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Abstract: When a bug is fixed in duplicated code, it is often necessary to modify
all duplicates (so-called clones) accordingly. In practice, however, fixes are often
incomplete, which causes the bug to remain in one or more of the clones. This pa-
per presents an approach that detects such incomplete bug-fixes in cloned code by
analyzing a system’s version history to reveal those commits that fix problems. The
approach then performs incremental clone detection to reveal those clones that be-
came inconsistent as a result of such a fix. We present results from a case study that
analyzed incomplete bug-fixes in six industrial and open-source systems to demon-
strate the feasibility and defectiveness of our approach. We identified likely incom-
plete bug-fixes in all analyzed systems.

Keywords: software clones, software maintenance, static analysis, software evolu-
tion

1 Introduction

“I had previously fixed the identical bug [...], but didn’t realize that the same error was repeated
over here” [CCD09]. This excerpt of a commit message is common among developers who
unveil inconsistencies in duplicated (cloned) code. As research in software maintenance has
shown, most software systems contain a significant amount of code clones [Kos07]. During
maintenance, changes often affect all clones and must therefore be carried out on all instances of
these clones.

If developers are not aware of the duplicates of a piece of code when they make a change,
the resulting inconsistencies often lead to bugs [JDHWO09]. Awareness of clones in a system is
especially important if a developer fixes a bug that has been copied to different locations in the
system. Those clones that are not fixed continue to contain the bug. Many studies have reported
discovering errors in clones in practice, often due to incomplete bug-fixes [J[DHW09, LLMZ06,
LJO7, ACD07, TCAD09, BFG07, YMNCO04].

To avoid such incomplete bug-fixes, clone management [Kos07] approaches have been pro-
posed to alert developers of the existence of clones when performing changes. However, while
such approaches may ease future maintenance, they are of no help for incomplete bug-fixes that
occurred in the past. How can we detect such inconsistent bug-fixes that are already part of a
system’s source code?
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One approach to detect incomplete bug-fixes in cloned code is to search for clones that differ
from each other in terms of, for example, modified or missing statements. These differences
could hint at incomplete bug-fixes. While several approaches are able to detect clones with
differences (so called type-3 clones) [RCKO09], not every difference between a pair of clones
hints at a bug. In many cases, a developer will copy & paste a piece of code and modify it
intentionally, since the new copy is required to perform a slightly different function.

Over the past five years, we have inspected clones in numerous industrial and open-source
systems and found that most of these systems contain substantial numbers of clones—including
type-3 clones. Searching for incomplete bug-fixes by manually inspecting type-3 clones is inef-
ficient, simply because many of the differences have been introduced intentionally, often during
the creation of the clone. The ideal approach would (at least to a certain degree) differentiate
between intentional and unintentional differences between clones.

This paper proposes a novel approach to reveal inconsistent bug-fixes. This approach iterates
through the revision history of a system and classifies changes as bug-fixes, if the commit mes-
sage contains specific keywords such as bug or fix. It then tracks the evolution of code clones
between revisions to detect clones that have become inconsistent as the result of a fix. Our as-
sumption is that such inconsistencies have a high likelihood of being unintentional. The case
study that we conducted for this paper confirms this assumption.

Furthermore, in contrast to clones detected on a single system version, this approach pro-
vides information about which change, made by which author and for which defect, caused the
difference between the clones. Based on our experience, this information substantially helps
developers to determine whether and how to resolve differences between clones.

This work targets the problem of incomplete bug-fixes in cloned code, which causes the bugs
to remain in the system. There is currently a lack of approaches that efficiently reveal such
incomplete bug-fixes. For this, we have developed a novel approach for detecting missing bug-
fixes in code clones by combining clone evolution analysis with information gathered from the
version control system.

We implemented the approach based on the incremental clone detection functionality of the
open-source program analysis toolkit ConQAT.! We evaluated the approach in a case study on
six industrial and open-source systems written in Java and C#. The results of the case study show
that the approach is feasible and does reveal missing bug-fixes.

2 Related Work

This section provides an overview of approaches to reveal incomplete or missing bug-fixes. We
distinguish between work concerning system evolution and clone detection.

1 http://conqat.org
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2.1 Evolution-based

Kim et al. [KPWO06] proposed a tool called BugMem, which uses a database of bug and fix pairs
to find bugs and suggest fixes. In particular, this system-specific database is built via an on-
line learning process, since each revision of the version control system is scanned for a commit
message that hints at a bug-fix. As suggested by Mockus and Votta [MV00] they used the terms
”Bug” or "Fix” to identify bug-fixes, as well as reference numbers to issue-tracking software like
Bugzilla. For each fix-commit, the changeset data is extracted and separated into code-with-bug
and code-after-fix. These code regions are normalized to generalize identifiers and are stored in
the database.

We used the same method for scanning the version history for interesting terms, although we
refrain from including references to bug tracking reports, since some systems track both bugs
and feature requests with such tools. In order for them to be included, further work would be
required to distinguish bugs and feature requests, and to make the data available offline.

Zimmermann et al. [ZWDZ04] took a similar approach by mining data from a version con-
trol system for a change recommendation system. Their goal was to suggest changes and fixes
within the IDE [ZNZ08] in the manner of shopping applications: “Programmers who changed
these functions also changed...”. With a precision of 26%, however, the amount of meaningful
suggestions is rather low. From a user perspective, our approach differs from Zimmermann’s
mainly in that the recommendation tool tries to prevent bugs by suggesting changes upon modi-
fication of files in the IDE.

2.2 Clone-based

Juergens et al. [JDHWO09] inspected a set of gapped clones for incomplete bug-fixes using their
open-source tool suite ConQAT. They proposed an approach for identifying gapped code clones
using an algorithm based on suffix-trees and evaluated it on several large-scale systems. The
results of this study show an average precision of 28% for detecting unintentional inconsistent
clones. Nevertheless, the tool reported over 150 inconsistent clones for all but one system, which
is a large amount for initial analyses.

The approach proposed in this paper also builds upon ConQAT, but uses another technique
for detecting inconsistent code clones involving an index-based algorithm in conjunction with
evolution analysis. Hence, we compare our approach to that from Juergens et al. in terms of
reported inconsistencies, precision, and execution time.

2.3 Combined - Clone-evolution-based

APPROX, by Bazrafshan et al. [BKG11], is a tool for searching among arbitrary code fragments
in multiple versions and branches for similar fragments in order to find missing fixes. The search
is based on code clone detection, but is limited to searching for code fragments similar to a search
term. In contrast to our approach, APPROX requires developers to know beforehand which code
snippet contains a bug-fix and is of interest.

Duala-Ekoko and Robillard [DRO7] created an extension for the Eclipse IDE, which reads a
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clone report from SimScan” and tracks the location of the clones automatically as code changes
in the editor or between revisions. The approach focuses more on getting an overview of all
related clones while editing a file, since it provides automated edit propagation to other clone
siblings.

In contrast, Kim et al. [KRSNMO05] analyzed clone genealogies by combining CCFinder [KKI02]
with a clone tracking approach. In a case study, they showed that a maximum of 40% of all clones
are changed consistently during system evolution. Canfora et al. [CCD09] used another clone
detection tool, as well as other study objects, and reproduced the results from Kim et al. with
approximately 43% of all clones being consistently modified. In detail, the inconsistencies sum
up to 67%, 14% of which were propagated later to become consistent again.

Gode and Rausch [GR10] analyzed the evolution of three open-source systems over a five-year
period. For this, they used an iterative clone detection and tracking algorithm, and showed that
43.1% of all changes to clones are inconsistent, with 16.8% being unintentionally inconsistent.
Again, the total amount of reported inconsistencies is quite high, with 131 clones, and includes
many false positives with respect to unintentional inconsistencies. As we go further and filter the
revisions by commit message, we significantly reduce the amount of false positives.

Geiger et al. [GFGPO06] presented an approach for identifying interesting correlations be-
tween code clones and change couplings mostly with respect to different subsystems. Change
couplings, are files that are committed at approximately the same time, from the same author,
and with the same commit message [GHJ98]. Nevertheless, Geiger et al concluded that a corre-
lation is too complex to be easily expressed and more information is needed to identify harmful
clones. Our approach does not correlate change coupling, but instead uses a prediction of which
commit is a fix based on its commit message.

3 Revealing missing Bug-Fixes

This section provides an in-depth explanation of how the analysis process of the proposed ap-
proach works. As depicted in Figure 1, the process is an iteration over the available revisions
of the version control system in order to simulate the source code evolution. Several steps are
performed for each iteration to identify incomplete bug-fixes in code clones. At the end of each
cycle, the iterator is queried for the next revision and a new detection starts. As soon as no newer
revision is available, the bug detection results are reported and the analysis process terminates.

3.1 Get Next Revision

At the start of the analysis, the version control system is queried for all or a subset of available
revisions. During the iteration loop, the revisions are checked out in chronological order and
metadata containing the commit message is handed over to the next steps.

Git® is used as backend for the revision iteration, as it supports import from various other
version control systems. Hence, the approach is virtually independent of the version control
system which the code is managed with. Moreover, as a distributed version control system,

2 http://blue-edge.bg/simscan
3 http://git-scm.com
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A. Get Next Revision

F. Bug Detection

Figure 1: Overview of the iterative bug detection process.

the entire version history is stored locally and does not require communication via a network
connection.

3.2 Preprocessing

Firstly, the source code is read from the disk into memory. Regular expressions are used as
include and exclude filters for omitting generated and test code, since the former does not contain
manual modifications and the latter is not interesting for production use.

We further strip unnecessary statements, such as package identifiers or include statements,
as these are unlikely to contain bugs. Finally, the source code is normalized into a generic
representation that is insensitive to method names, variable names and literals.

3.3 Clone Detection

Code clones are detected with an algorithm provided by ConQAT using a hash index [HIHC10],
which allows incremental updates of the clone data with high performance. For each revision,
we gather the list of altered, added, and deleted files and remove from the index all data, that
belongs to these files. These files are later added to the index again, but with updated content,
which enables us to retain most of the data and update just a small fraction depending on the
changeset size.

The detection is configured to keep clones from crossing method boundaries (shaped detec-
tion). This enables us to minimize the amount of semantically non-meaningful code clones.
Moreover, we do not take into account gapped clones (type-3) that contain statement additions,
removals, and modifications after normalization. Including gapped clones in this step will not
enable us to determine whether the inconsistency in such a clone is related to a bug-fix.
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Figure 2: Clone tracking dataflow process.

3.4 Clone Tracking

This step performs the actual evolution analysis for code clones. The reported clones from
the clone detection step are mapped to those from the previous iteration cycle (¢f. Figure 2).
Modifications that are performed inconsistently between clones turn a group of ungapped clones
into a group of gapped clones. Moreover, these gapped clones are marked as modified in this
revision.

The clone tracking is also performed by ConQAT and roughly follows the approach proposed
by Gode and Koschke [GKO09]. It first calculates the edit operations of a code clone between
two consecutive revisions and then propagates these edit operations to the clones of the current
revision so that the clone positions are updated accordingly. The updated clones are then mapped
to those from the current detection step: Firstly, those clones whose positions do not differ
are matched. Secondly, a fuzzy coverage matching is performed on the remaining clones; this
determines whether one clone covers another and reports clones with modifications and gaps that
are of interest for the proposed bug detection approach.

3.5 Filtering

All clones without gaps are filtered, because they cannot contain incomplete bug-fixes. We also
remove clones that differ too much with regards to their length. We selected a threshold of 50%
around the average length of all clone instances of a group.

For example, a group of clones with two instances of length 23 and one of length 8 has an
average clone length of 18. As the length of the shortest instance lies outside the 50% interval
around this average length ([9,27]), it is removed from the group. The other instances remain,
because they lie within the interval. If all clones of a group lie outside this interval, the entire
group is discarded.
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Figure 3: Incomplete bug-fix detection flow.

3.6 Bug Detection

We distinguish between clones that contain an incomplete bug-fix and those that do not, as out-
lined in Figure 3. To achieve this, the version control system is first queried for the commit
message of the current revision. In the message, we search for terms that may indicate a bug-fix,
such as fix, defect, or bug. If such a term is found, the whole commit and its modifications are
seen as bug-fix commit. Mockus and Votta [MV00] proposed an even more extensive approach
for finding fixes in commit messages. In our case, a customizable list of system specific terms
was sufficient.

The list of code clones is then searched for those clones that were marked as modified in this
revision in the clone tracking step. Our approach suggests that such clones contain an incomplete
fix, as the commiit is a bug-fix and the clone was inconsistently modified in this revision. These
clones are then added to the global list of all incomplete bug-fixes. Finally, we also need to clean
this list of incomplete bug-fixes as soon as a clone either becomes consistent again or vanishes.
We continue with a new iteration loop, as long as newer revisions are available.

3.7 Result Reporting

The final step, after the revision iteration terminates, is the result reporting. It writes all incom-

plete bug-fixes into an XML file for manual inspection with the ConQAT Clone Workbench.
The report contains details about the location of clone instances in the source code, which

includes the file name, the start and end line, as well as the position of gaps. Information about
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Figure 4: Compressing non-bug-fix revisions (white) into single commits. Revisions including a
bug-fix (gray) are not compressed.

the revision that caused the clone to become inconsistent is also stored, namely the commit
message and the revision identifier.

3.8 Performance Optimization: Revision Compression

After analyzing the version history of some software systems, we found that only a small per-
centage of the commits represent a bug-fix. In the studied systems approxiumately 25%. We can
exploit this for a notable performance improvement, since we only need to inspect the commits
that represent a bug-fix. All revisions between bug-fixes can be compressed into a single com-
posite revision, as depicted in Figure 4. These compressed revisions are created by appending
the commit messages and merging the changesets of altered files.

The general performance improvement can be described as follows: Let R be the total number
of commits and F be the amount of fixes in a system (determined from the commit message) with
of course F < R. We then inspect R revisions without compression. With revision compression a
maximum of 2 F' + 1 revisions have to be inspected, whereas R is still an upper limit that cannot
be exceeded. For a system with a ratio of one fix per four commits, we can skip at least 50% of
all revisions.

4 Case Study

This section presents a case study that examines the amount of fixes in code clones of indus-
trial and open-source software systems. It also evaluates how well bugs can be detected with
the proposed clone evolution approach and compares the proposed approach with gapped clone
detection on a single system revision.

4.1 Research Questions

We investigate the following four research questions:

RQ 1 How many code clones are affected by fixes?
If inconsistent changes to clones do not occur in software systems, further analyses do not make
sense.

Proc. SQM 2013 8/19
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RQ 2 How many inconsistently fixed clones qualify as bug candidates?

This question investigates whether the proposed approach is appropriate for detecting bugs and
how many false positives are returned. For a toolkit in production use, high precision in detecting
incomplete bug-fixes is desirable.

RQ 3 What impact does the commit changeset size have on the bug-finding precision?
Commits with a large number of modified files are likely to contain refactorings, feature additions
or branch merges besides the actual fix. We suspect that more false positives are reported and try
to provide evidence by analyzing the precision with respect to limited changeset sizes.

RQ 4 How does evolution-based bug detection compare to gapped clone detection on a single
revision?

Gapped clone detection can also be used to find incomplete bug-fixes. This arises the question
of whether the overhead of analyzing history information is justified compared to gapped clone
detection in terms of precision and the number of reported inconsistently fixed clones needed to
be inspected by a developer or quality assurance engineer.

4.2 Study Objects

The case study was performed on six real-world software systems as listed in Table 1. These
projects were chosen because they have an evolved version history and also because we needed
access to the version control system, even for non-open-source projects. Therfore, we relied on
own contacts for industry code. In contrast, Banshee and Spring are available as open-source
systems and are maintained by Novell and VMWare.

All systems are written by different teams, have individual functionality, and evolved indepen-
dently. They also differ in size and age. Systems A, B, and C are owned by Munich Re, but are
developed and maintained by different suppliers. They are written in C# and used for damage
prediction and risk modeling. System D is an Android application developed by AOL. The two
open-source applications are the popular cross-platform audio player Banshee* written in C# by
more than 300 contributors and the Java enterprise application framework Spring> developed by
over 50 contributors. All systems are actively developed and in production use.

4.3 Amount of Incomplete Fixes — RQ 1

Design and Procedure The first research question investigates the amount of code clones that
were affected by fixes and consequently became inconsistent. To answer it, we counted both the
total amount of incomplete fixes during project evolution, as well as those that were still present
in the latest revision of the system history. Our bug detection toolkit has been slightly modified
to deliver these statistics. The configuration remained as described in Section 3, with a minimal
clone length of 7 statements. Additionally, groups of clones with more than three instances
were filtered, because precursory studies showed that the tracking approach can be unreliable if
modifications occur in more than one instance. Including these clones remains for future work.

4 http://banshee.fm
5 http://springsource.org/spring-framework
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Table 1: List of the analyzed software systems.

System  Organization Language History Size Commits
(years) (kLOC)

A Munich Re C# 1.5 81.4 823

B Munich Re C# 1.5 370.6 638

C Munich Re C# 5 652.7 7483

D AOL Java 1.5 47.5 1449
Banshee Novell C# 7 165.6 8097
Spring VMWare Java 4 417.6 5034

Table 2: Total amount and percentage of commits containing bug-fixes.

System Commits Fixes Fixes (%)

A 823 194 23.6

B 638 203 31.8

C 7483 1754 23.4

D 1449 326 22.5
Banshee 8097 2016 24.9
Spring 5034 648 12.9

To identify bug-fix commits, the version history of all six systems was manually inspected,
yielding the following list of keywords hinting at bug-fixes: Fix, Bug, Defect, Correct. As
Systems A, B, and C are developed by German engineers, some of the commit messages are
also written in German, which extended the list of keywords to include the German translations
Fehler, Defekt, behoben, and korrigiert. Furthermore, the word correct has frequently been mis-
spelled by developers as corect, so we also took this variant into account. We decided against
identifying commits as fixes solely from the presence of a reference to a bug-tracker issue num-
ber, because feature requests were managed in the same tracker software for each of the system.

To compare execution times, we used a laptop with a 2.2 GHz Quadcore CPU and 4 GB of
RAM running a 32 Bit Ubuntu Linux with Oracle JDK 7 throughout the case study.

Results Table 2 summarizes the amount of fixes detected with the mentioned keywords in each
analyzed system. According to this result, almost one in four commits is a fix.

Table 3 shows the number of incomplete bug-fixes affecting code clones for each system. For
all systems, fewer fixes are present in the last revision than occurred in total. This is due to
corrected inconsistencies or completely removed clones. Moreover, a code clone can also be
affected by more than one bug-fix and appear multiple times in the above statistic.

Discussion Table 3 compares the low number of incomplete fixes, which are still present in the
last revision, with all inconsistencies found during the analysis. For Banshee, it shows that the
detection algorithm is not stable with regards to large refactorings. Some detected bugs were lost
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Table 3: Evolution of incomplete bug-fixes.

System  Total Incomplete Fixes

Still Present

A
B
C
D
Banshee
Spring

48
60
108
26
112
35

28
50
61
15
21
23

& clone Compare View @
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List<PropertyAccessor> generalAccessors = new ArraylList<PropertyAccessor>(
for (PropertyAccessor resolver : state.getPropertyAccessors()) {
Class<?>[] targets = resolver.getSpecificTargetClasses();
if (targets = null) { // generic resolver that says it can be used fo
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}
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Figure 5: Screenshot of the ConQAT clone workbench including a clone compare view (@) and
metadata about the commit this inconsistency was introduced by ().

during tracking because the Banshee developers partially restructured sub components. Even
gathering renamed files from the version control system will not completely eliminate this issue,
since code may be exchanged between files as well. System C also suffered from this to a minor
extent.

Moreover, The Banshee Git repository contains lots of branching on the main development
line, but the analysis loops through all commits in a sequential order provided by the jGit library.
Therefore, it might switch between branches for consecutive runs, causing some bugs to disap-
pear, due to tracking issues. In this case, an adapted evolution analysis is needed, that traverses
merged branches separately. This requires some major rework for the entire revision iteration
and bug detection process, which is an area for future work.
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Table 4: Results of the bug detection for each system.

System  Total Inconsistently Bug Precision Time
Clones Fixed Clones Candidates (min)
A 200 28 11 0.39 2.7
B 765 50 9 0.18 23
C 778 61 23 0.38 116
D 170 15 6 0.40 5
Banshee 165 21 5 0.25 119
Spring 518 23 4 0.17 127

4.4 Detection Precision — RQ 2

Design and Procedure This question investigates bug-detection precision. The inconsistently
fixed clones gathered in RQ 1 were manually inspected by the researcher and separated in false
positives and bug candidates. To answer the question, we calculated the precision of the bug
detector according to Equation 1.

o # bug candidates
precision = — . . ()
# inconsistently fixed clones

The decision whether an inconsistently fixed clone qualifies as bug candidate was made upon
comparing the source code of clones using the ConQAT clone workbench for Eclipse and manu-
ally inspecting the commit message and modifications (see Figure 5). In case the manual compar-
ison revealed that the inconsistency seems to be intentionally introduced, the clone is discarded
as false positive.

Our goal is to cost-effectively identify missing bug-fixes and, to do this, we are willing to
sacrifice recall for higher precision and leave analysis of recall (if feasible at all) for future work.

Results Table 4 summarizes the total amount of code clones detected during history evolution
and present in the last revision, as well as the number of inconsistently fixed clones. Table 4 also
lists the amount of bug candidates resulting from manual inspection, the precision calculated
with Equation 1, and the time the detection took in minutes.

Apart from Spring, the detection algorithm identifies approximately 10% of all clones as in-
consistently fixed. The manual inspection of the researcher revealed that 17% to 40% of these
reported clones are classified as bug candidates. The execution times vary depending on the
project size and the amount of revisions chosen for evolution analysis. However, all analyses
were performed in less than three hours.

Discussion The lowest result with respect to precision shows System B and Spring. The latter
has a very low rate of bug-fixes in general and just 23 bugs were reported out of over 5000
revisions, with more than 400,000 lines of code per revision. The documentation contains very
strict guidelines® for third party contributions with respect to coding style, unit-testing and patch

6 https://github.com/SpringSource/spring- framework/wiki/Contributor- guidelines
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submission, and similar rules seem to apply for internal work as well.

For system B, many false positives were introduced by big commits that “fixed” coding style-
related issues. We did not count these as bug-fixes. The same problem also decreases the results
for System C. RQ 3 tries to alleviate this problem by ignoring commits with many modified files.

4.5 Changeset Size Impact — RQ 3

Design and Procedure This question analyzes how the size of the commit changeset influ-
ences the bug-finding precision. Analogous to RQ 2, we answered this question by inspect-
ing the returned inconsistently fixed clones and determining the precision according to Equa-
tion 1. Therefore, the detection toolkit was executed with the same parameters as described
for RQ 2. We also applied a minimum and maximum threshold to the changeset size of a
commit, which is evaluated at the time of revision compression. The changeset size is lim-
ited with a window of size 5 sliding from 1 to 21. This results in the following intervals:
[1,5],]6,10],[11,15],[16,20],[21,0).

Results The results are summarized in Table 5 and grouped by the limit interval. The table
shows that the precision in intervals [1,5] and [6,10] is almost twice as high than the average
precision from Table 4 and ranges from 30% to 60%. In contrast, the precision drops off signif-
icantly for commits with changeset sizes larger than 10. As discussed, the style related fixes in
system B that lowered the results for RQ 2 fall into this category. Nevertheless, the systems that
performed worse previously did not catch up to the other systems in terms of precision, although
there was a noticeable increase.

The sum of the reported bugs or bug candidates of each system may not be equal to the results
from Table 4, since a clone can be altered by fixes of different changeset sizes. Therefore, some
clones are listed multiple times.

Discussion By limiting the changeset size to a maximum of 10 altered files, the precision of
the approach could almost be doubled and bugs are detected with an acceptable precision of 30%
to 60%. We consider this sufficient for use in real-world assessments.

Nonetheless, different development practices and policies such as committing changes just
once per day or merging upstream work in a single revision may cause some incomplete bug-
fixes to be missed. However, the results in Table 5 show that for the analyzed systems the gain
of precision outweighs this loss.

4.6 Gapped Clone Detection Comparison — RQ 4

Design and Procedure This research question compares the evolution-based bug-finding ap-
proach to the less time-consuming gapped clone detection. To answer the question, we ran a
gapped clone detection with ConQAT on the study objects and filtered the returned clones to
contain at least one modification. The parameters from RQ 2 are used again with parameters
chosen especially for the gapped clone detection according to Juergens [Juel1]; namely, the gap
ratio must be at most 20% and the edit distance can have a maximum of 5 edits.
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Table 5: Results with limits applied to the changeset size.

Limit System Inconsistently Bug Precision
Fixed Clones Candidates
A 11 8 0.73
B 20 5 0.25
C 35 13 0.37
[1,5] D 11 5 0.45
Banshee 12 4 0.33
Spring 17 5 0.29
A 4 2 0.50
B 5 2 0.40
C 11 9 0.82
[6,10] D 3 1 0.33
Banshee 4 1 0.25
Spring 3 1 0.33
A 0 — —
B 1 0 0.00
C 5 1 0.20
[11,15] D 0 o o
Banshee 2 0 0.00
Spring 0 — —
A 3 1 0.33
B 0 — —
C 0 — —
[15,20] D 1 0 0.00
Banshee 0 — —
Spring 0 — —
A 7 0 0.00
B 26 3 0.12
C 5 2 0.40
[21,00] D 0 _ o
Banshee 3 0 0.00
Spring 0 — —

Finally, we determined the precision of finding bugs in this set of clones with Equation 1
and compared the results to those of RQ 2 and RQ 3. Due to the large amount of reported
inconsistently fixed clones for some systems, we only inspected some of the reported clones for
bug candidates, which were randomly chosen from the entire result set.

Results Table 6 presents the results for the gapped clone detection executed for each of the
study objects. Compared to the results from the evolution-based approach, the overall precision
is more homogeneous, ranging from 20% to 30%. Hence, there is no significant difference to
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Table 6: Results for finding bugs with gapped clone detection.

System Reported Inspected (%) Bug Precision

Clones Candidates
A 42 42 (100%) 13 0.31
B 219 109 (50%) 26 0.23
C 192 96 (50%) 25 0.26
D 60 60 (100%) 15 0.25
Banshee 34 34 (100%) 8 0.24
Spring 166 83 (50%) 17 0.20

the evolution analysis unless changeset sizes are taken into account. Nevertheless, the detection
reported 2 to 6 times more clones that we had to inspect manually. As a positive side effect,
more bug candidates were detected. Compared to the enhanced approach with limits applied to
the changeset size, the gapped detection clearly performs worse in terms of precision.

Discussion The results of the evolution-based approach were gained via a time-consuming
analysis that took over two hours for some systems. Therefore, it is valid to ask whether a simple
gapped clone detection, which only takes two minutes to execute, can identify inconsistent clones
with similar precision.

Based solely on the results from the basic evolution-based approach, one may concede this
point. Nevertheless, the gapped detection was performed with additional parameters that al-
ready filtered many false positives. Not applying those filters increases the size of inconsistently
changed clones for System A from 42 to 309. For the evolution-based approach, we did not ap-
ply these filters and may gain further precision by applying them. Furthermore, compared with
limited changeset sizes, the precision is clearly higher than for gapped clone detection. Therfore,
we consider the long execution times to be justified.

Besides precision, there are other valid arguments for favoring the history-based approach:
Firstly, we can gain important information about the fix from the corresponding commit mes-
sages. The revision information can also be used to obtain knowledge about the person who
introduced the inconsistency. Furthermore, in a continuous scenario, we just have to update the
clone index for altered files and can therby return new results in almost real-time.

Although the gapped detection did unveil some bug candidates, that we had not encountered
before, the evolution-based approach also reported some bug candidates not found by the gapped
approach. Therefore, a combination of both methods could be beneficial.

4.7 Threats to Validity

This section provides an overview of the internal and external threats to the validity of the case
study and how we tried to mitigate them.

Internal Validity The main error source for the case study may be determining whether an
inconsistently fixed clone is a bug candidate, since the researcher has no in-depth knowledge of
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how the analyzed systems are built and how the components work together. We inspected the
results twice in an attempt to mitigate the threat and reached the same conclusion both times. For
future work, we would also like to verify the results by developers.

We did not take recall into account when answering the research questions. Nevertheless, this
does not present a problem with regard to the aim of the proposed toolkit. The key requirement
is to find bugs with high precision combined with context information. This set of tool-reported
bugs should contain as few false positives as possible in order to minimize manual inspection
efforts. As long as the time spent searching for bugs is justified by the bugs we find, we do not
mind how many we miss. The time invested in finding bugs paid off.

Without knowing the recall, however, statistical tests of the evaluation results have little use,
especially since we minimized the set of inconsistent clones to gain higher precision. Hence, we
refrained from backing up RQ 3 and RQ 4 with statistical tests.

Another group of threats concerns the program evolution. Depending on the development
practices and version control system used, fixes that happen on branches are not visible on the
main branch after being merged. All systems that were imported from Subversion and Microsoft
Team Foundation Server suffer from this problem, whereas the Git-based systems Banshee and
Spring do not. Similarly, we do not detect clones that were newly created and had a fix applied
to the code before re-committing to the version control system. These problems are more or less
technical restrictions that cannot be prevented, which means that the set of reported bugs may be
smaller than the actual set of inconsistent fixes that were applied to code clones.

A further problem may be clone false positives; that is, code regions that are syntactically
similar to each other but contain no semantic similarity. Examples include lists of getters and
setters with different identifiers. We included those false positives in the results of the case study
and counted them as not representing a bug candidate. In doing so, however, we penalize the
precision of the bug-finding tool.

Finally, the list of keywords for identifying bugs may not be exhaustive. Again, our aim is not
to find all possible bugs, but a subset with a high precision. Also, it is easy to add new keywords
for other systems.

External Validity The systems chosen for the case study as study objects may not represent
an average software system. For closed-source systems, however, we are limited to existing
industry contacts. Nonetheless, all systems are developed by different teams and for different
purposes, as described in Subsection 4.2. Moreover, RQ 2 showed that they also have different
characteristics in terms of bug evolution and amount of code clones, so we are convinced that we
have no strong bias in the results.

5 Conclusion and Future Work

This paper contributed to the analysis of the evolution history of code clones with the goal of
identifying incomplete bug-fixes. We have proposed a novel approach that inspects commit mes-
sages for terms indicating a bug-fix in conjunction with unveiling gapped clones from evolution
analysis.

To evaluate our approach, we performed a study on six real-world open-source and indus-
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trial software systems. The results clearly show that inconsistent fixes—although varying in
number—are a problem common to many software systems. The proposed toolkit helps to re-
veal missing bug-fixes in code clones with an acceptable precision of 30% to 60%. The evolution
analysis produces more precise results than gapped clone detection, which has a precision of 20%
to 30%. Not only are bugs reported, but commit messages and inconsistent clone pairs provide
valuable context information.

The approach is suitable for first-time analyses of a system, which may even be performed by
persons not familiar with the system, and for continuous analyses. The latter is supported by the
index-based clone detection backend, which supports fast incremental updates.

For future work, the approach can be extended to gain further precision or performance im-
provements. We plan to create a combined approach of gapped clone detection and evolution
analysis with some kind of weighting of the incomplete fixes we identified. The content of
altered source code can also be taken into account. Added null-checks, caught exceptions, or
additional if-clauses are highly suspect to represent missing bug-fixes if applied inconsistently.
However, such work requires additional research that is beyond the scope of the present paper.

Further performance improvements can be achieved by keeping the normalized source code
in memory between consecutive iterations and just updating the modified files. An analogous
method is already being used for updating the clone index and needs to be applied here as well,
since disk operations are an essential bottle-neck for large-scale system analyses.
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