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Abstract: We present the integration of the refinement method of the VSE verifi-
cation tool, successfully used in industrial applications, in the Heterogeneous Tool
Set HETS. The connection is done via introducing the dynamic logic underlying
VSE and two logic translations in the logic graph of HETS. Thus the proof manage-
ment formalism provided by HETS can be applied for VSE specifications without
modification of the logic independent layers of HETS.
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1 Introduction

Axiomatic specification of data and programs provide the means for developing formal models of
software at a conceptual level, while dynamic logics and Hoare-style logics can express correct-
ness criteria that stay closer to the actual programs. For a formal development or verification of
software, typically both levels are needed, since using axiomatic modeling of the concepts alone
misses the formal link to real programs, while using a Hoare-style or dynamic logic alone only
allows for little formal conceptual modeling. In this work, we integrate two tools that both ad-
dress the link between these two levels in different ways, and will provide added benefit through
this integration.

The Heterogeneous Tool Set HETS [24, 22], developed at DFKI Bremen, is a tool for het-
erogeneous multi-logic specification, interfacing various theorem provers, model checkers and
model finders. The specification environment Verification Support Environment (VSE) [4], de-
veloped at DFKI Saarbriicken, provides an industrial-strength methodology for specification and
verification of imperative programs.

We want to combine the best of both worlds by establishing a connection between the VSE
prover and the HETS proof management. For VSE, this brings additionally flexibility: VSE
specifications can now be verified not only with the VSE prover, but also with provers like the
first-order prover SPASS [30] and the higher-order prover Isabelle [27] which are interfaced with
HETS. On the other hand, HETS benefits from VSE’s industrial experience, including a practi-
cal relation between specification and programming languages together with the necessary proof
support. Being interactive the VSE prover offers enough flexibility to tackle even challenging
proof obligations, while a set of strong heuristics based on symbolic execution provide automa-
tion to keep the proof effort still small. VSE provides also a code generation mechanism to
imperative programming languages like Ada or C.
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In order to understand the specific way of integrating HETS and VSE, one needs to understand
the philosophy behind HETS. The central idea of HETS is to provide a general integration and
proof management framework. One can think of HETS acting like a motherboard where different
expansion cards can be plugged in, the expansion cards here being individual logics (with their
analysis and proof tools) as well as logic translations. The benefit of plugging VSE into HETS
is that for both verification and refinement, we can use the general proof management mecha-
nisms of the HETS motherboard, instead of the specialized refinement tools hard-wired into VSE.
Moreover, the HETS motherboard already has
plugged in a number of expansion cards (e.g., the
theorem provers Isabelle, SPASS and more, as
well as model finders) that can be used for VSE
as well. The challenge is that typically, anal-
ysis and proof tools that shall be plugged into
the HETS motherboard are not compatible with
HETS expansion slots. Often, this is a matter of
writing a suitable wrapper that encapsulates the
tool in an expansion card that is compatible to the
HETS motherboard. However, sometimes also
the specification of the expansion slot has to be
enhanced. Of course, such enhancements should
only be done for very good reasons — otherwise, one will end up with slots containing hundreds
of special pins. Since VSE provides a special notion of refinement, one is tempted to enhance
the specification of the expansion slot in this case. However, we will see that we can do without
such an enhancement.

Related work includes ad-hoc integration of (tools for) formal methods, see e.g. the integrated
formal methods conference series [20], and integrations of decision procedures, model check-
ers and automated theorem provers into interactive theorem provers [11, 19]. However, these
approaches are not as flexible as the HETS motherboard/expansion card mechanism. In many
approaches, the interfaces for these integrations are ad-hoc and not re-used in many different
contexts. Moreover, we will see in Sect. 6 below that the use of logic translations as first class
citizens in the expansion card mechanism is crucial for integrating VSE and HETS in a modular
way. This clearly is a novel feature of our approach.

The paper is an extension of [10] with full proofs of the meta theorems and a sample proof
in VSE. It is organized as follows: Section 2 contains an informal description of HETS and its
foundations. In particular, the notions of institution and institution comorphism can be imagined
as the specification of two different types of expansion slot on the HETS motherboard. Section
3 presents the VSE methodology, and in Section 4, its underlying dynamic logic is (for the first
time) organized as an institution, i.e. as an expansion card that can easily be plugged into the
HETS motherboard. Section 5 recalls the algebraic specification notion of refinement and com-
pares the way this concept is handled by HETS and VSE. In Section 6, we define two institution
comorphisms, which can be thought of as further expansion cards that provide the VSE notion
of refinement within HETS. In Section 7 we briefly present a standard example, illustrating the
implementation of natural numbers as lists of binary digits, while Section 8 concludes the paper.

Hets
motherboard
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2 Presentation of HETS

HETS is a multi-logic proof management tool that heterogeneously integrates many languages,
logics and tools on a strong semantic basis. The core of HETS is a heterogeneous extension
of the specification language CASL, designed by the “Common Framework Initiative for Alge-
braic Specification and Development”. However, HETS can also be used for languages that are
completely different from CASL.

2.1 CASL

CASL has been designed from the outset as the central language in a family of languages. Soon
sublanguages and extension of CASL, like the higher-order extension HASCASL, the coalgebraic
extension COCASL, the modal logic extension MODALCASL, the reactive extensions CASL-LTL
and CSP-CASL and others emerged. Luckily, CASL follows a separation of concerns — it has
been designed in four different layers [3, 5, 26]:

basic specifications are unstructured collections of symbols, axioms and theorems, serving the
specification of individual software modules. The specific logic chosen for CASL here is
first-order logic with partial functions, subsorting and induction principles for datatypes;

structured specifications organize large specifications in a structured way, by allowing their
translation, union, parameterization, restriction to an export interface and more. Still,
structured specifications only cover the specification of individual software modules;

architectural specifications allow for prescribing the structure of implementations, thereby
also determining the degree of parallelism that is possible in letting different program-
mers independently develop implementations of different subparts;

specification libraries allow the storage and retrieval of collections of specifications, distributed
over the Internet.

2.2 Institutions

A crucial point in the design of these layers is that the syntax and semantics of each layer is
orthogonal to that of the other layers. In particular, the layer of basic specifications can be
changed to a different language and logic (e.g. an extension of CASL, or even a logic completely
unrelated to CASL), while retaining the other layers. The central abstraction principle to achieve
this separation of layers is the formalization of the notion of logical system as institutions [13],
a notion that arose in the late 1970ies when Goguen and Burstall developed a semantics for the
modular specification language Clear [8].
We recall informally this central notion here. An institution provides

e anotion of signature, carrying the context of user-defined (i.e. non-logical) symbols, and
a notion of signature morphisms (translations between signatures);

e for each signature, notions of sentence and model, and a satisfaction relation between these
(parameterized by signature);

3/34 Volume 62 (2013)



The VSE Refinement Method in HETS Ea

e for each signature morphism, a sentence translation and a model reduction (the direction
of the latter being opposite to the signature morphism), such that satisfaction is invariant
under translation resp. reduction along signature morphisms. This has been summarized
as Truth is invariant under change of notation and enlargement of context.

This leads to the following formal definition. Let 4’277 be the category of categories and
functors. !

Definition 1  An institution I = (Sign’,Sen’,Mod’, |=/) consists of
e a category Sign’ of signatures,

e a functor Sen’: Sign’ — Set giving, for each signature X, the set of sentences Sen’ (),
and for each signature morphism o: £ —Y', the sentence translation map
Sen’(c): Sen’(X) — Sen’ (X'), where often Sen’ (o) (e) is written as o(e),

e afunctor Mod’: (Sign’)?? — €.o/.7 giving, for each signature X, the category of models
Mod/ (%), and for each signature morphism ¢: £ — ¥/, the reduct functor
Mod’(c): Mod!(X') — Mod! (X), where often Mod! (c)(M’) is written as M|,

e a satisfaction relation =L C [Mod’ (X)| x Sen’ (X) for each ¥ € Sign’,

such that for each 6: £ — Y/ in Sign’ the following satisfaction condition holds:
M EL ole) Mg =ke
for each M’ € Mod! (') and e € Sen’ (X). O

We will omit the index / when it is clear from the context.

A very prominent example is the institution FOL™ of many-sorted first-order logic with equal-
ity [13]. Signatures are many-sorted first-order signatures, i.e. many-sorted algebraic signatures
enriched with predicate symbols. Models are many-sorted first-order structures, and model re-
duction is done by translating a symbol that needs to be interpreted along the signature morphism
before looking up its interpretation in the model that is being reduced. Sentences are first-order
formulas, and sentence translation means replacement of the translated symbols. Satisfaction is
the usual satisfaction of a first-order sentence in a first-order structure.

The institution CFOL™ [26] adds sort generation constraints to FOL™. These express that
some of the carriers sets are generated by some of the operations (and possibly the other carrier
sets); this amounts to an induction principle (in Sect. 4 below, formal details for similar for-
mulas will be provided). SubPCFOL™, the CASL institution [26], further equips CFOL™ with
subsorting and partial functions (which, however, will not play a role in this paper).

With the notion of institution providing the abstraction barrier between the layer of basic
specifications on the one hand and the other layers on the other hand, it was quite natural (though
also a great challenge) to realize this abstraction barrier also at the level of tools. HETS provides

! Strictly speaking, €.«7.7 is not a category but only a so-called quasi-category, which is a category that lives in a
higher set-theoretic universe [2].
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Figure 1: Architecture of HETS

an interface for logics and their proof tools, realized through a Haskell type class and which
is similar to classes in object-oriented paradigm. This is exactly the specification of expansion
slots mentioned in the introduction. This specification is heavily based on institutions, that is, the
individual components of an institution are reflected in the interface. Of course, to be practically
useful, the expansion slot specification contains additional components like concrete syntax,
parsers, static analysis tools, and, last but not least, proof tools. The interface captures both
interactive and automatic proof tools.

HETS allows for relating specifications written in different logics, e.g. CASL specifications
can be imported for CASL extensions, or refinements can occur across different logics. In or-
der to support this, HETS treats logic translations, formalized as institution comorphisms (and
morphisms) [14], as first-class citizens (i.e., they are a different type of expansion card). An
institution comorphism captures the idea of encoding or embedding between two institutions. It
provides

e a translation of signatures (and signature morphisms),
e a translation of sentences,

e a translation of models (going backwards to the direction of the comorphism),

such that satisfaction is invariant under translation of sentences resp. models.
This leads to the following formal definition:

Definition 2  Given institutions / and J, an institution comorphism p = (®,o,3): [ —J con-
sists of
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e a functor ®: Sign’ — Sign’,

e a natural transformation o : Sen’ —> Sen’ o ®,
e a natural transformation 3 : Mod’ o ®°? —; Mod/

such that the following satisfaction condition is satisfied for all £ € Sign’, M’ € Mod’ (®(X))
and e € Sen’(2):
M Egp) ox(e) & Br(M) L e.

Comorphisms can also be defined in a simple theoroidal variant [14], when signatures of the
source institution / are mapped by ® to theories of the target institution J, i.e. pairs (X',E’)
where ¥/ is a signature of J and E’ is a set of X'-sentences.

HETS is based on a logic graph of institutions and comorphisms, which is a parameter to the
tools acting at the structured, architectural and library layers. The logic graph can be changed
and extended without the need to change those logic independent analysis tools. The architecture
of HETS is shown in Fig. 1. HETS’ development graph component [23], inspired by the tool
MAYA [16] (a cousin of VSE, also developed in Saarbriicken) provides a proof management for
heterogeneous specifications, relying on proof tools for the individual logics involved.

We give several institutional notions that will be used in the following sections.

Definition 3 An institution / has the weak amalgamation property if its category of signatures
has pushouts and moreover, given any span ¥ <— X — ¥, and any two models M; of X; with
the same X-reduct, there is a model M’ of X' that reduces to M;, where X’ is obtained from the
pushout Xy — ¥’ <— X, of the span.

Moreover, if such model exists uniquely, we say that / has the amalgamation property.

Structured specifications are then introduced independently of the underlying institution 1.
At the basic level we have I-theories (X,E) and CASL provides a number of structure-building
operations, taking a number of argument specifications and having a result a specification again.
For details see [26]. The semantics of specifications is model-theoretic, in the sense that each
specification SP is assigned the signature of the specification, Sig(SP), and the model class of
the specification, Mod(SP). Moreover, if p = (®, o, ) : I — J is an institution comorphism and
SP is a I-specification with Sig(SP) = X, we denote p (SP) the J-specification with Sig(p (SP)) =
®(X) and Mod(p(SP)) = {M' € Mod(P (X)) | B=(M') € Mod(SP)}.

Definition 4 Let SP and SP’ be two X-specifications and let e € Sen(X). Then:
e SP |=x e (SP logically entails e) if M |= e for any M € Mod(SP);
e SP~» SP' (SP refines to SP') if Mod(SP') C Mod(SP).

Definition 5 A comorphism p = (®,0,3): 1 —J
e has the model expansion property if each By is surjective on objects;

e admits borrowing of entailment if for any Z-specification SP and any X-sentence e, SP =4

e <= p(SP) Efy(sp) z(e):
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Figure 2: Architecture of VSE

e admits borrowing of refinement if SP, ~» SP; iff p(SP;) ~ p(SP,).

3 Presentation of VSE

The Verification Support Environment (VSE) is a tool that supports the formal development of
complex large scale software systems from abstract high level specifications down to the code
level. It provides both an administration system to manage structured formal specifications and a
deductive component to maintain correctness on the various abstraction levels (see Fig. 2). Taken
together, these components guarantee the overall correctness of the complete development. The
structured approach allows the developer to combine specifications in an algebraic functional
style with state-based formal descriptions of concurrent systems.

VSE has been developed in two phases on behalf the German Bundesamt fiir Sicherheit in der
Informationstechnik (BSI) to satisfy the needs in software developments according to the up-
coming standards ITSEC and Common Criteria. Since then, VSE has been successfully applied
in several industrial and research projects, many of them being related to software evaluation
[17, 4, 18, 9]. The models® developed with VSE comprise among others the control system of a
heavy robot facility, the control system of a storm surge barrier, a formal security policy model
conforming to the German signature law and protocols for chip card-based biometric identifica-
tion.

2 This use of the term “model” is in the sense of modeling, while the institutional use is in the sense of logic and
model theory, see Sect. 4.3.
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3.1 The VSE Methodology

VSE supports a development process that starts with a modular formal description of the sys-
tem model, possibly together with separate requirements or security objectives. Logically the
requirements have to be derivable from the system model. Therefore, the requirements lead to
proof obligations that must be discharged by using the integrated deductive component of VSE.

In a refinement process the abstract system model can be related to more concrete models.
This is in correspondence with a software development that starts from a high-level design and
then descends to the lower software layers such that in a sense higher layers are implemented
based on lower layers. Each such step can be reflected by a refinement step in VSE. These steps
involve programming notions in the form of abstract implementations, that can later be exploited
to generate executable code. Each refinement step gives rise to proof obligations showing the
correctness of the implementations. Refinements also can be used to prove consistency of speci-
fications, because they describe a way how to construct a model. This plays a major role for the
formal specifications required for Common Criteria, which only need to cover higher abstraction
levels.

In addition to the vertical structure given by refinement steps, VSE also allows the specifica-
tion to be structured horizontally to organize the specifications on one abstraction level. Each
single (sub)specification can be refined vertically or further decomposed horizontally, such that
the complete development is represented by a development graph. The deductive component is
aware of this structure. This is an important aspect for the interactive proof approach, as the
structure helps the user to prove lemmas or proof obligations that require properties from various
parts of the specification.

4 Institution of Dynamic Logic

VSE provides an interactive prover, which supports a Gentzen-style natural deduction calculus
for dynamic logic. This logic is an extension of first-order logic with two additional kinds of
formulas that allow for reasoning about programs. One of them is the box formula [o(]e, where o
is a program written in an imperative language, and e is a dynamic logic formula. The meaning
of [a]e can be roughly put as “After every terminating execution of @, e holds.”. The other new
kind of formulas is the diamond formula (a)e, which is the dual counter part of a box formula.
The meaning of (a)e can be described as “After some terminating execution of o, e holds”.

We will now describe the formalization of this dynamic logic as an institution, denoted CDyn™,
in detail, because this has not been done in the literature so far. Moreover, as stated in the
introduction, this step is crucial for turning VSE into an expansion card that can be plugged into
the HETS motherboard.

4.1 Signatures

The starting point for dynamic logic signatures are the signatures of first-order logic with equality
(FOL~) that have the form Xror- = (S, F, P) consisting of a set S of sorts, a family F' of function
symbols and a family P of predicate symbols. Because we need to name procedures, we add
an §* x S*-sorted family PR = (PR,,,),wes- of procedure symbols, leading to signatures of the
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form X = (S, F, P, PR). We have two separate lists v and w of the argument sorts of the procedure
symbols in PR,,,, in order to distinguish the sorts of the input parameters (v) from those of the
output parameters (w). In VSE syntax, the input parameters of the procedures are preceded by
IN and the output parameters, by OUT. In the case of functional procedures, since all parameters
except the last are input parameters, these annotations are not present. When the string of output
parameters consists of just one sort s, we can mark some of the procedures of PR, as functional
procedures and we denote this subset as FP, ;.

A signature morphism between two signatures maps sorts, operation symbols, predicate sym-
bols and procedure symbols in a way such that argument and result sorts are preserved. Also,
signature morphisms are required to map functional procedures to functional procedures.

Moreover, it is assumed that all signatures have a sort Boolean together with two constants
true and false on it and this subsignature is preserved by signature morphisms.

4.2 Sentences

Let £ = (S,F,P,PR) be a dynamic logic signature with PR = (PR,,,,)ywes+. The variables will
be taken from an arbitrary but fixed countably infinite set X which is required to be closed under
disjoint unions.

First we define the syntax of the programs that may appear in dynamic logic formulas. The
programs contain X-terms, which are predicate logical terms of (S, (F, s UF P, )yes* scs,P), 1.e. in
addition to variables and function symbols we allow symbols of functional procedures to occur
in these terms. The set Py of X-programs is the smallest set containing:

e abort

e skip

e X =1

o declarex:s=7

e declarex:s=7?

° (x;B

o ifcthenoelseffi

e whileedo aod

® PX1, X2, X3 V1, Y25 5 Vm) s

where x,x1,x7,...,x, € X are variables, y,ys,...,y, € X are pairwise different variables, 7 a X-
term of sort s, € a boolean X-formula (i.e. a X-formula without quantifiers, boxes and diamonds)?,
o, B € Pg, p a procedure symbol, such that the sorts of x1,...,X,,y1,...,y, match the argument
and result sorts of p. Moreover, in the case of functional procedures, programs also contain
return 7, where 7 is a term of the result sort of the functional procedure.

3 This restriction is motivated by the straightforward translation of such formulas into program expressions.
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These kinds of program statements can be explained informally as follows: abort is a program
that never terminates. skip is a program that does nothing. x := 7 is the assignment. declarex :
s = 7 is the deterministic form of a variable declaration which sets x to the value of 7. Its
nondeterministic form varx : s =? sets x to an arbitrary value.* Notice that the nondeterministic
declaration can not be used for functional procedures. ;3 is the composition of the programs
o and B, such that « is executed before . The conditional if € then o else  fi means that o is
executed if € holds, otherwise f3 is computed. The loop while € do & od checks the condition &€,
in case of validity executes o and repeats the loop. Finally, p(xi,x2,...,%;¥1,Y2,...,Ym) calls
the procedure p with input parameters x1,xz,...,x, and output parameters yi,yz,. .., Vm-

There are three kinds of sentences that may occur in a X-dynamic logic specification.

1. The set of dynamic logic X-formulas is the smallest set containing

e True and False
e the (S, F, P)-first-order formulas e;

e for any dynamic logic X-formulas e, e, e, any variable x € X, any sort s € S, and any
Y-program « the formulas [ale, ()e and —e, e; Ae; and Vx : s.e;

2. Procedure definitions are expressions of the form:

defprocs
1 11 1
procedure pri(x;, ..., X, ,Vis-- >V, )01

k kok k
procedure pri(Xy, . .., X, Vis- -+ Vi, ) Ok
defprocsend

where pr; € PR, ,, for some vi,w; € §*, x{,... ,xl,,yi,..., ¥}, are variables of the corre-
sponding sorts in v;, w;, and ¢; € Py is a X-program with free variables from

{x"l,...,xﬁli, y"l, cee, yﬁni}. Notice that in VSE the functional procedures are written using
function rather than procedure and without a formal output parameter; to simplify nota-
tion, we will ignore this in this section.

3. Restricted sort generation constraints express that a set of values defined by restriction
procedure can be generated by the given set of procedures, the constructors. Syntactically
a restricted sort generation constraints takes the form

generated types
spa=pl o )pA()) . | pL(.. . ) restricted by r! |

se = ph )RS (D)) [ PA( - ) restricted by

where s; are sort symbols, pi....,p;, are functional procedure symbols, the dots in pi(...)
etc. have to be replaced by a list of the argument sorts, and ' is a procedure symbol taking
one argument of sort s;.

4 In VSE one can also declare more than one variable in a declare list; for simplicity we restrict to the case of a single
variable.
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In order to make the satisfaction condition hold, we formally define a sort generation con-
straint over a signature X as a tuple (S', F', PR’,0), where 6 : Xy — £, Xy = (S0, Fo, Py, PRy),
S' C Sy, F' C Ky and PR’ C PRy such that in PR’ there is a restriction procedure r; for any
sort s; in 5.

For any signature morphism o : ¥ — ¥/, the translation of X-sentences along ¢ is done by
translating each symbol according to the sort, operation symbol, predicate symbol and proce-
dure symbol mappings respectively. In the case of quantified sentences, VX.e gets mapped to
VX'.o(e), where for any sort s’ of X', X/, is defined as the disjoint union of X, for all s such that
o(s) = s'. The translation of a sort generation constraint (S, F/, PR’,0) over X along o is defined
as (S',F',PR',0;0).

4.3 Models

Let £ = (S,F,P,PR) be a dynamic logic signature with F = (F,s)wes- ses, P = (Py)wes, PR =
(PR, )vwes+- A (dynamic logic) X-model M maps each sort symbol s € S to a carrier set M,
each function symbol f € F,, to a total function My : M,, — Mj, each predicate symbol p € P,
to a relation M, C M,, and each procedure symbol pr € PR,,, to a relation M,, C M, X M,,
where M(y, .y denotes My, x My, X ... x M, for (s1,s2,...,s,) € S*. Functional procedures are
required to be interpreted as total functions over their domain. Thus, such a model can be viewed
as a CFOL™ structure extended with the interpretation of procedure symbols.

For any signature morphism ¢ : £ — ¥/, the reduct M’|s of a X’-model M’ interprets x as the
interpretation of o (x) in the original model, where x can be either a sort, a function symbol, a
predicate symbol or a procedure symbol.

4.4 Satisfaction of Dynamic Logic Formulas

Semantics is defined in a Kripke-like manner. For a given signature ¥ and a X-model M the
(program) states are variable valuations, i.e. partial functions taking sorted variables x : s to
values of M where s is a sort of ¥ and x € X. We assume that for each sort there is a designated
output variable for storing the return values of functional procedures; let us denote that variable
0.

First, we need to define the interpretation of a term 7 in a model M and a state g. Notice that
because the states are partial, the interpretation can be undefined. The interpretation of terms is
then done as usual inductively on the structure of terms:

e if T is a variable x : 5, then T := g(x : 5) (i.e. the value of the variable x : s in state ¢
when defined and undefined otherwise);

o if T=f(1),...,7,) and f € F,,5 or f € FP,, then T4 := Mf(fiw’q,...,r,f/[’q), and unde-
finedness of any of the TzM 1 is propagated;

The semantics of a program ¢ with respect to a model M is a predicate _[o]" _on two program
states. g[a]™r can be read as: If o is started in state ¢ it may terminate after having changed the
state to r.
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e g[skip]”q

e not g[abort]r

o g[x:=1]Mr < r=glx:s+ ™) and ™1 is defined, where s = sort(7)
e g[[x := 7] does not hold for any r if T4 is not defined

o g[a;B]Mr < for some state s : g[a]”s and s[B]Mr

e g[declarex: s = t]Mr < g[x := t]Mr

e g[declarex: s = ?]Mr < for some a € s" : r = g[x + d]

e g[ifethencelse B fi]¥r < (g |= € and g[a]r) or (¢ = —¢& and q[B]r)
o g[whilecdo ccod]”r < g([if ¢ then o elseskipfi]”)*r and r = —¢

o qlpr(xi,-...xyt, o ym)IMr & pru(g(xr), -, q(a)ir(v), - r(vm))

e g[returnt]r & r = glo: s < t™4], where o is the output variable of sort sort(7)

where for any program o, ([a]™)* is the reflexive transitive closure of the relation [o]¥, and
q(y) ify#x

) , T is a X-term without predicate
a ify=ux

the state g[x <— a] is defined as g[x < a](y) = {

symbols and T+ is the evaluation of the term T with respect to the model M and state g.
We define satisfaction on a model M and a program state r as follows:

e M,r = True and M, r ~ False

e M,r=p(t,...17,) & foralli=1,...,n, TiM’r isdeﬁnedande(ff/I’r,...,f,[l”’r)
eMrETn=n% 1{” T = Té‘/[ " and interpretation of both terms in the state r is defined
e Miri=—esMrite

e Mir=eNd & M,ri=eand M,r=¢

e Mir=eve &M,r=eorM,ri=¢

o M,r=Vx:sesforallae My: M,rix:s<all=e

e M,r = [at]e < for all program states g with r[a]Mg: M,q = e

The formula (a)e is to be read as an abbreviation for —[ct|—e. Finally a formula e holds on a
model M (M = e), if for all program states r it holds on M and r (M, r = e).
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4.5 Satisfaction of Procedure Definitions

The procedures in our model will not have any side effects (except for modifying the output
parameters).

Unwinding a procedure call by replacing it by the body of the procedure and substituting the
formal parameter variables by the actual parameters should not change the result of a program.
Therefore, for a signature X, a ¥-model M is a model of a procedure declaration without recursion

defprocs
1 1l 1
procedure pri(xy, ..., X, ,Vi;---, Yy, )01

k ko k k
procedure pri(Xy, . .., X, Vs« Vi, ) Ok
defprocsend

if

M =Xy, .. X, T

g o Pmy -

(pr(xl, .. Xy, Y = A Ay =) & () = A A, =1

holds for any i = 1...k. Abbreviating the procedure declaration as I, we then write M |=1IL

Unfortunately, in the presence of recursion this does neither make the procedure definitions
non-ambiguous, nor compliant with conventional semantics of programming languages. There-
fore, from several models complying with the definitions, the minimal model (with respect to
some order) will be chosen. The order compares the interpretations of the procedures symbols,
such that the order relation M| <11 M, holds for two models M| and M, for the same signature
Y. = (S,F,P,PR) iff prﬁ”l C prle for all procedure symbols pr, and the interpretations of sort,
function, predicate symbols and procedure symbols which are not part of IT are identical. More-
over, we say that a model M, is a [1-variant of M, written M, =M, if My and M, agree on the
interpretations of all symbols except possibly the procedure symbols in IT. Then we define that
the satisfaction of a procedure declaration IT by M as follows:

M =11 iff M|=TI and for all IT-variants M’ of M, M’ |[=11 implies M <p M'.

4.6 Satisfaction of restricted sort generation constraints
A restricted sort generation constraint (', F’, PR', 6) written as

generated typess; = p’(...)|p5(...)|...|p.(...) restricted by r' |
is said to hold in a model M, if the subset of the carrier (M|g),, on which the restriction pro-
cedure ' terminates is generated by the functional procedures p', pb, ... p!, (called constructor
procedures). In more detail: for each element a of (M|g)y such that M|g,q = (r'(x))true when
q is a state such that g(x) = a, there must by a term 7 built with constructor procedures only and
having no free variables of sorts s; and a state v such that v is defined only for variables of sorts
distinct from the s; and that 7l = g holds.
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4.7 Satisfaction condition

Proposition 1 Ler X = (S,F,P,PR) and X' = (S',F’,P',PR’) be two dynamic logic signatures,
0 : X — Y a signature morphism, M' a ¥'-model and e a X-sentence. Then:

M Eo(e) < M, e

Proof.
We prove the satisfaction condition by case distinction on e.

1. e is a dynamic logic formula.

In this case, we prove by induction over e that M',¢' |= 6(e) <= M'|s,!'|s |= e, where
for any state ¢’ for £’ and M’, we define the state ¢'|s for £ and M'|s by taking ¢'|s(x : 5) =
t(x: o(s)) for each sort s of X. The proof is pretty much routine, the interesting case being
when e is of form [@]e’. Let us denote M = M’ | .

We begin with a lemma:

Lemma 1 For any state t’ for ¥’ and M', any state q for ¥. and M and any X-program q,
t'|s[a)Mq iff there is a state ¢’ such that {'[6(o)[M ¢ and ¢|s = q.

which can be proven by induction on &, by making use of the fact that the variables used
in o are bijectively renamed in the states g and ¢'.

Let ¢’ be a state for ¥’ and M’ such that M",t' = o ([]e’). By definition this means that for
any state p such that /[o(a)]™ p/, M',p' |= 6(¢'). Let ¢ be a state such that #'|[a]q.
We need to prove that M, g |= ¢’. Using Lemma 1, there is a state ¢’ such that #'[o(a)[M ¢/
and ¢'|c = q. By the hypothesis we get that M’,¢' = o(¢’). By the inductive hypothesis
for ¢/, we obtain M,q'|s |= €. Since ¢'|s = g, this means M, g |= €. Since g was arbitrary
such that #'|[a]¥ g, we obtain M,¢'|5 = [at]e.

For the reverse implication, let 7’ be a state for ¥’ and M’ such that M,t'|s = [a]e’. By
definition this means that for any state p such that ¢'|s[a]Y p, M, p = €. Let ¢’ be a state
such that //[o(a)[M¢/. By Lemma 1 we get ¢'|s[a]M¢|s. By the hypothesis we get that
M,q | = €. By the inductive hypothesis for ¢’ we get that M, ¢' = 6(€’) and since ¢’ was
arbitrary, by definition M’,¢' = [o(a)]o(€).

2. eis a procedure definition.

We first prove the following lemma:

Lemma 2 Let 6 :X — Y/, let Il be a procedure definition in ¥ and let N be a ¥'-model,
and let M = N|s. Then

N <g(y N' for any o(I1)-variant N' of N such that N' |= o (1)
iff M < M’ for any O-variant M’ of M such that M' | =1L
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Proof: For the left to right implication, assume for a contradiction that M is not minimal
amonyg its -variants satisfying I1. Then there exists a Il-variant of M, M°, satisfying T1
such that M <y M°. We define a -expansion N° of M° by interpreting all symbols outside
I1 as in the model N and taking Ng( x = M_? for any procedure 7 defined in T1. The well-

definedness is ensured by M |[=T1 and moreover, by the satisfaction condition we get that
N |[= o(I0). Since N ZLo(m) NO, we get a contradiction with the minimality of N.

For the right to left implication, assume for a contradiction that N is not minimal. Then
there exists a o (I1)-variant of N, denoted N° such that N Lx(m) NO. Let M° := N°|. By the
satisfaction condition we get M° | =T1. By definition of reduct it follows that MY = Ng( )

and since My = Ng(zy we get M £11 M which contradicts the minimality of M.
O

The satisfaction condition follows from the definition of the model reduct for procedure
symbols (which ensures minimality) and from Lemma 2.

3. e is a restricted sort generation constraint.

The satisfaction condition is obvious.

5 Refinement

The methodology of formal software development by stepwise refinement describes the ideal
process (which in practice is more a loop with continuous feedback) as follows: starting from
initial informal requirements, these are translated to a formal requirement specification, which is
then further refined to a formal design specification and then to an executable program.

Simple refinements between specifications can be expressed as so-called views in CASL, which
are just specification morphisms: given two structured specifications SP; and SP, such that
Sig(SP,) = X; and Mod(SP,) = .#;, for i = 1,2, a specification morphism ¢ : SP, — SP, is a
signature morphism o : £; — X, such that M|s € .#, for any model M € .#,. The degree of
looseness diminishes along a refinement (technically, the model class shrinks). For more com-
plex refinements involving architectural decompositions (i.e. branching points in the emerging
refinement tree), a refinement language has been designed [25]. Sometimes (e.g. when refining
arrays to stacks with pointers), an observational interpretation of specifications is needed. This
means that values exhibiting the same observable behavior are identified (that is, observational
congruence is generated implicitly). This has been developed in theory to some degree [6, 29],
but not implemented in HETS yet. By contrast, the VSE specification language supports a re-
finement approach based on explicit submodels and congruences [28], an idea that dates back to
Hoare [15]. This more specific and simpler approach has been successfully applied in practice,
and moreover, it is linked with a mechanism for generating code in imperative programming
languages like Ada or C. Hence, integrating this approach into HETS brings considerable advan-
tages.

VSE’s refinements associate an abstract data type specification, called the export specifica-
tion of the refinement, with an implementation. The implementation is based on another theory,
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called the import specification and contains several functional procedures written in an impera-
tive language. These procedures use the functions and predicates of the import specifications. A
so called mapping relates each sort of the export specification to a sort of the import specification,
while the functions and procedures are mapped to procedures in the import specification.

A refinement describes the construction of a model for the signature of the export specification
(export model) from a model of the import specification (import model). The functions and pred-
icates are interpreted by the computations of the procedures. The elements of the carrier sets of
the export model are constructed from the carrier sets of the import model. The implementations
are allowed to represent a single value in the export specification by several values of the import
specifications. For example, when implementing sets by lists, a set might be represented by any
list containing all elements of the set in any order. Furthermore, VSE does not require that all
values of a sort in the import specification really represent a value of the export specification. In
the example below where we will implement natural numbers by binary words, we will exclude
words with leading zeroes. In order to describe the construction of the carrier sets, the refinement
contains two additional procedures for each sort: a procedure defining a congruence relation and
a procedure defining a restriction. The restriction terminates on all elements that represent export
specification values. The congruence relation determines the equivalence classes that represent
the elements of the export model.

We can express this formally as in the following definition:

Definition 6 Let SP be a CFOL™-specification and SP’ a CDyn™-specification. Then SP’ is a
refinement of SP, denoted SP~+ysg SP/, if for all M € Mod“P (SP'), (M) /= € Mod“F°L (SP),
where (M) /= denotes the model obtained from M by restricting the elements of each sort accord-
ing to the restriction procedures and taking the quotient to the congruence relation. °

Note that the definition of refinement is given in terms of semantics. The VSE system gener-
ates proof obligations that are sufficient for guaranteeing that a CDyn™-specification is indeed a
refinement of a CFOL™-specification using only syntactical deduction.

6 VSE Refinement as an Institution Comorphism

When integrating VSE and its notion of refinement into HETS, a naive approach would extend
HETS with a new notion of restriction-quotient refinement link in HETS, and would extend both
the HETS motherboard and the expansion slot specification in a way that makes it possible to
deal with such refinement links. VSE easily could be turned into an expansion card that is able
to prove these refinement links.

However, this approach has a severe disadvantage: the specification of expansion slots needs
to be extended! If we did this for every tool that is newly integrated into HETS (and every tool
comes with its own special features), we would quickly arrive at a very large and unmanageable
expansion slot specification.

Fortunately, the heterogeneity of HETS offers a better solution: we can encode VSE refinement
as ordinary refinement in HETS, with the help of an institution comorphism that does the actual

5 For a definition of quotients of first-order models, see [29].
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restriction-quotient construction. With this approach, only the HETS logic graph needs to be
extended by a logic and a comorphism; actually, we will see that two comorphisms are necessary.
That is, we add two further expansion cards doing the work, while the logic-independent part of
HETS, i.e. the motherboard and the expansion slot specification, can be left untouched!

6.1 The Refinement Comorphism

We model the refinement notion of VSE by a comorphism from the CASL institution CFOL™ to
the VSE institution CDyn™. The intuition behind it can be summarized as follows. At the level
of signatures, for each sort we need to introduce procedure symbols for the equality relation and
for the restriction formula together with axioms specifying their expected behaviour, while for
function and predicate symbols, we need to introduce procedure symbols for their implemen-
tations. For all these symbols, we assign no procedure definition but rather leave them loosely
specified; in this way, the choice of a possible implementation is not restricted. The sentence
translation is based on translation of terms into programs implementing the representation of
the term. The model reduct performs the submodel/quotient construction, leaving out the values
that do not satisfy the restriction formula and quotienting by the congruence generated by the
equality procedure.

We now define the simple theoroidal comorphism CASL2VSERefine : CFOL™ — CDyn™.
Each CASL signature £ = (S,F,P) is mapped to the CDyn™ theory ((S,0,0,PR),E), denoted
®(X). PR contains (1) for each sort s, a symbol restr_s € PRy, ) for the restriction on the sort
and a symbol eqy € PR ) (Boolean] fOr the equality on the sort and (2) for each function symbol
fiw—s€F,, asymbol gn_f :w— s € PR, |, and for each predicate symbol p : w € P, a
symbol gn_p : w — [Boolean] € PR, yojean)-

The set of axioms E contains sentences saying that for each sort s, (1) eg, is a congruence
and it terminates for inputs satisfying the restriction and (2) the procedures that implement func-
tions/predicates terminate for inputs satisfying the restriction and their results also satisfy the
restriction. These properties are to be proven when providing an actual implementation. The
general pattern of the translation is presented in Fig. 3, which gives the symbols and the sen-
tences introduced in the resulting VSE theory for each symbol of the CASL theory that is trans-
lated. Notice that to improve readability, we only considered the case of unary function/predicate
symbols; the generalization to symbols of arbitrary arity is obvious.

A CAsL signature morphism o : £ — ¥/ is mapped to the CDyn™ morphism ®(o) : (X)) —
®(X') which works like ¢ on sorts and procedure symbols corresponding to function/predicate
symbols in X and for each sort s of X maps eq; to eq (5 and restr; to restrgy).

Given a CASL signature £ = (S, F, P) and a model M’ of its translation ®(X) = ((S,0,0, PR),
E), we define the translation of M’ to an (S, F, P)-model, denoted M = By (M’). The interpretation
of a sort s in M is constructed in two steps. First we take the subset M,.s, s C M} of elements,
for which the restriction predicate holds. Then we take the quotient M,.y, /= according to
the congruence relation = defined by egs, such that for all a,b € M}, a = b is equivalent to
Mt |= {eqs(x1,x2;y))y = true whenever ¢ is a state such that (x;) = a and ¢(x;) = b. For
each function symbol f, we define the value of My in the arguments ay,...,a, to be the value
returned by the call of procedure Mén,f on inputs ai,...,a,, that is My(ai,...,a,) = b if and
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CASL VSE VSE sentences
sort s (restrs(x))true A (restrs(y))true = (eqs(x,y;e))true
sort s eqs € PRisq [Boolean] | (restrs(x)true) = (eqs(x,x;e))e = true
restrs € PRy | (restrg(x))true A (restrs(y))true A (eqs(x,y;e))e =true =
(eqs(y,x;e))e =true
(restry(x))true N (restrs(y))true N (restrs(z))true A
(eqs(x,y;e)e = true N (eqs(y,z;€))e = true =
(eqs(x,z;€))e =true
feF gn-f € PRy (restrg(x))true A (restrs(y))true A\ (eqs(x,y;e))e =true =
! (vl = gn_f(x)) (32 := gn_f(y))(eqi(y1,y2;¢))e = true
(restrs(x))true = (gn_f(x;y))(restr;(y))true
pEP P € PRy [Boolean] (restrg(x))true A (restrs(y))true A\ (eqs(x,y;e))e =true =
’ (gn_p(x;r1))(gn_p(y;r2))rl = r2
(restrs(x))true = (gn_p(x;e))true

Figure 3: Summary of the signature translation part of the comorphism CASL2VSERefine (for
simplicity, only unary symbols are shown).

only if M’ .t |= (gn_f(x1,...,x;y))y = z when 7 is a state such that7(x;) = a; foranyi=1,...,n
and #(z) = b. Axioms (1) and (2) in E ensure that My is total and well-defined. Similarly
and using the same notations, for each predicate symbol p, M,(ai,...,a,) holds iff M' 1 |=

(gn-p(x1,...,%s3Y))y =true.
Proposition 2 The model translation is natural.

Proof. Follows easily from definition of the model translation and the definition of model
reducts. O

Sentence translation is based on translation of terms into programs that compute the represen-
tation of the term. Basically, each function application is translated to a procedure call of the
implementing procedure, and new output variables are introduced:

e a variable x is mapped to x := x, where the left-hand side x is the output variable and the
right-hand side x is the logical variable;

e aconstant ¢ is mapped to gn_c(;y), where gn_c is the procedure implementing the constant
and y is a new output variable;

e aterm f(t1,...,t,) is mapped to o;... 0 a:=gn_f(y1,...,yn), where o is the translation
of ¢; with the output variable y; and a is a new output variable.

Then the sentence translation is defined inductively:
e an equation t; = ¢, is translated to

(an); (0n); (eqs(y1,y2;y))y = true
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where ¢ is the translation of the term #;, with the output variable y;

e a predicate application p(ti,...,,) is translated to

(o) ... () (gn-p(y1,...,yu3¥))y = true
where ¢; is the translation of the term #;, with the output variable y;

e Boolean connectives of formulas are translated into the same connections of their trans-
lated formulas;

e for universally and existentially qualified formulas one also has to make sure that the bound
variables are assigned a value that satisfies the restriction: e.g Vx : s.e gets translated to
Vx @ s.(restrs(x))true = a(e), where we denoted with (e) the translation of e.

An example of how a CASL sentence is translated along the CASL2VSERefine comorphism
will be introduced in the next section in Fig. 6.

Sort generation constraints are translated to restricted sort generation constraints over im-
plementing procedures. For example, assume we have in the abstract specification of natural
numbers a sort generation constraint:

generated type nat ::= 0 | suc (nat)

Then in the VSE theory resulting from translation along comorphism, the restricted sort genera-
tion constraint

generated typenar ::= gn_0 | gn_suc(nat) restricted by restr_nat .

is introduced, where gn_0 and gn_suc are the procedures implementing the constructors and
restr_nat is the restriction procedure symbol on sort nat.

Proposition 3 The sentence translation is natural.

Proof. Follows easily by induction on sentences and by noticing that for any CASL signature
morphism ¢ : £ — X' and any X-term ¢ we have that the program computing the representation
of o(t) is the o-image of the program computing the representation of 7. O

Lemma 3 Let ¥ be a CFOL™-signature and let M' be a model of the theory ®(X). Denoting
M = Bz (M) we have that for any X-term t and any state q for ®(X) and M', M; = a iff M’ ,q |=
(as(t))y = z, where y the output variable of oz (t) and z is a variable such that q(z) = a.

Proof: Follows by induction on the structure of the term 7. O
Theorem 1 The satisfaction condition for the comorphism CASL2VSERefine holds.

Proof: The proof follows by induction on the structure of sentences and making use of Lemma
3. O
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Notice that this construction follows very faithfully the steps of the refinement method of
VSE, as described in section 5. The export specification of VSE is a first-order specification
that we can translate along the comorphism CASL2VSERefine to generate the same kind of proof
obligations that VSE would generate to prove correctness of a refinement. The difference is that
now they are built using abstract (i.e. loose) procedure names and actual implementations are
to be later plugged in by means of a view which corresponds to the VSE mapping, with the
exception that instead of pairing export specification symbols with implementations, the view
rather pairs abstract procedures with implementations. Moreover, the correctness of the view
ensures us that a model of the implementation reduces along the signature morphism induced
by the view to a model of the translation of the original export specification, that we can further
translate along the comorphism to obtain a model of the export specification. Thus we achieve
that the model semantics of the refinement in VSE [1] and of the refinement expressed using the
comorphism CASL2VSERefine coincide.

Definition 7 Let [ an J be two institutions, p = (¢, a, ) : I — J be an institution comorphism.
Let SP be a I specification and SP’ be a J specification. We say that SP’ is a heterogeneous
refinement of SP along p if for each M € Mod’ (SP'), B(M) € Mod' (SP).

Our result can be formulated as follows:

Theorem 2 Let SP be a CASL specification and SP' a VSE specification. Then SP ~»ysg SP’
iff SP' is a heterogeneous refinement of SP along CASL2VSERefine.

We can now show that the proof calculus for heterogeneous development graphs, combined
with the VSE prover, can be used for discharging refinement proof obligations in a sound way.
The following two lemmas follow easily:

Lemma 4 The institution CDyn™ has the amalgamation property.
Proof idea: Similar to the proof for first-order logic, see for example [12].
Lemma 5 The comorphism CASL2VSERefine admits model expansion.

Proof: For any CF OL~ signature X and each X-model M, we build a ®(X)-model by interpret-
ing sorts s as My, functions gn_f like My, predicates gn_p as M, the equality as the set-theoretical
equality and the restriction as always returning ¢rue. It is easy to see that the model such built
satisfies the axioms of ®(X) and it reduces via s to M. O

Notice that in VSE we do not have hiding as a structuring operation, and therefore all specifi-
cations are flattenable (see e.g. [29]). The following corollary follows then directly from Lemma
5 and a result from [21].

Corollary 1 The comorphism CASL2VSERefine admits borrowing of entailment and of refine-
ment.

Unfortunately, we cannot expect completeness here, because first-order dynamic logic is not
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finitely axiomatisable [7].

6.2 Structuring in Context of Refinement

Consider a refinement from an abstract to a refined specification where a theory of a library
(e.g. the natural numbers) or a parameter theory that will be instantiated later occurs both in the
abstract and the refined specification. Such common import specifications should not be refined,
but rather kept identically — and this is indeed the case in VSE.®

To handle this situation in the present context, the import of a first-order specification into
a dynamic logic specification is not done along the trivial inclusion comorphism from CFOL™
to CDyn~ — this would mean that the operations of the import need to be implemented as
procedures. Instead, we define a comorphism CASL2VSEImport : CFOL™ — CDyn™, which,
besides keeping the first-order part, will introduce for the symbols of the import specification
new procedure symbols, similarly to CASL2VSERefine. Namely each CF OL~ signature (S, F, P)
is translated to the CDyn™ theory ((S, F, P, PR), E) where PR is the same as in the definition of the
translation of (S, F, P) along CASL2VSERefine and E contains the following types of sentences:

e for each sort s € S, sentences giving implementations for the restriction and the equality
of s, as follows:

PROCEDURE restr(x)
BEGIN SKIP END;

and respectively

FUNCTION eg;(x,y)
BEGIN IF x =y THEN RETURN True
ELSE RETURN False FI END;

with the intuitive meaning that no element of the sort is restricted and the equality on the
sort is defined as the (meta-)equality on the interpretation of the sort;

e for each operation symbol f € F;_,;, a sentence giving the implementation of the corre-
sponding procedure symbol gn_f € PR :

FUNCTION gn_f(x)
BEGIN DECLARE y :7:= f(x); RETURN y END;

which means that the implementation of the functional procedure for f returns as result
exactly the value f(a) for each input a;

o for each predicate symbol p € P, a sentence giving the implementation of the correspond-
ing procedure symbol gn_p € PR, (Boolean):

FUNCTION gn_p(x)
BEGIN DECLARE Yy : Boolean := p(x); RETURNyEND;

6 This resembles a bit the notion of imports of parameterized specifications in CASL [26], where the import is shared
between formal and actual parameter and is kept identically.
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again with the meaning that the functional procedure gn_p is implemented as returning
true only on those inputs that make the predicate p hold.

The result of choosing these implementations is that the sorts are not restricted, the congru-
ence on each sort is simply the equality and the functional procedures introduced for opera-
tion/predicate symbols have the same behavior as the original symbols, i.e. give the same re-
sults on same inputs. Also notice that the signature morphisms translation of the comorphism
CASL2VSEImport is the straightforward one, the translation of CASL sentences along the co-
morphism is simply the identity, and the models can be reduced in an obvious way by simply
forgetting the interpretations of procedure symbols. The satisfaction condition of the comor-
phism follows immediately.

(CASL,Nat)
/ \%\/_&‘E[mport
(CASL,Abstr) CASLIvSERane (VSE,Impl)

Figure 4: Common import.

For example, let us consider the situation in Fig. 4, where the natural numbers are imported
both in the abstract and the concrete specification and the (heterogeneous) refinement link is
represented by the double arrow. The label CASL2VSEImport on the right arrow indicates that
Nat is translated via the import comorphism before being imported in /mpl. We can assume
for simplicity that Nat has only a sort nat and then in Impl we have procedure symbols for
identification and restriction on nat, together with procedure definitions saying that no element
is restricted and the identification procedure is simply equality.

On the other side, when Abstr is translated along the refinement comorphism to CDyn™, no
distinction between the sorts defined in Abstr and the imported ones is made, so in the resulting
translated theory we will have symbols for the restriction on sort nat and for identification. These
symbols are then mapped identically by the CDyn™-signature morphism that labels the refine-
ment and since in /mpl no restriction and no identification on nat is made, the quotient on nat is
trivial. For any function/predicate symbols from Nat we would get the same behavior: the default
implementations provided by CASL2VSEImport act only as wrappers for functions/procedures,
without changing their values, and therefore the imported specification symbols are kept identi-
cally.

7 Example: Implementing natural numbers by binary words

As an example, we present the implementation of natural numbers as lists of binary digits,
slightly abridged from [28].7 The abstract CASL specification, NATS (introduced in Fig. 5),

7 The complete example can be found at https:/svn-agbkb.informatik.uni-bremen.de/Hets-
lib/trunk/Refinement/natbin_refine.het.
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is the usual specification of natural numbers with 0, successor and addition with the Peano ax-
ioms. Notice that the predecessor function is defined to take zero_n to zero_n; this is because in
VSE there are no partial functions. In Fig. 6 8, we present a fragment of the theory obtained by
translating NATS along the comorphism CASL2VSERefine: the resulting signature and the trans-
lation of the first axiom - the other three translated axioms and the sentences introduced by the
comorphism are similar.

spec NATS = sort nats

free type PROCEDURES

nats ::= zero_n | succ_n(nats) gn_add_n : IN nats, IN nats — nats,

op zero_n: nats gn_eq_nats : IN nats, IN nats — Boolean;
op  succ.-n: nats — nats gn_prdc_n : IN nats — nats,

op prdc_n: nats — nats gn_restr_nats : IN nats;

op add.n:nats X nats — nats gn_succ_n : IN nats — nats,

vars m, n: nats gn_zero_n : — nats

e prdc_n(zero_n) = zero_n Y gnx0 : nats; gn_xI : nats; gn_x2 : nats;
e prdc_n(succ_n(m)) = m gn_x3 : Boolean

e add_n(m, zeroon) =m o <:gn_xl := gn_zero_n;

o add n(m, succ_n(n)) gn_x0 := gn_prdc_n(gn_xl1);

= succ_n(add_n(m, n)) gn_x2 := gn_zero_nm;

end gn_x3 := gn_eq_nats(gn_x0, gn_x2).>

gn_x3 = (op True : Boolean)

Figure 5: CASL specification of natu- Figure 6: Natural numbers translated along the
ral numbers. comorphism CASL2VSERefine.

The VSE implementation, NATS-IMPL (Fig. 7), provides procedures for the implementation of
natural numbers as binary words, which are imported as data part along CASL2VSEImport ° from
the CASL specification BIN (here omitted). We illustrate the way the procedures are written with
the example of the restriction procedure, nlz, which terminates whenever the given argument has
no leading zeros. The implementation of the other procedures is similar and therefore omitted.
Notice that the equality is in this case simply the equality on binary words.

Fig. 8 presents the view BINARY_ARITH expressing the fact that binary words, restricted to
those with non-leading zeros, represent a refinement of natural numbers, where each symbol of
NATS is implemented by the corresponding procedure in the symbol mapping of the view.

In Fig. 9, we present some of the proof obligations introduced by the view. The resulting
development graph is displayed in Fig. 10, where the double arrows correspond to translations
along comorphisms and the red arrow is introduced by the view. Notice that these proof obli-
gations are translations of the sentences of the theory presented in Fig. 6 along the signature
morphism induced by the view. The first two sentences that we included here are introduced

8 HETS uses <: o :> ¢ as input syntax for (a)¢.
9 The HETS construction SP with logic C translates a specification SP along the comorphism C.
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spec NATS_IMPL =
BIN with logic CASL2VSEImport
then PROCEDURES
hnlz : IN bin; nlz : IN bin; i_badd : IN bin, IN bin, OUT bin, OUT bin;
i_add : IN bin, IN bin — bin; i_prdc : IN bin — bin;
i_succ : IN bin — bin; i_zero : — bin; eq : IN bin, IN bin — Boolean
e DEFPROCS
PROCEDURE hnlz(x)
BEGIN
IF x = b_zero THEN ABORT
ELSE IF x = b_one THEN SKIP ELSE hnlz(pop(x)) FI
FI
END:;
PROCEDURE nlz(x)
BEGIN IF x = b_zero THEN SKIP ELSE hnlz(x) FI END
DEFPROCSEND
%% ...

Figure 7: Implementation using lists of binary digits.

view BINARY _ARITH : { NATS with logic CASL2VSERefine } to NATS_IMPL =
nats — bin, gn_restr_nats — nlz, gn_eq_nats — eq,
gn_zero_n v i_zero, gn_succ_n — i_succ, gn_add_n — i_add

Figure 8: Natural numbers as binary words.
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% % Proof obligations introduced by the view
% % equality procedure terminates on valid inputs
YV gn_x, gn_y : bine <:nlz(gn_x):> true \ <:nlz(gn_y):> true
= <:gn_b:=eq(gn_x, gn_y):> true
% % procedure implementing addition terminates and gives valid results on valid inputs
V gnxl, gnx2 : bin e <:nlz(gn_x1):> true N\ <:nlz(gn_x2):> true
= <:gn.x:=i_add(gnxl, gnx2):> <:nlz(gn_x):> true
% % translation of : forall m : nats . add_n(m, zero_n) = m
V gnx0, gnxlI, gnx2, gn_x3 : bin; gn_x4 : Boolean,;
m : bin
o <:nlz(m):> true
= <:gnxl :=m;
gn_x2 :=1i_zero;
gnx0 :=i_add(gn_xl, gn_x2);
gn_x3 :=m;
gnx4 := eq(gn_x0, gn_x3):>
gn_x4 = (op True : Boolean)

Figure 9: Generated proof obligations

X O uD 31.1-D Graph for in_refine ©0 ®

File Edit View Navigation Abstraction Layout Options Help

EAES

Gl NSV

Figure 10: The development graph of natural numbers example
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by the signature translation of the comorphism and state that (1) equality terminates on inputs
for which the restriction formula n/z holds and (2) the procedure implementing addition, i_add,
terminates for valid inputs and the result is again valid. Also the translation of an axiom of NATS
along the comorphism CASL2VSERefine is presented.

The proof obligations together with all axioms can be handed over to the VSE prover; the user
is presented with the interactive prover interface, where the current proof state can be inspected
and proofs of obligations or lemmas can be started. Fig. 11 shows the situation after starting
the proof for the obligation resulting from the axiom describing zero as the neutral element with
respect to addition. There is a window containing the current goal and another window with a
list of applicable rules to choose from.

The prover uses a sequent cal- [X_ e x —
split right - : °
culus. Therefore the goals have sy | N R
the form Of Sequents el 9 827 e 78}'1 l_ ZLEE-I;E]m;;if‘ier <VAR BEGIN BEGIN Y
/ / / . weakening formulas ENDnéﬁgimirue
€},€5,...,€, meaning that under contraction L
. 1ndauction . i l<VAR
the assumption of ey, e,...,e, one  [strugiural induction | [ weevgeeiv
i1 # ,1’ 2)
of the formulas €|, €5, ..., or ¢, Léﬁéﬁ(é‘n’ﬂx?,)gn,uz, LD ¢
n_1x3 :=m ;
hOldS ENngg(ganO. an_1x3, gn_1x4)
END> gn_1x4 = true
The user could now complete the .
proof by selecting rules by hand. Message Line

For this kind of dynamic logic
goals rules for each program con-
struct are available. For example for a conditional if € then « else 3 fi we have the rule

ek {(a)e,A T,—ek (B)e,A
' (ifethen ccelse B fi)e, A

Figure 11: A sample proof goal in VSE

where I and A are sequences of formulas. Applying this rule would generate two new goals, one
assuming the condition € holds which allows us to replace the conditional with ¢, and the other
one assuming —€.

The rule for an assignment statement x := T will change the sequent in a way that it reflects the
state after the assignment. It will remove all formulas where x occurs freely and add the equation
x = 7. In the following rule I"" resp. A’ are obtained from I resp. A by removing all formulas
with free occurrences of the variable x:

I'x=1tkFeAN

' (x:=1)e,A
A simplifier is run after each rule application. When appropriate, it will apply a substitution
x = 7 on e and remove the equation x = 7. For example, starting from the goal in Fig. 11, the

user would soon want to get rid of the assignment gn_1x1 := m, which results in the following
new goal:

<nlz# (m)> true
|_
<i_lzero# (gn_1x2)>
<i_ladd# (m, gn_1x2, gn_1x0)>
<gn_1x3 := m> <eg# (gn_1x0, gn_1x3, gn_1x4)> gn_1x4 = true
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Next the call of procedure i_1zero has to be dealt with. There is a rule which allows to unwind
procedure calls. In this case it will yield the following new goal:

<nlz# (m)> true
| —
<VAR BEGIN BEGIN
res—i_lzero := b_lzero
END END>
<i_ladd# (m, res—-i_lzero, gn_1x0)>
<gn_1x3 := m> <eg# (gn_1x0, gn_1x3, gn_1x4)> gn_1x4 = true
The proof then would continue always choosing rules for the first top |[Tree

Status Line

level program construct. As this is boring, the user will rather activate 5

heuristics for that. Then most of the remaining proof is done automatically.
As these heuristics are mainly driven by a program appearing in one of

the formulas and the result looks like executing the program with symbolic
terms instead of values, it is called symbolic execution.

In general VSE performs a heuristic loop, which means that after each
rule application it tries to apply heuristics from a given list of heuristics the
user has chosen. In case all heuristics should fail, there is also a last resort
heuristic which allows the user to select a rule from the set of all applicable
rules. Finally, a proof tree as shown in Fig. 12 results, where each goal is
shown as a node and each rule application lets the tree grow upwards.

A more involved example is the proof obligation that will show that the
procedure i_add, if applied to well-formed input arguments, terminates and
produces a well-formed result (in the sense of the restriction procedure):
<nlz# (gn_1x1)> true, <nlz#(gn_1x2)> true

| —
< i_ladd# (gn_1x1, gn_1x2, gn_1x)>
< nlz#(gn_1x)> true

Many proof steps still can be done by symbolic execution. However, as
i_add is recursive this could fail to complete the proof and lead to an in- |5
finite loop instead. To prevent this, an induction proof is required, in this Message’line

case structural induction on the first input argument i_add. The induction Figure 12: Proof
hypothesis can then be used for recursive calls of i_add. The proof should tree in VSE

also be made more concise by avoiding to unwind the i_succ calls occurring

in i_add. Instead these calls should be handled by using the similar proof obligation

<nlz# (gn_1x1)> true
| —_
< i_lsucc#(gn_1x1, gn_1x)> < nlz#(gn_1x)> true

as a lemma.
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Most of the proof obligations for this example can be treated similar to the two obligations
we have discussed. After finishing the proof with the VSE prover, HETS is informed about the
obligations that have been completed.

The two comorphisms have been implemented and are part of the latest HETS release; the
VSE tool is also going to become available under public license. Provided VSE is installed, the
example can be fully checked in HETS.

8 Conclusions and future work

We have integrated VSE’s mechanism of refining abstract specifications into procedural im-
plementations into HETS. Via a new logic and two logic translations, one of them doing the
usual restriction-quotient construction, we could avoid entirely the introduction of new types of
“refinement links” into HETS, but rather could re-use the present machinery of heterogeneous
development graphs and thus demonstrate its flexibility. Visually spoken, we could avoid ex-
tending the HETS motherboard and expansion slot specification, but rather just construct several
expansion cards related to VSE and plug them into the HETS motherboard.

However, there is a point when it actually makes sense to enhance the expansion slot spec-
ification. Currently, it is based on the assumption that expansion cards (i.e. theorem provers)
can only handle flat unstructured theories. However, VSE can also handle structured theories,
and takes advantage of the structuring during proof construction. Hence, we plan to extend the
expansion slot specification in a way that allows the transmission (between HETS and VSE) of
whole acyclic directed development graphs of theories with connecting definition links, reflect-
ing the import hierarchy. We expect to use this enhancement of the expansion slot specification
also for other theorem provers supporting structured theories, like Isabelle.

Another direction of future work will try to exploit synergy effects between VSE and HETS
e.g. by using automatic provers like SPASS (which are now available through the integration)
during some sample VSE refinement proofs. The refinement method could also be extended
from first-order logic to the richer language CASL, which also features subsorting and partial
functions.
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A Complete specification of natural numbers example

spec NATS_SIG =

sort nats

op zero_n:nats

op  succ_nm:nats — nats

op prdc.n: nats — nats

op add.-n:nats X nats — nats
end

spec SIMPNATS =
NATS_SIG
then free type nats ::= zeron | succ_n(nats)
vars m, n: nats
e prdc_n(zero_n) = zeron
e prdc_n(succ_n(m)) = m
e add_n(m, zero_.n) = m
e add_n(m, succ_n(n)) = succ_n(add_n(m, n))
end

logic VSE

spec SIMPNATS_GOALS =

SIMPNATS with logic — CASL2VSERefine
end
logic CASL

spec BIN_DATA =
free type bin ::= b_zero | b_one | sO(bin) | si(bin)
op pop: bin — bin
var x:bin
® pop(s0(x)) = x
® pop(sl(x)) = x
end

spec BIN =
BIN_DATA

then op  fop : bin — bin
vars Xx, Yy, z: bin
o top(b_zero) = b_zero
e top(b_one) = b_one
e top(sO(x)) = b_zero
o top(sl(x)) = b_one

end
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logic VSE

spec NATS_IMPL =
BIN with logic— CASL2VSEImport
then PROCEDURES
hnlz : IN bin,
nlz : IN bin,
i_badd : IN bin, IN bin, OUT bin, OUT bin;
i_add : IN bin, IN bin — bin;
i_prdc : IN bin — bin;
i_succ : IN bin — bin;
i_zero : — bin;
eq : IN bin, IN bin — Boolean
e DEFPROCS
PROCEDURE hnlz(x)
BEGIN
IF x = b_zero
THEN ABORT
ELSE IF x = b_one THEN SKIP ELSE hniz(pop(x)) FI
FI
END;

PROCEDURE nlz(x)
BEGIN IF x = b_zero THEN SKIP ELSE hnlz(x) FI END
DEFPROCSEND

e DEFPROCS
PROCEDURE i_badd(a, b, z, ¢)
BEGIN
IF a = b_zero
THEN c := b_zero;
z:=b

ELSE ¢ .= b;
IF b = b_one
THEN z := b_zero
ELSE 7 := b_one
FI

FI

END;

FUNCTION i_add(x, y)
BEGIN
DECLARE

% (restr) %

Festschrift Bernd Krieg-Briickner

32 /34



@ ECEASST

z: bin := b_zero, ¢ : bin := b_zero, s : bin := b_zero;

IF x = b_zero

THEN s :=y

ELSE IF y = b_zero
THEN s :=x

ELSE IF x = b_one
THEN s :=i_succ(y)
ELSE IF y = b_one
THEN s := i_succ(x)
ELSE i_badd(top(x), top(y), z, ¢);
IF ¢ = b_one
THEN s := i_add(pop(x), pop(y))
ELSE s := i_succ(pop(x));
s :=i_add(s, pop(y))
FI,
IF 7z = b_zero
THEN s := s0(s)
ELSE s := s1(s)
FI
FI
FI
FI
FI,
RETURN s
END;

FUNCTION i_prdc(x)
BEGIN
DECLARE
v : bin := b_zero;
IF x =b_zero V x = b_one
THEN y := b_zero
ELSE IF x = sO(b_one)
THEN y := b_one
ELSE IF top(x) = b_one
THEN y := sO(pop(x))
ELSE y :=i_prdc(pop(x));
yi=si(y)
FI
FI
FI,
RETURN y
END:;
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FUNCTION i_succ(x)
BEGIN
DECLARE
y : bin := b_one;
IF x = b_zero
THEN y := b_one
ELSE IF x = b_one
THEN y := s0(b_one)
ELSE IF top(x) = b_zero
THEN y := sl(pop(x))
ELSE y := i_succ(pop(x));
y 1= s0(y)

FI
FI
FI,
RETURN y
END;

FUNCTION i_zero()

BEGIN RETURN b_zero END
DEFPROCSEND
% (impl) %
e DEFPROCS
FUNCTION eq(x, y)
BEGIN
DECLARE
res : Boolean := Fualse;
IF x =y THEN res := True FI,
RETURN res
END
DEFPROCSEND
% (congruence) %
end
logic VSE

view REFINE :
SIMPNATS_GOALS to NATS_IMPL =
nats — bin, gn_restr_nats — nlz, gn_eq_nats — eq,
gn_zero_n v« i_zero, gn_succ_n — i_succ,
gn_prdc_n — i_prdc, gn_add_n — i_add

end
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