Electronic Communications of the EASST

Volume 60 (2013)

Proceedings of the
Seventh International Workshop on
Software Quality and Maintainability
Bridging the gap between end user expectations,
vendors’ business prospects,
and software engineers’ requirements on the ground
(SQM 2013)

A Meta Model for Software Architecture
Conformance and Quality Assessment

Andreas Goeb

20 pages

Guest Editors: Eric Bouwers, Yijun Yu

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

A Meta Model for Software Architecture
Conformance and Quality Assessment

Andreas Goeb*

andreas.goeb@sap.com
SAP AG, Darmstadt, Germany

Abstract: Software architecture and design suffer from a lack of documented knowl-
edge on how different architectural styles influence software quality. Existing soft-
ware quality models do not allow engineers to evaluate whether a given software
system adequately implements the basic principles of the chosen architectural style,
and which architectural properties and best practices beyond these principles con-
tribute to the system’s quality. In this paper, I present a meta quality model for
software architectures, which can be used not only as a knowledge-base to easily
compare architectural styles based on their impact on software quality, but also to
increase efficiency of architectural quality analysis by leveraging existing modeling
concepts and tools. An experiment performing an architecture assessment using a
quality model for the SOA architectural style not only showed that the approach is
applicable in practice, but also indicated a reduction of manual effort compared to
other architecture assessment approaches.

Keywords: Quality Model; Software Architecture; Design; Conformance

1 Introduction

1.1 Motivation

Current trends in the software market show that quality becomes a differentiating factor among
software products with decreasing functional diversification. It is widely accepted that software
quality problems can be handled easier and more cost efficient, the earlier they are detected
during development [RV98, BWDVO00]. In particular, almost all of a software system’s quality
attributes are influenced by its architecture [CKKO1, p. 19]. Consequently, it is particularly
relevant for software engineering research and practice to develop means for efficient software
quality assessment on the architectural level.

1.2 Problem

According to Svahnberg and Wohlin [SWO05], there is a lack of documented knowledge on how
different architectural styles influence software quality. This forces software architects to base
the selection of an architectural style purely on personal experience rather than objective infor-
mation.

* This work has partially been supported by the German Federal Ministry of Education and Research (BMBF) in the
project Quamoco (01 IS 08023D).

1/20 Volume 60 (2013)

A Meta Model for Software Architecture Conformance and Quality Assessment E}

Moreover, software architecture evaluation generally requires a considerable amount of man-
ual effort, because most established techniques are based on the manual analysis of scenarios. In
particular with the emergence of new deployment models in the context of cloud applications,
where small increments of updated functionality are delivered in very short periods of time, this
approach becomes impractical in the long term. Because of the highly individual nature of these
techniques, they are not designed to be applied repeatedly. Moreover, applying these techniques
to more than one software project involves individual preparation effort for all of them. Within
the software development process, this also implies that quality assessment approaches used in
the architecture phase fundamentally differ from those used in the implementation phase, leading
to media discontinuities during quality assurance. This complicates continuous quality monitor-
ing and control and therefore negatively impacts the costs of quality assurance.

1.3 Contribution

In this paper, I present an architecture-specific extension to the Quamoco meta quality model
[WLW ™ 12a]. The proposed quality model structure explicitly separates conformance concepts
from design best-practices and can be used both to derive statements on the relationships between
architectural properties and product quality, and to increase efficiency of architecture quality
analysis due to large automation potential. While building architecture quality models according
to this approach still involves much manual work and expert knowledge, these models can be
used to repeatedly evaluate software architectures. Moreover, the investment of building such
models pays off when they are reused to evaluate a larger number of software systems.

1.4 Structure

The remainder of this paper is structured as follows: Section 2 summarizes related work accord-
ing to software quality models and architecture evaluation approaches. In Section 3, I introduce
architecture-specific additions to the Quamoco meta quality model. Section 4 explains the con-
tents of an architecture conformance and quality model, in particular quality goals, architectural
principles, general design properties, and corresponding measures, as well as the overall ap-
proach of building architecture quality models and using them for architecture evaluation. In
Section 5, the approach is experimentally applied by conducting an architecture evaluation, us-
ing a quality model for service-oriented architectures as an example for a specific architectural
style. Finally, Section 6 concludes the paper and outlines directions for future work.

2 Related Work

2.1 Software Quality Models

Modeling software quality has been a topic addressed by researchers for several decades. Early
models for software quality date back to the late 1970s, e. g. those by Boehm [BBK 78] or Mc-
Call [MRW77], which hierarchically decompose software quality into more tangible concepts.
This approach has led to international standards for software quality like ISO 9126 or its succes-
sor ISO 25010, which are reported to be used as a basis for software quality assurance in many

Proc. SQM 2013 2/20

Eg ECEASST

software companies. However, recent studies also show that these standards are too abstract to
be directly used for quality assessment [WLW "12b]. Because of this shortcoming, there have
been several initiatives in defining models that not only describe software quality, but can also
be used to assess software systems with regard to their quality. The Squale project enhanced
the ISO 9126 quality model with so-called practices containing information on how to mea-
sure certain quality characteristics [MBD09]. They also provide tools to assess source code
quality in different programming languages. In summary, software quality models help in de-
veloping a common understanding of software quality. Some models can be used for automatic
quality assessment, lowering the effort compared to inspection-based approaches. Most of these
assessment models, however, are targeted at low-level source code constructs only, not taking
architectural properties into account.

The NFR-Framework [MCN92] and its application to architectural software design by Chung
et al. [CNY95] provide a framework and a methodology for handling non-functional require-
ments during software development. NFRs are represented as goals, which can be decomposed.
The software architect assesses the contribution of each design alternative to each (sub-) goal.
First, this is done from a general perspective on the underlying design patterns. The resulting
goal graph is then refined in the context of the specific system under construction. The approach
is very similar to the one presented here in the sense that it starts with collecting and formal-
izing documented knowledge about the impacts of certain architectural constructs on software
quality aspects. The fundamental difference is that Chung et al. take a qualitative approach in
order to guide architectural decisions during the process of building a software system, while the
meta-model and the approach presented here explicitly contain measures in order to also provide
quantitative insight for already existing software systems.

2.2 Software Architecture Evaluation

Software architecture is crucial for software quality. This means that the decision for a particular
architecture is highly dependent on the quality goals of the involved stakeholders. Clements
et al. [CKKO1] phrase this very concisely: “If the sponsor of a system cannot tell you what any
of the quality goals are for the system, then any architecture will do.”

If architectural decisions are so important for the quality of a software system, architecture
assessment appears to be a feasible means to provide statements about its quality. To accom-
plish this, architecture evaluation methods have been developed, which follow clear rules and
provide a certain degree of repeatability. Clements et al. categorize these methods according to
the tools they use: Questioning methods are based on scenarios, questionnaires, and checklists
for system analysis. These are often used in conjunction with system documentation or spec-
ification, thereby not requiring the system to be already completely implemented. In contrast,
measuring methods directly analyze the respective system by means of automatic analysis tools,
e. g. calculating software metrics or simulating system behavior. In any case this second group
of methods requires the presence of software artifacts and can therefore not be applied as early
as scenario-based methods.

Clements et al. [CKKO1] propose three scenario-based methods, namely SAAM, ARID, and
ATAM. They all start with the elicitation of scenarios in workshops. A scenario might be: “In
addition to local deployment and operation, you should also be able to operate the system on a

3/20 Volume 60 (2013)

A Meta Model for Software Architecture Conformance and Quality Assessment E}

cloud platform”. Based on a prioritized list of such scenarios, different architecture alternatives
are then evaluated regarding their ability to facilitate these scenarios. Depending on the method
and the particular situation, different techniques can be used, e. g. sensitivity and tradeoff anal-
ysis in ATAM, scenario walk-throughs in SAAM, or Active Design Reviews [PW85] in ARID.
A comparison of these methods is shown in [CKKO1, p. 256]. The authors state that a mid-size
architecture evaluation using ATAM would take around 70 person days, assuming a reasonable
team size.

Vogel [VACT09] presents a general overview on architecture evaluation methods. Moreover,
Zhao [Zha99] provides links to further literature. It is generally observed that according to the
classification above, the overwhelming majority of architecture evaluation methods belong to
the group of questioning methods, thus requiring large amounts of manual effort. This might
be due to the fact that architecture analysis is generally performed in a project-specific context
with individual requirements. For domain and project-independent parts of the analysis, tool
supported approaches are available, e.g. ConQAT' can automatically compare dependencies
between components of a software system with the architecture specification and visualize the
results.

Losavio et al. [LCM"04, LCLRO3] present an architecture measuring approach for eval-
uating software quality according to ISO 9126. They consecutively walk through all quality
characteristics and sub-characteristics contained in the ISO standard and present measurement
specifications in order to quantify these on an architectural level. In total, they present 16
attributes and associated metrics. Out of these, nine are defined in a binary fashion and re-
quire identifying whether there is a mechanism in the architecture to support the respective sub-
characteristic, e. g. co-existence is determined by “the presence of a mechanism facilitating the
co-existence” [LCM " 04]. Three of the remaining metrics are defined to aggregate the respective
values from the individual components and connectors. In particular, no further adjustments to
these individual scores are made based on the architecture, e. g. maturity is defined as the sum
of the maturities of all components and connectors the architecture consists of [LCM " 04]. In
conclusion, the proposed approach provides a unified process framework for architecture quality
assessment. Since over half of the metrics are Boolean and require thorough expert assessment,
the approach has to be considered mainly checklist-based. Most of the measures are defined on a
high granularity that makes it difficult to automate measurement by implementing the proposed
metrics in a tool.

In summary, most approaches for software architecture evaluation either do not provide a
way to automate assessment steps or require executable software artifacts in order to do so.
Although some scenario-based approaches offer sophisticated methodology to support project-
specific architectural decisions, none of the existing approaches provides a way to quickly obtain
a general statement of the overall conformance and quality of a software architecture.

3 Basic Modeling Concepts

This section briefly describes the meta quality model that we developed in the Quamoco project
[WLH"12, WLW " 12a]. It addresses the shortcomings of related approaches in software qual-

1 https://www.conqat.org

Proc. SQM 2013 4/20

https://www.conqat.org

Eg ECEASST

ity modeling presented in Subsection 2.1. Because this meta model provides the basis for the
architecture extensions proposed in Section 4, its elements are introduced in the following.

Entities provide a decomposition of the software product. Starting from the complete Product,
entities can refine other entities along an is-a or a part-of relation, e.g. both entities Source
Code and Documentation refine Product. Decomposition is usually performed as required, until a
depth is reached that is sufficiently detailed to describe the desired concepts. The entity Return
Parameter (of a method) would refer to Parameter using the is-a relation. In turn, the parameter
would specify that it is part of a Method, which is in turn part of an Interface. Note that entities
describe things on a conceptual level, not individual instances within an assessed system (i. e.
the return parameter of a certain operation).

These entities are characterized by attributes (€. g. ATOMICITY, PRECISE NAMING, COHESION) in order
to define product factors. Product factors describe observable properties of these entities that may
or may not be present in a particular system to a certain degree. The degree is expressed in the
factor’s value range, which includes all real numbers from O to 1. The factor [Service | PRECISE
NAMING] is completely fulfilled (thus evaluating to 1.0) for a system, whose services are all named
precisely.

The Quamoco meta quality model allows for several kinds of quality aspects in order to cover
a wide range of established ways of decomposing product quality. Wagner et al. [WLH"12]
structure product quality using the quality characteristics defined in ISO 25010. Other possi-
ble quality aspect forms include activity-based quality goals (c.f. [BDP0O6]). These have been
proposed in order to provide more natural and meaningful decomposition semantics, and are
therefore used in the following. Activity-based quality goals are comprised of an activity, which
is performed on or with the system, and an aftribute characterizing this activity. A typical quality
goal from a service consumer’s perspective is the efficient analysis of the functionality provided
by a service: [Analysis|EFFICIENCY]. The fact that the presence of a product factor in a software
system affects the fulfillment of a quality goal is represented by an impact. Since the effect can
be positive or negative, the impact is annotated with + or —, respectively. For example, the idea
that precise naming helps a user to analyze whether a service provides the functionality he needs
is represented as: [Service | PRECISE NAMING] _T [Analysis | EFFICIENCY].

In summary, product factors bridge the gap between abstract categories of quality and observ-
able properties of software artifacts. In order to assess to which degree a factor is fulfilled for
a particular system, the quality model contains measures. They provide means to actually ob-
tain data about the system. Depending on the particular technology or programming language
used in the software product, these measures make use of different kinds of instruments, either
tool-based ones using static analysis tools and metrics, or manual ones by defining steps for an
inspection of the respective entities. For aggregation purposes, evaluations translate the values
of measures assigned with a factor to a degree of fulfillment between 0 and 1. Figure 1 depicts
the Quamoco meta quality model.

Quality model elements can be grouped into modules to facilitate reuse and maintenance of
quality models. As an example, source code quality models can be split into modules according
to programming paradigms or languages, so that general source-code related concepts can be
reused within an object orientation module, which is then further operationalized by modules
containing measures and instruments for C# or Java. This way, technology-independent infor-
mation can be reused, while technology-dependent modules add automation by linking general

5/20 Volume 60 (2013)

A Meta Model for Software Architecture Conformance and Quality Assessment Eﬁ

refines
% Y -
. Quality
Evaluation Aspect
Instrument
* *
is-a Factor <]— Impact |- uses
* Measure [*
| 1 _y* _ Product * &
Entity Factor guantifies fi
I _ * refines
* refines *
part-of

Figure 1: Quamoco meta quality model (source: [WLH"12])

measures to analysis tools. In addition, this modularization concept can be used to extend or
adapt quality models. Project-specific quality requirements can be added as an individual mod-
ule, and evaluation formulas can be overridden in order to adapt priorities

according to the project goals. Another possible scenario for using modules is splitting up a
quality model into a light variant, which only contains measures that can quickly be obtained by
tools, and a full variant, which adds more elaborate analyses to the assessment. The light variant
could then be included into a continuous integration environment, whereas the full variant could
be executed manually before certain milestones or quality gates.

More details on the modeling concepts, the elements that constitute the quality model, as well
as the relations between them, can be found in [WLH ™ 12]. This paper proposes an extension to
this meta model to specifically address software architecture quality so that architectural styles
can be compared based on their impact on software quality and existing software architectures
can be evaluated with respect to both architecture conformance and quality.

4 Architecture Model Extension

To specifically address software architecture quality in the context of a given architectural style,
I propose an extension to the meta model presented in the previous section. In order to retain
compatibility with the existing tools for editing, maintaining, visualizing, and executing quality
models, this extension is based on conventions, so that e. g. instead of formally adding a new
model element type, I propose adding certain semantics to existing element types. Technically,
already the Quamoco meta quality model does so by using the factor concept for both quality
aspects and product factors.

Proc. SQM 2013 6/20

Eg ECEASST

[Base Module)

A

uses

[Conformance)
'y

uses

(Design J

Figure 2: Modular structure

4.1 Modules

Quality goals like [Adaptation | EFFICIENCY] are usually independent from architectural styles. In
particular this is the case for quality standards that do not make any assumptions on the architec-
ture of the software to assess (e. g. ISO 25010). Therefore, quality goals should be usable across
different quality models and are hence defined within an independent Base module.

According to the overall question, which quality goals are directly influenced by the under-
lying principles of a certain architectural style, all quality model elements directly related to
these principles are subsumed in a module named Conformance. Other quality-related concepts
beyond these principles constitute the Design module.

Within the conformance module, the main elements are the Architecture Principles, which are
modeled as a special case of product factors. Their degree of fulfillment states how well the
system under evaluation implements the respective principle. Since these principles are often
defined on an abstract level, they are refined by product factors describing directly observable
properties of system entities, which in turn are quantified by measures. The details of the con-
formance module are described in Subsection 4.3.

Further design aspects contributing to software quality are subsumed in the design module,
which contains product factors that cannot directly be deferred from principles (e. g. parameter
granularity of operations). The design module is described in Subsection 4.4. The modular
structure of the architecture quality model can be found in Figure 2. The uses relation between
the design and the conformance module indicates that basic measures defined in the latter could
be referenced from the former in order to avoid a duplication of modeling effort.

In addition to the modules described here, the modularization approach can be utilized to
extend the quality model with domain or project-specific modules. Moreover, it is also possible
to include modules for quality assessment on a different level of detail, e. g. source code, in order
to aggregate all assessment results into a single hierarchy of quality goals.

4.2 Quality Goals

Classical quality attribute hierarchies have been criticized, because their decomposition appears
to reflect different, implicit criteria and lacks clear semantics [JKC04]. To tackle this concern,
activity-based quality models (ABQM) have been proposed in order to provide more natural

7120 Volume 60 (2013)

A Meta Model for Software Architecture Conformance and Quality Assessment E}

and meaningful decomposition semantics [DWP07]. In my approach, I support this view and
propose to describe quality goals using activities and attributes.

A set of relevant activities can be obtained from existing ABQMs as well as literature on
the software life-cycle, e.g. IEEE 1074 [IEE06]. Definitions of traditional quality attributes
like ISO 25010’s quality characteristics often refer to activities and sometimes even mention
corresponding attributes. The relation between these quality attributes and activity-based quality
goals has been discussed in more detail by Lochmann and Goeb [LG11]. There, ISO25010’s
quality characteristics (“-ilities”) are explicitly part of the quality model, represented as high-
level product factors that have an influence on activity-based quality goals, e. g. the property of
a software product’s UI not to use color as the only means of encoding important information
has an influence on the factor [Product | AcCESSIBILITY], which in turn positively impacts the quality
goal [Perceive | EFFECTIVENESS].

Quality goals can be refined using general techniques from the requirement engineering field
(e.g. [LLOO, vLO1, DSG12]). In the quality model, this refinement can either be done along the
attributes (e. g. [Use|QuALiTY] is refined to [Use | EFFICIENCY], [Use | EFFECTIVENESS], and [Use | CON-
TINUITY]), or along the activities (e. g. [Use|EFFICIENCY] is refined to [Perceive | EFFICIENCY], [Under-
stand | EFFICIENCY], and [Act | EFFICIENCY]). For maintainability, . g., Deissenboeck et al. [DWP*07]
provide a thorough decomposition of maintenance activities.

In the following, I use SOA as an example for an architectural style and derive some activity-
based quality goals from typical scenarios. In order for a potential service consumer to decide
whether a service offers the desired functionality and is therefore feasible for a given usage sce-
nario, he first has to understand it. The respective quality goal is [Analysis | EFFICIENCY], since this
analysis should be as efficient as possible. Similarly, other activities imply the goal of being
conducted efficiently, in particular [Composition | EFFICIENCY], [Adaptation | EFFICIENCY], and [Test | EF-
FICIENCY], which are self-explanatory. The degree to which a service satisfies consumers’ needs in
terms of functionality and therefore enables effective service consumption can be expressed as
[Consumption | EFFECTIVENESS]. Interaction between services is crucial for an SOA to be effective.
Since service interoperation is achieved by composing services, this quality goal of effective
interaction between services can be represented as [Composition | EFFECTIVENESS].

4.3 Conformance—Architectural Principles

The conformance module of an architecture quality model contains all essential principles that
constitute a particular architectural style. As shown in Figure 3, the conformance module con-
sists of two kinds of factors, namely principle factors and conformance factors. The former
provide a general definition and explanation of an architectural principle and its impacts on qual-
ity goals, which can be either positive or negative. The latter refine these principle factors into
properties that can directly be observed from the system artifacts. In order to quantify the degree
of such a property’s presence or absence in a software architecture, each conformance factor is
assigned with one or several measures. An evaluation function assigned to each factor puts these
measurement results into relation and maps them on a scale representing the factors’ degree of
fulfillment.

2 Although the syntax has been adapted to be consistent with the model presented here, the semantics of the original
paper have been preserved.

Proc. SQM 2013 8/20

Eg ECEASST

An example from the SOA domain would be the principle of [SERVICE COMPOSITION], expressing
that services can be composed in order to create new services. This principle is refined into con-
formance factors: A factor [Service | oUTGOING DEPENDENCIES] could describe the fact that services
that depend on other services do make use of composition and hence support the composition
principle. A second conformance factor, [Service | CONSUMPTION RATIO], could describe to which de-
gree services wihtin the system consume other services. [SERVICE COMPOSITION] itself has a positive
impact on [Consumption | EFFECTIVENESS], because a system that makes use of service composition
allows for fine-grained reuse of services and therefore facilitates effective service consumption.
To quantify [Service | CONSUMPTION RATIO], €.g. the measure Consumer Provider Ratio is defined,
which describes the ratio between provider and consumer services within the system. Provider
services are services that are consumed by other services within the system, whereas consumer
services consume other services. Of course, services can be both providers and consumers at the
same time. This way, the rather intangible architectural principle of composition can be refined
with the help of conformance factors into observable properties that are quantified by a set of de-
fined measures. At the same time, the effects of adhering to this principle are captured in terms
of impacts on quality goals.

4.4 Design—Architectural Best-Practices

Adhering to a certain architectural style is not sufficient to ensure good quality. Usually, ar-
chitectural principles are accompanied by guidelines and best-practices. The design module
contains factors and measures describing these additional properties that are not covered by the
basic principles of an architectural style. While the general Quamoco approach does not restrict
the type of product factors contained in a model, this module explicitly separates architectural
best-practices from other kinds of factors in order to provide a more concise view on the overall
product quality.

In contrast to conformance factors, design factors directly define impacts on quality goals.
They can, however, be organized hierarchically in order to group similar low-level properties
and make navigating the model easier. Typical topics to be covered in the design module are
dependencies, documentation and naming, granularity, or size and complexity. Each of these
topics can be addressed by several product factors, describing respective architectural properties.
Concerning granularity, e. g., one of these factors could be [Operation | FUNCTIONAL GRANULARITY],
which expresses the property that a service operation should perform exactly one function, e. g.
searching a customer database for entries matching a provided search pattern. This factor is
quantified using the measure Operations performing multiple functions, which provides guidance
for system experts to assess service operations and report those, which perform more than one
function.

These factors and measures typically resemble a collection of design guidelines and best-
practices that are known to have an influence on certain quality goals. In order to obtain a com-
prehensive set of factors and measures, a thorough analysis is required, followed by a validation
in order to be sure that all typical aspects of the particular architectural style are appropriately
covered by the model. A validation method for quality models has been proposed and applied in
the context of a quality model for embedded systems by Mayr et al. [MPK " 12]. Architectural
design factors and measures for SOA have been published by Goeb and Lochmann [GL11].

9/20 Volume 60 (2013)

A Meta Model for Software Architecture Conformance and Quality Assessment E}

4.5 Instantiation and Usage

The meta quality model defined above can be instantiated to build a quality model for an architec-
tural style by combining various sources of knowledge like personal experience or documented
research studies. Usually these sources vary depending on the type of model elements. In order
to create the set of principles in the conformance module, literature on that particular architec-
tural style is probably most appropriate. The refinement into factors can be performed based
on personal experience as well as existing models or frameworks. Likewise, there is a large
amount of well-evaluated research studies on the impacts of particular design properties on dif-
ferent aspects of software quality. The advantage of a formally defined model compared to these
textual representations is that the consolidated model can be visualized, navigated and analyzed
more easily using appropriate tools. In addition, contradictions or missing information become
more evident in a formal model. Literature might not provide a consistent view on how different
measures should influence a factor’s degree of fulfillment.

As part of a larger research effort I created a corresponding quality model for SOA, containing
SOA principles as well as further design factors. This model has been created over the course
of the recent years and will be published separately, including an expert-based evaluation of its
overall structure as well as its contents. In total, the SOA quality model consists of 111 elements
and therefore cannot be presented here in detail. An overview is, however, depicted in Figure 4.

For the weighing of model elements against each other in order to allow quality assessment
using the model, I propose an iterative approach: First, initial evaluation functions should be
manually defined for each factor based on personal experience. Once a quality model is com-
pletely defined and operationalized, a benchmarking technique should be employed to calibrate
these functions. This is achieved by assessing a certain amount of software systems using the
quality model and thus observing typical value ranges in real-world systems. More information
on how to use benchmarking approaches for the calibration of software quality models can be
found in [Loc12].

In order to perform a model-based architecture quality analysis, all measures defined in the
model have to be provided with measurement values. Using the Quamoco tool chain, this can
either be achieved by implementing according adapters for automatically obtainable values or by
generating a spreadsheet template from the model, which can be filled with the respective values
by an inspector. In a second phase, these measurement values are aggregated along the hierarchy
of refinement and impact relations defined in the model, evaluating the formulas provided for
each model element. Because this is a core functionality of the Quamoco approach, it is not
elaborated here in more detail. An exemplary quality assessment can be found in Section 5.

4.6 Summary

The proposed meta quality model for software architecture evaluation is comprised of three mod-
ules. The base module contains definitions of quality goals and relations between them. Usu-
ally, these quality goals are structured hierarchically. To represent quality goals, I propose the
activity-based notion, so that each quality goal is expressed as a pair of an activity and an at-
tribute. Hierarchical refinement of quality goals can be done along both activities and attributes.

The conformance module contains information regarding the core principles of a certain archi-

Proc. SQM 2013 10/20

Eg ECEASST

tectural style. These principles are represented as principle factors. In order to provide means for
architecture conformance assessment, these principles are refined by conformance factors, which
resemble observable properties of the software architecture to reflect these principles. These fac-
tors are quantified by measures, which can either be obtained by measurement tools and metrics,
or manually during architecture inspections. Besides architecture conformance assessment, the
conformance module can provide valuable insight regarding the effect of an architectural style
on software product quality. In order to achieve this, principle factors describe impacts on the
quality goals defined in the base module.

The design module covers quality-relevant architectural properties originating from guidelines
and best-practices, which are not directly related to the principles of an architectural style. Usu-
ally, conformance to architectural principles helps achieving high quality, but is not sufficient.
An analysis of the quality model can easily identify quality goals that are not sufficiently covered
by architectural principles and hence lead to the definition of further design guidelines in order to
achieve this coverage. These guidelines are represented by design factors, which again resemble
observable properties of a software architecture. Design factors also define impacts on quality
goals, so that architecture quality assessment can be done on the combination of conformance
and design factors. The resulting meta quality model for software architecture conformance and
quality assessment is depicted in Figure 3.

()
Base Module Quality Goal
I Activity | | Attribute |
Bl | refines
> /\>‘ <
7 N .
Conformance s \\ Design
e
7 impacts + \
\ .
| Principle Factor | \ Impacts
. \ refines
refines refines AN
[+ e —
Conformance Factor Design Factor
| Entity | | Attribute | | Entity | | Attribute |
quantifies quantifies
L AN J

Figure 3: Software architecture meta quality model

In summary, the proposed structure allows the separation of quality-related effects of an archi-
tectural style from general best-practices that improve software quality. In addition, architectural
principles become tangible by refining them to observable properties of architecture artifacts. In
early project phases, this transparency ensures a common understanding throughout the project.
Once according models are available for different architectural styles, they can also serve as a
decision basis in order to decide for a particular one.

11/20 Volume 60 (2013)

A Meta Model for Software Architecture Conformance and Quality Assessment E}

KBase Module Quality Goals)
[Consumption | EFFECTIVENESS] ” [Adaption | EFFICIENCY] || |
\ == 9%
~ .
(Conformance - - ~ DeS|gn\
_ — — = impactt S .
~ < impact +
SOA Principle Factors ~

| [BUSINESS ABSTRACTION] | SOA Design Factors

| [Operation | DATA GRANULARITY] |

| [COMPOSITION] I | |
1 fi \:l | [Service | STATELESSNESS] |
refine
SOA Conformance Factors -
| [Service | ABSTRACTION LEVEL] | quantify
Measures

| [Service | CONSUMPTION RATIO] ||:|
t quantify

Measures |:| | # Context-Dependent Ops |
| Service Abstraction Ratio |

| Consumer-Provider Ratio || | -l # Dependency Cycles |

| Coarse-Grained Parameters |

Figure 4: SOA conformance and quality model (excerpt)

5 Validation

In order to validate that an architecture quality model built in accordance with the proposed
meta model can be used for architecture quality assessment in practice, I designed the follow-
ing experiment: I used the architecture conformance and quality model for SOA described in
Subsection 4.5 to assess an actual SOA-based software system, which was developed as part
of the European SmartProducts research project®. This project was selected for the experiment
because the number of services was small enough to manually trace the evaluation results from
the values on the quality goal level down to values for individual measures. This was considered
an essential requirement for a first applicability test. Figure 4 shows the SOA conformance and
quality model’s structure as well as some of the contained quality goals, factors and measures.

5.1 Goal

I conducted this experiment to validate the practical applicability of the presented approach for
software architecture conformance and quality assessment. Practical applicability is measured
by the success of conducting an evaluation based on the set of measures defined in the model.
Furthermore, the experiment should demonstrate the compatibility of the underlying concepts
with existing tools for quality modeling and assessment.

3 http://www.smartproducts-project.cu/

Proc. SQM 2013 12/20

http://www.smartproducts-project.eu/

Eg ECEASST

5.2 Setup and Procedure

Due to the diversity of analyzed artifacts (specifications, models, source code), tool-based mea-
surement would have required implementing respective measurement tools for each of these
artifact types and has therefore been discarded. Instead, I adapted the quality model, converting
all measures to be manually assessed. The Quamoco tool chain [DHH " 11] requires manual mea-
sures to be numerical. Following this rule, it was possible to export an Excel template containing
all measurement instruments along with their descriptions and a column to enter the manually
obtained measurement results. From the SmartProducts project team, five researchers familiar
with the system’s architecture used this template and manually conducted all the measurements
contained therein. All of the experts hold a university degree in computer science, two of them
also hold a Ph. D. In addition, they all have several years of experience in developing software.
Because the only tool the experts used was the Excel template, they did not have to be introduced
to the whole quality model in advance, but could focus on collecting measurement data without
being biased by knowing how the evaluation would be impacted by either of the measurement
values.

Table 1 shows the measure names as well as the assessed measurement values. The values
represent the mean values of the results obtained by the five experts. Since the validation goal
was to show the applicability of the approach rather than the actual quality assessment result
values, no special emphasis was put on analyzing individual data points with regard to error
margins. The filled template was imported into the assessment tool chain as the basis for further
processing according to the SOA model.

Due to the capabilities of the Quamoco tooling in handling manually obtained measurement
results, the remaining steps of the quality assessment did not involve any manual effort. The
measurement data was processed and transformed into an HTML dashboard presenting scores
for each quality goal contained in the quality model based on the evaluation formulas defined
there. These results were then presented to the project team, followed by a discussion on their
opinion regarding the approach of model-based, semi-automatic architecture quality assessment
in general, and the applicability of the SOA quality model in particular.

5.3 Results

In general, the experts highly appreciated the effort savings due to the automation provided by the
quality model and the associated tools. Compared to other architecture assessment techniques
that had been used in the project before (e.g. Active Design Reviews [PW85]), they reported
that especially preparation and data analysis were far less time-consuming, so that they were
able to assess the system within one working day instead of several days for preparing review
questionnaires and analyzing the results. At the same time the experts reported that the actual
measurement required a profound knowledge of the system and could not easily be conducted
by external people. This appears reasonable, taking into account that many of the measures were
initially meant to be conducted automatically using appropriate tools, but had been adapted to be
conducted manually due to the different development stages of the involved artifacts.

Obviously the time savings for the analysis of a single project’s architecture do not compensate
for the initial effort of building the SOA model. However, since the model is available and

13/20 Volume 60 (2013)

A Meta Model for Software Architecture Conformance and Quality Assessment Eﬁ

Table 1: Raw measurement results

Measure Name

Value

Contract Implementation Coupling
Inconsistent Interface Standards

Number of Utility Services

Average Service Fan-In

Average Service Fan-Out

Number of Domain Services

Number of Process Services

Total Number of Services

Consistent and Unambiguous Documentation
Number of Dependency Cycles

Average Dependency Depth

Efficiently Groupable Parameters
Inconcisely Named Operations
Inconcisely Named Parameters
Inconcisely Named Services

Number of Context-Dependent Operations
Number of Exposed Operations

Total Number of Operations

Total Number of Parameters

Operations with External Dependencies
Operations Performing Multiple Functions
Average Dependencies per Service
Semantically Equivalent Services
Interface Data Cohesion

Interface Sequential Cohesion

Interface Usage Cohesion

Functional Domain Coverage

0.00
0.50
5.00
2.00
2.00
3.00
4.00
12.00
50.00
0.00
2.00
6.00
28.00
35.00
5.00
5.00
0.00
55.00
100.00
10.00
10.00
2.00
0.00
0.40
0.15
0.50
11.00

Proc. SQM 2013

14 /20

Eg ECEASST

reusable, other projects can make use of it and (optionally) invest some time in project-specific
tailoring.

The analysis tool provides the user with different visualizations (see e.g. [WLH"12]) and a
hierarchical HTML-based table. Figure 5 shows an excerpt from this table. The first column
contains the hierarchical decomposition of quality goals, including the impacting factors and the
respective measures. The right column shows the analysis results. In the case of measures, these
results correspond to the numbers read from the template file. For factors and quality goals, the
value range is the interval [0; 1], which represents the respective degree of fulfillment.

Concerning the interpretation of these values it is important to mention that they are not meant
to be absolute statements. Experience with model-based quality assessment has shown that qual-
ity models only produce objective results if they are properly calibrated using a large number
of reference products. The experiment presented here only aimed at showing the general appli-
cability of the approach for automatic quality assessment and the compatibility of the adapted
meta quality model with the Quamoco tool chain. The calibration procedure for the Quamoco
base quality model for source code is outlined in [WLH " 12] and can be applied for architecture
conformance and quality models as well.

Despite this fact, the results for some of the factors can already provide hints regarding ar-
chitecture quality. One interesting finding was that the system scored comparably low on the
[BUSINESS ABSTRACTION] SOA principle. Discussions revealed that the particular system was indeed
not completely following the SOA principle of providing mainly business process-relevant func-
tionality as services, but also offered “low-level APIs”. Likewise, other assessment results on a
general level matched the overall perception of the involved experts. Hence, model-based archi-
tecture conformance and quality analysis can help software architects to increase transparency
regarding the conformance to architectural principles as well as potential quality problems with
comparably low effort, even before the software product is completely implemented.

Because the main goal of this experiment was to show the approach’s applicability for quality
assessment, a more detailed interpretation of assessment results was not performed. Such an
analysis would have required a calibration of the model’s evaluation formulas in order to provide
sound results. A more detailed discussion on this topic can be found in the following section.

6 Conclusions and Outlook

In this paper, I presented a variant of the Quamoco quality modeling approach specifically ad-
dressing software architecture conformance and quality. While relying on Quamoco’s meta qual-
ity model, several conventions have been applied in order to describe both the inherent proper-
ties of an architectural style and additional properties the architecture should possess in order to
achieve high software quality. These two flavors of architecture quality are represented in the
model’s conformance and design modules, respectively. The model relies on the activity-based
quality modeling approach, which means that quality goals are expressed via activities conducted
with the system and attributes of these activities. This way the multifaceted concept of quality is
structured along intuitive decomposition semantics by splitting activities into sub-activities.

The building blocks of a software architecture are represented by entities, which are charac-
terized by attributes in order to describe factors that can be observed in a software architecture.

15/20 Volume 60 (2013)

A Meta Model for Software Architecture Conformance and Quality Assessment @

t: Quality Assessment (Main)
Quality Assessment

Meaningful Names @Servicelnterface [impacted] 0,573

Element Evaluation Result

Property @Product []

éfQuaIity @UseCase [] 0,613
Quality @Adaptation [refined] 0,652
Quality @Operation [refined] 0,512
Quality @Ext. Analysis [refined] 0,687
EFQuality @Int. Analysis [refined] 0,499
| E]—Efficiency @Int. Analysis [refined] 0,499
l Cohesion @Servicelnterface [impacted] 0,417
| I—Complexity @Servicelnterface [impacted] 0,841
l Design Size @SOA System [impacted] 0,240
| Interface Complexity @SOA System [impacted] 0,000
|
|

I—Proper Documentation @Servicelnterface [impacted]|1,000
QuaIity @Composition [refined] 0,705
E}Quality @Consumption [refined] 0,498
l Effectiveness @Consumption [refined] 0,490
| E}Efficiency @Consumption [refined] 0,523
l l Low Fragmentation @SOA System [impacted] 0,091
| | =FShort Dependency Paths @Service [impacted] 0,956
l l EFDDT threshold=[0;3] value=0,944
| | | |—DDT [measures] 2,000
|| msprT threshold=[0;5] value=0,967
| Continuity @Consumption [refined] 0,479
QuaIity @Test [refined] 0,736

Figure 5: Assessment output view

Proc. SQM 2013 16/20

Eg ECEASST

These factors have impacts on quality goals, making them the intermediary between general
quality goals and actual measurements and metrics.

An experiment applying an architecture quality model for SOA to an actual software system
showed that architecture quality models built according to our proposed structure can be used
for architecture evaluation. Five experts out of the team who built the system that was used
for evaluation stated that the greatest benefit of the approach is the strong reduction of manual
analysis and processing effort compared to other architecture evaluation approaches applied in
the project before. Given a limited overall time frame, this allows for architecture assessment
more often, leading to increased transparency regarding architectural properties and hence to
more responsive quality control. In addition, the most significant assessment results matched the
perception of the project team. In order to show the value of the SOA quality model beyond
these tendencies, further empirical studies are needed.

The architecture meta quality model provides a framework to consistently collect and conserve
quality knowledge. Architecture quality models can be used to investigate for a given quality
goal, how it is affected by the principles of an architectural style, and which additional design
patterns should be implemented in order to reach this quality goal. This helps software architects
to argue to which degree a decision for a certain architectural style already has positive impacts
on software quality, and whether these might be affected by ignoring further design properties.

Moreover, architecture quality models build the basis for standardized and reproducible archi-
tecture quality assessment by formalizing relationships between measures, factors and quality
goals. Back in 1992, Grady described his vision regarding the importance of metrics in soft-
ware engineering in the year 2000 as follows: “First, tools will automatically measure size and
complexity for all the work products that engineers develop. Besides warnings and error mes-
sages, the tools will predict potential problem areas based on metric data thresholds” [Gra92,
p. 220]. For source code, this goal might have actually been reached, taking the large amount of
dashboards and related tools into account. With respect to software architecture, however, even
twelve years after the mentioned date, this vision has not become reality yet. The proposed archi-
tecture conformance and quality model might be a step into this direction, since it provides clear
relationships between important concepts and allows for automated assessment. Hence, it con-
tributes to the reproducibility of quality analysis, making sure that incremental assessments after
changes in the software are based on the same evaluation rules. This also lowers the required
effort, since aggregation, processing and visualization of results are automatically conducted us-
ing quality analysis tools like ConQAT. Further automation potential is given by the possibility
to also use tools to obtain the measurement values.

Further areas of future work include applying the modeling approach to a number of architec-
tural styles. Doing so, the resulting quality models can help to compare architectural styles based
on their impact on quality and provide decision support for software architects. For a particular
software development project, they are provided with a means to choose the architectural style
that most adequately covers the quality requirements defined for that project. In the long term, a
framework could emerge to describe architectural styles from a quality perspective, providing a
solid basis for decisions in early software development phases.

Acknowledgements: Many thanks go to the SmartProducts project team at TU Darmstadt for
taking part in the applicability experiment.

17 /20 Volume 60 (2013)

A Meta Model for Software Architecture Conformance and Quality Assessment Eﬁ

Bibliography

[BBK"78]

[BDPO6]

[BWDVO00]

[CKKO1]

[CNY95]

[DHH"11]

[DSG12]

[DWP*07]

[GL11]

[Gra92]

[IEEO06]

B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. Macleod, M. J. Merrit.
Characteristics of Software Quality. North-Holland, 1978.

M. Broy, E. Deissenboeck, M. Pizka. Demystifying Maintainability. In Proc. 4th
Workshop on Software Quality (WoSQ). Pp. 21-26. 2006.
doi:10.1145/1137702.1137708

L. Briand, J. Wiist, J. Daly, D. Victor Porter. Exploring the Relationships Between
Design Measures and Software Quality in Object-oriented Systems. Journal of Sys-
tems and Software 51(3):245-273, 2000.

doi:10.1016/S0164-1212(99)00102-8

P. Clements, R. Kazman, M. Klein. Evaluating Software Architectures: Methods
and Case Studies. Addison-Wesley Professional, 2001.

L. Chung, B. A. Nixon, E. Yu. Using Non-Functional Requirements to Systemat-
ically Select Among Alternatives in Architectural Design. In /st Int. Workshop on
Architectures for Software Systems. Pp. 31-43. 1995.

F. Deissenboeck, L. Heinemann, M. Herrmannsdoerfer, K. Lochmann, S. Wagner.
The Quamoco Tool Chain for Quality Modeling and Assessment. In Proc. 33rd Int.
Conf. on Software engineering (ICSE). Pp. 1007-1009. 2011.
doi:10.1145/1985793.1985977

S. Doeweling, B. Schmidt, A. Goeb. A Model for the Design of Interactive Systems
based on Activity Theory. In Proc. ACM Conf. on Computer Supported Cooperative
Work (CSCW). Pp. 539-548. 2012.

doi:10.1145/2145204.2145287

F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, J.-F. Girard. An Activity-Based
Quality Model for Maintainability. In Proc. IEEE Int. Conf. on Software Mainte-
nance (ICSM). Pp. 184-193. 2007.

doi:10.1109/ICSM.2007.4362631

A. Goeb, K. Lochmann. A Software Quality Model for SOA. In Proc. 8th Int. Work-
shop on Software Quality (WoSQ). Pp. 18-25. 2011.
doi:10.1145/2024587.2024593

R. B. Grady. Practical Software Metrics for Project Management and Process Im-
provement. Prentice Hall, 1992.

IEEE. Std 1074-2006 — IEEE Standard for Developing a Software Project Life Cy-
cle Process. 2006.
doi:10.1109/IEEESTD.2006.219190

Proc. SQM 2013 18/20

http://dx.doi.org/10.1145/1137702.1137708
http://dx.doi.org/10.1016/S0164-1212(99)00102-8
http://dx.doi.org/10.1145/1985793.1985977
http://dx.doi.org/10.1145/2145204.2145287
http://dx.doi.org/10.1109/ICSM.2007.4362631
http://dx.doi.org/10.1145/2024587.2024593
http://dx.doi.org/10.1109/IEEESTD.2006.219190

E

ECEASST

[JKCO04] H.-W. Jung, S.-G. Kim, C.-S. Chung. Measuring Software Product Quality: A Sur-
vey of ISO/IEC 9126. IEEE Software 21(5):88-92, 2004.
doi:10.1109/MS.2004.1331309

[vLO1] A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. In
Proc. Int. Symposium on Requirements Engineering. 2001.
doi:10.1109/ISRE.2001.948567

[LCLRO3] F. Losavio, L. Chirinos, N. Lévy, A. Ramdane-Cherif. Quality Characteristics for
Software Architecture. The Journal of Object Technology 2(2):133-150, 2003.
doi:10.5381/j0t.2003.2.2.a2

[LCM™04] F.Losavio, L. Chirinos, A. Matteo, N. Levy, A. Ramdane-Cherif. ISO Quality Stan-
dards for Measuring Architectures. Journal of systems and software 72(2):209-223,
2004.
doi:10.1016/S0164-1212(03)00114-6

[LG11] K. Lochmann, A. Goeb. A Unifying Model for Software Quality. In Proc. 8th Int.
Workshop on Software Quality (WoSQ). Pp. 3-10. 2011.
doi:10.1145/2024587.2024591

[LLOO] A. van Lamsweerde, E. Letier. Handling Obstacles in Goal-Oriented Requirements
Engineering. IEEE Transactions on Software Engineering 26(10):978-1005, 2000.
doi:10.1109/32.879820

[Loc12] K. Lochmann. A Benchmarking-inspired Approach to Determine Threshold Values
for Metrics. SIGSOFT Softw. Eng. Notes 37(6):1-8, Nov. 2012.
doi:10.1145/2382756.2382782

[MBD'09] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval,
F. Bellingard, P. Vaillergues. The Squale Model — A Practice-based Industrial Qual-
ity Model. In Proc. IEEE Int. Conf. on Software Maintenance (ICSM). Pp. 531-534.
2009.
doi:10.1109/ICSM.2009.5306381

[MCNO92] J. Mylopoulos, L. Chung, B. Nixon. Representing and Using Nonfunctional Re-
quirements: A Process-Oriented Approach. IEEE Transactions on Software Engi-
neering 18(6):483-497, 1992.
doi:10.1109/32.142871

[MPK*12] A. Mayr, R. Plosch, M. Klis, C. Lampasona, M. Saft. A Comprehensive Code-
based Quality Model for Embedded Systems. In Proc. 23rd Int. Symposium on Soft-
ware Reliability Engineering (ISSRE). 2012.
doi:10.1109/ISSRE.2012.4

[MRW77] J. A. McCall, P. K. Richards, G. F. Walters. Factors in Software Quality. Technical
report RADC-TR-77-369, Rome Air Development Center, 1977.

19/20 Volume 60 (2013)

http://dx.doi.org/10.1109/MS.2004.1331309
http://dx.doi.org/10.1109/ISRE.2001.948567
http://dx.doi.org/10.5381/jot.2003.2.2.a2
http://dx.doi.org/10.1016/S0164-1212(03)00114-6
http://dx.doi.org/10.1145/2024587.2024591
http://dx.doi.org/10.1109/32.879820
http://dx.doi.org/10.1145/2382756.2382782
http://dx.doi.org/10.1109/ICSM.2009.5306381
http://dx.doi.org/10.1109/32.142871
http://dx.doi.org/10.1109/ISSRE.2012.4

A Meta Model for Software Architecture Conformance and Quality Assessment Eﬁ

[PW85]

[RV98]

[SWO05]

[VACT09]

[WLH'12]

D. L. Parnas, D. M. Weiss. Active Design Reviews: Principles and Practices. In
Proc. 8th Int. Conf. on Software Engineering (ICSE). Pp. 132-136. 1985.

A. Rivers, M. Vouk. Resource-Constrained Non-Operational Testing of Software. In
Proc. 9th Software Int. Symposium on Reliability Engineering. Pp. 154—163. 1998.
doi:10.1109/ISSRE.1998.730874

M. Svahnberg, C. Wohlin. An Investigation of a Method for Identifying a Software
Architecture Candidate with Respect to Quality Attributes. Empirical Software En-
gineering 10(2):149-181, 2005.
doi:10.1007/s10664-004-6190-y

O. Vogel, I. Arnold, A. Chughtai, E. Ihler, T. Kehrer, U. Mehlig, U. Zdun. Software-
Architektur: Grundlagen — Konzepte — Praxis. Spektrum Akademischer Verlag Hei-
delberg, 2nd edition, 2009.

S. Wagner, K. Lochmann, L. Heinemann, M. Klaes, A. Seidl, A. Goeb, J. Streit,
A. Trendowicz, R. Ploesch. The Quamoco Product Quality Modelling and Assess-
ment Approach. In Proc. 34th Int. Conf. on Software Engineering (ICSE). 2012.
doi:10.1109/ICSE.2012.6227106

[WLWT12a] S.Wagner, K. Lochmann, S. Winter, F. Deissenboeck, E. Juergens, M. Herrmanns-

doerfer, L. Heinemann, M. Klaes, A. Trendowicz, J. Heidrich, R. Ploesch, A. Goeb,
C. Koerner, K. Schoder, C. Schubert. The Quamoco Quality Meta-Model. Technical
report TUM-I128, Technische Universitit Miinchen, 2012.

[WLW'12b] S. Wagner, K. Lochmann, S. Winter, A. Goeb, M. Klaes, S. Nunnenmacher. Soft-

[Zha99]

ware Quality Models in Practice. Technical report TUM-1129, Technische Univer-
sitdt Miinchen, 2012.

J. Zhao. Bibliography of Software Architecture Analysis. Software Engineering
Notes 24(4):61-62, 1999.

Proc. SQM 2013 20/20

http://dx.doi.org/10.1109/ISSRE.1998.730874
http://dx.doi.org/10.1007/s10664-004-6190-y
http://dx.doi.org/10.1109/ICSE.2012.6227106

	Introduction
	Motivation
	Problem
	Contribution
	Structure

	Related Work
	Software Quality Models
	Software Architecture Evaluation

	Basic Modeling Concepts
	Architecture Model Extension
	Modules
	Quality Goals
	Conformance—Architectural Principles
	Design—Architectural Best-Practices
	Instantiation and Usage
	Summary

	Validation
	Goal
	Setup and Procedure
	Results

	Conclusions and Outlook

