gre11]. Within this work,
however, no extension of the play-out algorithm was elaborated.

Maoz and Sa’ar recently proposed an approach for incorporating environment assumptions
within the LSCs [MS12]. In contrast to our approach, they do not introduce a special kind
of LSC. Instead, they interpret hot environment messages as messages that the environment
will send. This “inline” formulation of environment assumptions can be easier in some cases.
However, in our experience, it is more useful to consider environment assumptions explicitly and
independently of the requirements. This way, the assumptions can be validated separately and
there is less danger to specify over-optimistic environment assumptions.

In their work, Maoz and Sa’ar elaborated a technique for synthesizing controllers from the
extended LSCs. Code can be generated from a resulting controller that can be executed in the
PLAYGO tool. However, a direct play-out of the specification is not supported. Due to limi-
tations of the necessary synthesis step, the execution of LSC specifications with environment
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assumptions and other, richer language features, especially dynamic lifelines, is not supported.

7 Conclusion

This paper presents an extension of the play-out algorithm for MSDs with environment assump-
tions that can be specified in the form of assumption MSDs. These allow engineers to specify
mandatory and forbidden behavior of the system’s environment. As our example illustrates, the
ability to model environment assumptions explicitly is crucial because often a system can only
satisfy its requirements if the environment does not behave in an arbitrary way.

To the best of our knowledge, we are the first to extend play-out to consider environment
assumptions. We implemented the concepts in a novel Eclipse-based tool and evaluated them
using several example specifications (available on our website2). The extended algorithm and
the user interface of SCENARIOTOOLS display detailed information about the effect of different
message events. This supports the engineers in making informed choices about the next step.

For future work, we plan further extensions of the MSD formalism and the play-out. For
example, we observed that there are two different kinds of environment event: such that can occur
spontaneously and such that only occur in reaction to certain steps of the system. Specifying this
explicitly could in many cases simplify the specification of the environment assumptions.
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