
Electronic Communications of the EASST
Volume 66 (2013)

Proceedings of the
Automated Verification of Critical Systems

(AVoCS 2013)

Compositional Verification of a Lock-Free Stack with RGITL

Bogdan Tofan, Gerhard Schellhorn, Gidon Ernst, Jörg Pf̈ahler and Wolfgang Reif

15 pages

Guest Editors: Steve Schneider, Helen Treharne
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Compositional Verification of a Lock-Free Stack with RGITL

Bogdan Tofan, Gerhard Schellhorn, Gidon Ernst, J̈org Pfähler and Wolfgang Reif

(tofan,schellhorn,ernst,joerg.pfaehler,reif)@informatik.uni-augsburg.de
Institute for Software and Systems Engineering

University of Augsburg

Abstract: This paper describes a compositional verification approach for concurrent
algorithms based on the logic Rely-Guarantee Interval Temporal Logic (RGITL),
which is implemented in the interactive theorem prover KIV. The logic makes it
possible to mechanically derive and apply decomposition theorems for safetyand
liveness properties. Decomposition theorems for rely-guarantee reasoning, lineariz-
ability and lock-freedom are described and applied on a non-trivial running example,
a lock-free data stack implementation that uses an explicit allocator stack for mem-
ory reuse. To deal with the heap, a lightweight approach that combines ownership
annotations and separation logic is taken.

Keywords: Compositional Verification, Rely-Guarantee Reasoning, Linearizabil-
ity, Lock-Freedom, Ownership, Separation Logic

1 Introduction

Multi-core processors have become ubiquituous in our computers. One area, where lots of
progress has been made over the last decade, is the efficient implementationof standard data
types such as stacks, queues, sets, etc. Instead of simply locking the fulldata structure on every
operation, these implementations either use sophisticated fine-grained lockingschemes, or alter-
natively nonblocking techniques that avoid the use of locks. Such algorithms are used in operat-
ing system kernels, and are also included in libraries of common programming languages, e.g.,
Threading Building Blocks for C++, java.util.concurrent for Java, or System.Collections.Concur-
rent for C#.

A central safety property of these concurrent data types is linearizability[HW90]. Roughly
speaking, a concurrent operation is linearizable if it corresponds to some atomic operation of
an abstract data type. For nonblocking data structure implementations, the liveness property of
lock-freedom [MP91] is common. It excludes both livelocks and deadlocks, even in the pres-
ence of indefinite delays of individual processes that access the data structure. However, formal
correctness proofs of such algorithms are difficult.

We propose a fully mechanized, interactive verification approach. It uses the rely-guarantee
(RG) method [Jon83], which is concerned with verifying general safety properties of concurrent
systems with shared resources. RG reasoning provides a modular treatment of interference be-
tween system components, i.e., to analyze properties of the overall system, each component can
be examined separately based on its specification of expected environment behavior. However,
the original RG approach does not deal with specific aspects of heap manipulating algorithms,
neither does it prove linearizability, nor does it address liveness verification (lock-freedom).

1 / 15 Volume 66 (2013)

mailto:(tofan,schellhorn,ernst,joerg.pfaehler,reif)@informatik.uni-augsburg.de

Compositional Verification of a Lock-Free Stack with RGITL

In our earlier work [STER11], we therefore proposed the logic RGITL, which integrates RG
reasoning into a compositional temporal logic that can express a wide rangeof safety and live-
ness properties. RGITL has been implemented and mechanically verified correct in the interac-
tive theorem prover KIV [KIV13]. We have derived decomposition theorems for linearizability
[BSTR11] and lock-freedom [TBSR10] in the logic, and we describe a challenging application
in [TSR11a].

Here we take an improved approach to deal with the heap, which also facilitates RG reasoning.
Furthermore, a more generic approach for verifying lock-freedom is defined. These improved
techniques are illustrated on a non-trivial running example, which to our knowledge, has had
no mechanized verification before. More specifically, we previously [TSR11a] used disjointness
and reachability predicates to explicitly model disjoint parts of the heap. Herewe use ownership
annotations [BDF+04] of the program code to implicitly label portions of the heap with a distinct
owner, plus separation logic’s star operator [Rey02] to model acyclic heap structures. While in
[TSR11a] we used a RG decomposition of the overall program state to two local process states
(and the shared state), we can now use RG conditions on the shared state only, where interference
might actually occur, and do not have to take the local state of any other process into account.

The improved approach is illustrated on a concurrent implementation based onthe well-known
lock-free stack from [Tre86]. Several other proofs for the stack do exist, but have mainly focused
on linearizability for the simple version under garbage collection. Here we consider a version
that is close to an implementation in environments without garbage collection. It uses generic
lock-free push and pop operations in two contexts: first, to add / remove arbitrary data from a
lock-free data stack and second, to add / remove heap locations from another stack that serves
as a lock-free memory allocator. The verification of the full version posesadditional challenges
w.r.t. reasoning about the heap, the fundamental ABA problem of lock-free algorithms, composi-
tional verification of sequential code (when verifying the client code, wewant to reuse the proofs
of the generic stack operations), and it also requires a generalization ofour previous termination
conditions for lock-freedom [TBSR10]. All proofs have been mechanized: KIV proofs for the
running example and the decomposition theory can be accessed online [KIV13].

The rest of this paper is structured as follows: Section2 introduces the running example.
Section3 gives a short introduction to RGITL and how RG reasoning is expressedin the logic.
Section4 describes the RG approach using ownership annotations and separationlogic. Section
5 gives two decomposition theorems for linearizability and lock-freedom. Finally, Section6
compares our approach with related work and Section7 concludes with a short summary and
possible future work.

2 The Lock-Free Data and Free Stacks

This section introduces the running example, which is used to illustrate our approach. Lock-
free algorithms typically apply atomic synchronization primitives such as CAS (Compare-And-
Swap) instead of locks.

atomic CAS(old, new, now) returns {bool}
if (now = old) {now := new; return true;}
else return false;

Proc. AVoCS 2013 2 / 15

ECEASST

record Node = {.val:data, .nxt:ref}; POP() returns {empty | data}
record RC = {.ref:ref, .cnt:nat}; var rtop := DoPop(DTop);
var DTop,FTop:RC; if (rtop = null) {

return empty;
PUSH(d:data) };

var new := DoPop(FTop); var lout := rtop.val;
if (new = null) { DoPush(rtop, FTop);

alloc(new); return lout;
};
new.val := d; DoPop(Top:ref(RC)) returns {ref(Node)}
DoPush(new, DTop); var ltop:RC;

repeat
DoPush(node:ref(Node), Top:ref(RC) ltop := Top;

var ltop:RC; if (ltop.ref = null) {break;}
repeat nxt := (ltop.ref).nxt;

ltop := Top; until
node.nxt := ltop.ref; CAS(ltop, (nxt, ltop.cnt), Top);

until return ltop.ref;
CAS(ltop, (node, ltop.cnt + 1), Top);

Figure 1: Running Example: Lock-Free Data and Free Stacks.

CAS compares the current value of a shared variablenow with an older local copy of itold,
called snapshot. If these values are equal, thenowvariable is updated to a new valuenewand
true is returned; otherwise false is returned. The execution of CAS is atomic.

We consider a lock-free implementation of a data stack that is used by some finitenumber of
concurrent processes to store arbitrary data. Since the application’s environment does not offer
garbage collection (GC), a second lock-free stack is used to allocate andfree memory. This stack
is called the free stack in the following. Explicit memory allocators are common in environments
without (lock-free) GC, to avoid memory leaks. Both stacks are implemented assingly linked
lists of nodes (pairs of values and locations having .val and .nxt selector functions). A shared
variableDTopmarks the top node of the data stack; it is a pair of a reference and a modification
counter (of typenat = N0), with selector functions .ref and .cnt, respectively. Similarly, the free
stack is accessible from a shared variableFTop. Each process that wants to push some datad
on the data stack, first tries to allocate memory from the free stack and resorts to the machine’s
allocator (alloc) only if the free stack is currently empty. Whenever a process pops a node from
the data stack, after reading its data, it pushes the node on the free stack,thus making its memory
available for (concurrent) reuse.

Modification counters are widely used for CAS based data structures, since the concurrent
reuse of locations can lead to corruption of the data structure, when a location is reinserted with
modified contents and this reinsertion is not detected by CAS. This is a fundamental issue of
CAS based implementations called the ABA problem [Tre86]. To detect the concurrent reuse,
a modification counter is typically added to ABA prone shared resources, here to each top-of-
stack pointer. This counter is incremented atomically with (either) the insertion orremoval of
a location from the data structure, thus making memory reuse visible to CAS. (The theoretical
chance of bogus behavior due to wrap around of a modification counter isnegligible [Tre86].)

Figure1 shows the concrete algorithms in pseudo code. The client procedures PUSH and
POP use two generic procedures DoPush and DoPop, which operate oneither the data or the
free stack. Operation DoPush repeatedly tries to switch a shared top-of-stack pointerTop.ref
to a new node using CAS in a lock-free manner. It repeatedly takes an atomicsnapshot of

3 / 15 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL

Top (including both the current top-of-stack pointer and its modification counter). After setting
the new node’s next pointer to the snapshot’s location, the new node becomes the target of a
subsequent CAS: if it succeeds, the node is atomically added to the stack and the modification
counter is incremented. The generic pop operation DoPop works similarly: itrepeatedly reads
the shared top. If its pointer is null, then it immediately returns with null. Otherwise,its next
reference becomes the target of a subsequent CAS: if it succeeds, the top node is removed from
the stack and the snapshot’s location is subsequently returned. (In caseof high contention on the
top-of-stack pointer, further techniques such as elimination or diffractioncan be helpful.)

Without a modification counter, an ABA problem could occur as follows: suppose that a pop
processp takes a snapshot of the top pointer when the data stack consists of exactly one node
at location A and the free stack is empty. Processp is preempted after setting its local reference
nxt to null for another process, which removes A from the data stack without yet freeing it.
Subsequently, a third processq executes a successful push, thereby allocating a new location
B (by resorting to the machine’s allocator). Then A is freed andq pushes A on the data stack,
which now has two nodes at locations [A, B]. If nowp is rescheduled, its CAS would erroneously
succeed, removing both nodes A and B at once and possibly returning anunexpected value.

The additional verification challenges that arise from having an explicit memory allocator
rather than assuming GC, are as follows. First, it becomes necessary to prove that the application
does not leak memory. Here we use ownership annotations and separationlogic’s star operator
to state that the application’s heap is always separated into three distinct parts: one for the data
stack, another one for the free stack and a third part that is owned by some of the (running)
processes. Second, we have to show that an ABA problem does not occur. Here RG reasoning
permits to express ABA prevention as an appropriate rely condition. Third,to avoid big redun-
dant proofs, we want to verify the generic procedures DoPush and DoPop separately, and reuse
these proofs as contracts in the verification of the sequential client code PUSH and POP, respec-
tively. Here the sequential compositionality of RGITL is crucial, which allows us to replace the
generic procedure calls with appropriate RG, linearizability and lock-freedom abstractions, re-
spectively. Finally, since individual processes might now starve while accessing either the data or
the free stack, the argument why individual starvation does not lead to global livelock becomes
non-trivial. By slightly generalizing our previous decomposition of lock-freedom, we can yet
prove lock-freedom for the example.

3 RGITL

This section gives a brief introduction to basic concepts of RGITL. We emphasize that it is not in
the scope of this paper to detail every aspect of the logic. Instead, the interested reader is referred
to [STER11]. A formal specification of the semantics of RGITL, including soundness proofs of
the main rules are available online [KIV13].

3.1 Syntax and Semantics

The semantics of expressions of the logic is based on intervals, which are finite or infinite se-
quences of states. A state maps variables to values. Variables can be eitherdynamic (written

Proc. AVoCS 2013 4 / 15

ECEASST

uppercase) or static (written lowercase), where the latter do not changetheir value throughout
an interval. The last state of a finite interval is characterized by the formulalast. The interval
semantics explicitly includes environment behavior, similar to reactive sequences in [RBH+01]:
each intervalI = [I(0), I(0)′, I(1), I(1)′, . . .] alternates system (or program) transitions with en-
vironment transitions, i.e., the transition from stateI(0) to the primed stateI(0)′ is a program
transition, whereas the next transition from stateI(0)′ to I(1) is a transition of the environment
and so forth.

Priming of a dynamic variableV denotes over which state of an intervalV has to be evaluated.
While an unprimed variableV is evaluated over the first stateI(0), the primed variableV ′ is
evaluated overI(0)′ and the double primed variableV ′′ over I(1), respectively. Hence, formula
V ′ = 1 states thatV has value 1 after the first program transition of a given interval and formula
V ′′ = 2 states thatV has value 2 after the first environment transition of the interval. (For an
empty interval [I(0)], bothV ′ andV ′′ are evaluated over I(0).) Similarly, a predicate logic formula
G(V,V ′) specifies a guarantee for the first program transition and a formulaR(V ′,V ′′) defines a
rely condition for the first environment transition.

RGITL provides standard temporal operators to describe interval properties:◦ ϕ (strong next)
holds in an intervalI (writtenI |= ◦ ϕ) iff I is not empty and formulaϕ holds inI ’s postfix interval
[I(1), . . .]. The formulaϕ1until ϕ2 holds inI iff ϕ2 holds over[I(n), . . .] for some interval state
I(n) andϕ1 holds in [I(m), . . .] for eachm< n. Further standard operators are introduced as
abbreviations, e.g.,• ϕ ≡ ¬ ◦ ¬ ϕ (weak next),✸ ϕ ≡ trueuntil ϕ, or✷ ϕ ≡ ¬ ✸ ¬ ϕ . Hence,
formula✷ V ′ =V ′′ states that throughout an interval, no environment transition ever changes the
value ofV.

Similar to ITL [Mos00], programsα are just a subset of the formulas of the logic. Hence,
programs and formulas can be mixed. An intervalI satisfiesα (written I |= α) iff I alternates
α (program) transitions with arbitrary environment transitions. Finite intervals correspond to
terminating program runs. The logic provides the common constructs for sequential programs,
including nondeterministic choice, recursive procedures, plus an interleaving operator

f
. For

brevity, we only give the interval semantics of the sequential composition operator “;” here.
(This definition corresponds to the definition of the chop operator from ITL.)

I |= ϕ1; ϕ2 iff either I is infinite and satisfiesϕ1, or there is a finite prefix of I where

ϕ1 holds andϕ2 holds for the rest ofI

3.2 Deduction

The assertion language is based on the sequent calculus. A sequent is an assertion of the form
Γ ⊢ ∆ (whereΓ and∆ are lists of formulas), which states that the conjunction of all formulas
in antecedentΓ implies the disjunction of all formulas in succedent∆. A sequent is implicitly
universally closed. A typical temporal logic assertion for a programα has the form

Pre,α ,E ⊢ ϕ

where Pre is a precondition for the initial state, formulaE is an environment assumption, i.e.,
a temporal formula over primed and double primed variables, andϕ is the property ofα to be
shown.

5 / 15 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL

For deduction, the standard rules of the sequent calculus are used. Moreover, the following
compositionality principle holds for the sequential composition operator (similar toITL).

α1 ⊢ ψ1 ψ1;ϕ2 ⊢ ψ
α1;ϕ2 ⊢ ψ compositionality of ;

(1)

The rule states that formulaψ can be derived for the sequential compositionα1;ϕ2 if an abstrac-
tion ψ1 can be derived forα1 (premise 1), andψ can be derived forψ1;ϕ2 (premise 2). Rule (1)
allows us to split the proof of the client code PUSH and POP into a part that separately verifies
the generic operations DoPush and DoPop (premise 1) and a second part that verifies the client
code using appropriate abstractions as contracts for the generic procedures (premise 2).

Temporal formulas and programs are verified using symbolic execution. Basically, a symbolic
execution step moves forward to the next state of an interval in two phases.In the first phase,
each formula of a sequent is transformed into an equivalent formula that consists of two parts:
one part that refers to the first three states of an interval, and another part that refers to the rest
of the interval from the third state on (using a leading next operator). Thesecond phase then
removes leading next operators and replaces variablesV, V ′, V ′′ with new variablesv0, v1, V,
where the static variablesv0 andv1 store the “old” values ofV in I(0) andI(0)′, respectively.

Example1 A symbolic execution step of the sequent

V = 0, (V :=V +2;α), ✷ V ′ =V ′′ ⊢ ◦ V = 2

generates the following new sequent.

v0 = 0, v1 = v0+2, α , v1 =V, ✷ V ′ =V ′′ ⊢V = 2

Executing the first assignment (V :=V +2) results inv1 = v0+2 and the remaining program is
α . The environment assumption has been unwound (using the equivalence✷ ϕ ↔ ϕ ∧ • ✷ ϕ),
which gives the constraintv1 = V for the first environment transition and again✷ V ′ = V ′′ for
the rest.

Finally, the logic provides induction rules that permit to reduce the verificationof safety prop-
ertiesϕ over an infinite intervalI , to the verification ofϕ over an arbitrary finite prefix ofI .
Then well-founded induction over the length of the finite prefix is used to deal with loops during
symbolic execution. This is necessary for the stack, since CAS loops can iterate indefinitely
often due to concurrent changes of the shared top-of-stack variables.

3.3 Rely-Guarantee Assertions

A compositionality rule, which is similar to rule (1), also holds for the interleaving operator
in RGITL. This makes it possible to derive decomposition rules as theorems for interleaved
programs in the logic. An important case of such decomposition rules are RG rules, which
break down the verification of an RG assertion for a concurrent system,to the verification of a
corresponding RG assertion for each system component. An RG assertion for a programα(V),
which uses variables V, has the following form.

Pre(V) ⊢ [R(V ′,V ′′),G(V,V ′), Inv(V),α(V)] Post(V)

Proc. AVoCS 2013 6 / 15

ECEASST

Informally, an RG assertion states that runs ofα that start in an initial statePre, preserve the
guaranteeG and the invariantInv as long as previous environment transitions satisfy the relyR
and also maintainInv. In finite executions ofα , the last state satisfies the postconditionPost.

Formally, an RG assertion expands to

Pre(V),α(V) ⊢ (R(V ′,V ′′) ∧ (Inv(V ′) → Inv(V ′′)))
+

−→ (if last then Post(V) elseG(V,V ′) ∧ (Inv(V)→ Inv(V ′)))

where operatorϕ1
+

−→ ϕ2 abbreviates the formula¬ (ϕ1 until ¬ ϕ2). Thus, RG assertions are
safety formulas, which can be verified by well-founded induction over thelength of a finite
interval prefix.

The definitions and the decomposition theory in the rest of this paper are nothard-wired into
the semantics of the logic, but built on top of it as higher-order and temporallogic specifications.
In particular, the RG theorem (cf. Section4) and the decomposition theorems for linearizability
and lock-freedom (cf. Section5) are derived in the logic.

4 Rely-Guarantee Reasoning with Ownership and Separation

This section describes the RG decomposition rule that lies at the core of the decomposition theo-
rems for linearizability and lock-freedom and explains how ownership annotations, known from
the verification of object-oriented sequential programs [BDF+04], facilitate its applicability. One
consequence of these annotations is that separation logic’s star operator * [Rey02] can be used
to model the shape of the heap. Our experience with sequential program verification shows that
using* can be advantageous over the use of inductive reachability predicates when reasoning
about acyclic heap structures. However, introducing* in a concurrent setting is more delicate
than in the sequential case, which is mainly due to possible concurrent changes of the heap.

4.1 Rely-Guarantee Decomposition

Our RG rule is similar to the original rule of Jones [Jon83], since rely and guarantee conditions
are simply binary predicates over an arbitrary shared variableS : state that represents the state
of the concurrent system. The system recursively interleavesn+1 processesp : N0, where each
process executes indefinitely often a generic procedure COP.

COP(0, In;S,Out)∗
n
. . .

n
COP(n, In;S,Out)∗

The KIV syntax is as follows: the star operator∗ denotes finite or infinite iteration; the parameters
of procedure COP are separated by a semicolon into input resp. in-outputparameters, where
parameterIn is an input for the procedure, which writes its return value to the in-output parameter
Out (a return statement is not used).1

1 An additional operation index and a history variable to which an invoke and areturn event are added before resp. after
each COP call, are required to prove linearizability; an auxiliary variable is necessary in the lock-freedom decompo-
sition proof. They are omitted here.

7 / 15 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL

The following RG decomposition rule is derivable in the logic [STER11].

p 6= q,Gp ⊢ Rq ⊢ trans(Rp) ⊢ refl(Gp) ⊢ ∃ S. Init (S) Init ⊢ Idle∧ Inv

⊢ stable(Rp, Idlep) Inv, Idlep ⊢ [Rp,Gp, Inv,COP(p, ...)] Idlep

Init ⊢ [R,G, Inv,COP(0, ...)∗
f
. . .

f
COP(n, ...)∗] Idle (2)

whereR≡
∧

p

Rp, G≡
∨

p

Gp, Idle≡
∧

p

Idlep

Essentially, the rule decomposes a global RG assertion about the interleaved system, to the fol-
lowing local RG assertion for one processp, executing COP once.

Idlep(S), Inv(S) ⊢ [Rp(S
′,S′′),Gp(S,S

′), Inv(S),COP(p, In;S,Out)] Idlep(S)

The rule also has several predicate logic side conditions. An important oneis that the local
guaranteeGp of a processp must imply the relyRq for each other processq 6= p. The local
guarantee must be reflexive and the local rely transitive. A global initial state must exist, where
the invariantInv must hold and each process is idle, according to its idle state predicateIdlep,
and each idle predicate is assumed to be stable over its rely, i.e., stable(Rp, Idlep)↔ Rp(S′,S′′) ∧
Idlep(S′)→ Idlep(S′′).

Applying rule (2) on the running example directly is inconvenient: it requires taking the entire
program state into account by lifting relevant local state information to the global state using
process functions for local variables. As an example, consider the following disjointness prop-
erty: concurrent local pointers to nodes that are pushed on one of thestacks are disjoint. With
an extra boolean function BefCAS :N→ bool to characterize the code-range of the CAS-loop
in DoPush before it succeeds, it can be formalized as

∀ p 6= q. BefCAS(p) ∧ BefCAS(q)→ Node(p) 6= Node(q)

In [TSR11a], we therefore proposed a local RG rule that considers two explicit local states (and
the shared state), and thus avoids process functions and quantification over process identifiers.
Here we take a different approach based on ownership annotations that leads to further significant
simplifications.

4.2 Ownership Annotations for the Stack

The core idea of using ownership annotations is simple: shared resources are augmented with
auxiliary state that represents their distinct owner. The idea is applicable onshared resources in
general, but we restrict our focus on concurrent heaps in the following. A concurrent heap with
ownership is a partial functionH : ref ⇀ (node,owner) from locations to nodes with ownero.

In the running example, it is sufficient to discern three possible owners per heap location:

owner ::= p| dstack| fstack

That is, each heap locationr is either owned by some processp (i.e.,H(r).owr= p), or it belongs
to either the data or the free stack. Additionally, we augment the program code to adhere to this
ownership concept as Figure2 shows.2

2 The KIV syntax is as follows:∨ denotes nondeterministic choice,let declares local variables, a comma separates

Proc. AVoCS 2013 8 / 15

ECEASST

COP(p,d;DTop,FTop,H,Out) {
PUSH(p,d;DTop,FTop,H)

∨ POP(p;DTop,FTop,H,Out)}

PUSH(p,d;DTop,FTop,H) {
let Newin {

DoPop(p;FTop,H,New);
if New= null {
choose(New0 6= null ∧ New0 /∈ H) in {
H := H +New0,New:= New0,
H(New0).owr := p}};

H(New).val := d;
DoPush(dstack,New;DTop,H)}}

POP(p;DTop,FTop,H,Out) {
let LOut= empty,ROutin {

DoPop(p;DTop,H,ROut);
if ROut 6= null {
LOut := H(ROut).val;
DoPush(fstack,ROut;FTop,H)};

Out := LOut}}

DoPush(o,Node;Top,H) {
let Succ= false,LTop in {

while ¬ Succ{
LTop:= Top;
H(Node).nxt := LTop.ref;
if* LTop= Top{ /* CAS */
Top:= (Node,LTop.cnt+1),Succ:= true,
H(Node) := o}}}

DoPop(p;Top,H,ROut) {
let Succ= false,LTop,Nxt in {

while ¬ Succ{
LTop:= Top;
if LTop.ref= null { Succ:= true}
else{
Nxt := H(LTop.ref).nxt;
if* LTop= Top{ /* CAS */
Top.ref := Nxt,Succ:= true,
H(LTop.ref) := p}}};

ROut:= LTop.ref}}

Figure 2: KIV Specification of the Stack Algorithms with Ownership Annotations(shaded)

The effects of these simple auxiliary state annotations are worth noting. Firstof all, no further
heap disjointness properties must be defined, since they are already impliedby the ownership
annotations. (Our technical report [TSR11b] shows that several disjointness properties between
local states would be necessary without ownership annotations.) Second, we can completely
avoid talking about local variables, in particular program labels. Hence,when applying rule (2),
the state variableScan be simply instantiated with the tupleDTop,FTop,H, which is the shared
state of the algorithm, where interference can actually occur. (The local state ofonecurrently
running process could be added to the rule, but this is not required here.) Third, we can uniformly
handle typical heap modifications and use separation logic on (owned) heap predicates to avoid
inductive reachability arguments. This is further explained in the next subsection.

4.3 Concurrent Heaps with Ownership and Separation

Instead of integrating heaps into the semantics of RGITL, we use a lightweightembedding of
separation logic into higher-order logic (available as a KIV library), where heap assertions are
encoded as heap predicatesP, Q of typeheap→ bool. The lifting of this theory to heaps with
ownership is done in the standard way: an owned heap predicateo[P] with ownero holds over
heapH, iff P holds and every location inH has ownero. Similarly, the common operators

parallel assignments andif* executes its test and program atomically. In the prover, the heapH is actually represented
as a tuple (D, Nf, Of) withdom(H) = D, node function Nf and an auxiliary ownership function Of.

9 / 15 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL

from separation logic are overloaded. For instance, the star operator between two owned heap
predicateso0[P] ando1[Q] has the following semantics.

(o0[P] * o1[Q])(H)↔ ∃ H0,H1. dom(H0)∩dom(H1) = /0∧ (H0 ∪ H1 = H) ∧ P(H0) ∧ Q(H1)

∧ ∀ r. (r ∈ H0 → H0(r).owr= o0) ∧ (r ∈ H1 → H1(r).owr= o1)

In a concurrent setting, assertions about the permissions of processes to access shared re-
sources are typically required. Again, we do not enrich the semantics of RGITL with permis-
sions, but simply define them based on ownership. It is common to assume thata heap location,
which is owned by someprocesscan only be read by others, but neither deallocated, nor modi-
fied. The following rely predicate encodes this restriction.

PRp(H
′,H ′′)↔ ∀ r. ((H ′(r).owr= p ∧ r ∈ H ′)↔ (H ′′(r).owr= p∧ r ∈ H ′′))

∧ (H ′(r).owr= p∧ r ∈ H ′ → H ′(r) = H ′′(r))

The relyPRp(H ′,H ′′) implies the following stability property

(p[P] * true)(H ′) ∧ PRp(H
′,H ′′) → (p[P] * true)(H ′′)

and it is easy to prove that underPRp, the annotated program COP(p, . . .) does not change any
portion of the heap, which is owned by another process.

To express absence of memory leaks, three simple heap predicates are defined: owned(H)
states that eachr in H is owned by some process;owns-nonep(H) denotes thatp owns no location
in H, andowns-onep,r(H) denotes thatp owns exactly locationr in H. Obviously, predicates
owns-nonep andowns-onep,r are stable over the permission relyPRp, and it is easy to show that
predicateowns-nonep is an idle state condition of the annotated program COP(p, . . .).

Finally, to verify linearizability we want to express that some abstract data listx is represented
by a heap locationr. The heap predicatelst(r) defines this property, and the* operator enforces
acyclicity of the heap structure underr.

lst(r) = if r = null then ls(r, []) else ∃ d,x. ls(r,d+x)

ls(r, []) = emp∧ (r = null)

ls(r,d+x) = ∃ r0. ((r 7→ (d, r0)) * ls(r0,x))

where emp holds for the empty heap only, and(r 7→ (d, r0)) defines a heap consisting of one
node at locationr, which stores datad and a next referencer0.

4.4 Instantiating the RG Predicates for the Running Example

This section defines the concrete instances of the predicates from rule (2) based on the previous
notions of concurrent heaps. The state variableSis simplyDTop,FTop,H. The global initial state
conditionInit(DTop,FTop,H) requiresH to be empty, and bothDTopandFTop to be(null,0).
The invariant claims that the heap always consists of two distinct linked lists (with ownerdstack
resp.fstack) and a separate portion where each location is owned by some process.

Inv(DTop,FTop,H)↔ (dstack[lst(DTop.ref)] * fstack[lst(FTop.ref)] * owned)(H)

Proc. AVoCS 2013 10 / 15

ECEASST

The idle state predicateIdlep(DTop,FTop,H) is simply owns-nonep(H). Since each process
owns no portion ofH in idle states, the application does not leak memory.

For stack nodes with ownerdstackor fstack, the possible concurrent access is determined
by the specific use of modification counters. In contrast to locations that are owned by some
process, both the content and the ownership information of a stack locationcan change when the
location is concurrently removed from the data structure. An appropriate stack rely condition that
captures the correctness of the memory reclamation protocol and ensuresthat an ABA problem
does not occur on neither the data nor the free stack is the following.

SR(o,Top′,H ′,Top′′,H ′′)↔ Top′.cnt≤ Top′′.cnt

∧ (Top′.ref 6= null → Top′ = Top′′ ∧ H ′(Top′.ref) = H ′′(Top′.ref) ∧ H ′′(Top′.ref).owr= o

∨ H ′′(Top′.ref).owr 6= o∨ Top′.cnt< Top′′.cnt)

∧ (∀ r. r 6= null ∧ H ′(r).owr 6= o→ H ′′(r).owr 6= o∨ Top′.cnt< Top′′.cnt)

The specific stack reliesSR(dstack, . . .) and SR(fstack, . . .) ensure that during DoPop on one
of the two stacks, the ABA prone snapshot location either stays in the stack and its contents
(including ownership annotation) are unchanged, or if it is concurrentlyremoved, then it is not
reinserted unless the modification counter is increased.

Finally, it remains to define the full relyRp as the conjuction

Rp(DTop′,FTop′,H ′,DTop′′,FTop′′,H ′′)↔

PRp(H
′,H ′′) ∧ SR(dstack,DTop′,H ′,DTop′′,H ′′) ∧ SR(fstack,FTop′,H ′,FTop′′,H ′′)

and the guarantee as

Gp(DTop,FTop,H,DTop′,FTop′,H ′) ↔ ∀ q 6= p. Rq(DTop,FTop,H,DTop′,FTop′,H ′)

The actual proof of the local RG assertion from rule (2) for the sequential code COP(p, . . .),
uses compositionality rule (1). This splits the proof in two parts: one which verifies the RG
assertion for DoPush and DoPop and a second part that uses the RG abstractions as contracts
for the generic procedures. In the proofs, the current shape of theheap is typically given by the
invariantInv above and a formula(p[(Ref 7→ node)] * true)(H), which defines the local state of
the current process (Ref corresponds to either the local variableNewor LTop.ref). To transfer
local state to and from one of the stacks, two simple generic merge and split lemmas are used.
Verifying DoPop is most challenging, since transitive arguments over several symbolic execution
steps are required to derive that if the snapshot location is concurrentlyremoved, the following
CAS operation does fail.

5 A Decomposition of Linearizability and Lock-Freedom

This section briefly describes two decomposition theorems for the global properties of lineariz-
ability [HW90] and lock-freedom [MP91]. Both theorems can be derived in RGITL, but their
proofs are rather complex and we emphasize that neither their formalization nor their derivation
is in the scope of this paper. Instead, the proofs are available online [KIV13].

11 / 15 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL

5.1 A Decomposition of Linearizability based on RG Reasoningand Refinement

Having verified the premises of RG rule (2), from the local view of one processp executing
COP(p, . . .), all environment transitions preserve its rely at all times and the invariant can be
assumed to hold in each state, i.e.,✷ (Rp(S′,S′′) ∧ Inv(S) ∧ Inv(S′)) holds locally. This property
is now used in a local refinement proof, which implies linearizability of the interleaved system.

Linearizability requires that an operation appears to take effect instantly inone step during
its execution. This step is called a linearization point. We prove linearizability using a special
case of non-atomic refinement from COP to an abstract program AOP, which identifies the
linearization point for the concrete program as follows. The abstract program AOP is defined
to execute some stutter steps first (indefinitely many). Then it executes the linearization point
LIN atomically on the abstract stateAS. (For the stack, this is simply an atomic push or pop
operation on an algebraic data listx for AS.) Finally, some further stutter steps are executed until
the operation finishes with final output valueOut. Both concrete and abstract operation work
on the same input and must yield the same output. Moreover, concrete and abstract states are
always related by an abstraction functionAbs. Hence, the main local proof obligation is

Idlep(S),COP(p, In;S,Out),✷ (Rp(S
′,S′′) ∧ Inv(S) ∧ Inv(S′)), (3)

✷ (Abs(S) = AS∧ Abs(S′) = AS′) ⊢ AOP(In;AS,Out)

where the abstract program is defined as

AOP(In;AS,Out) {let LOut in {

skip∗;{LIN(In,AS,AS′,LOut′) ∧ ◦ last};skip∗;Out := LOut}}

Theorem 1 The concurrent systemCOP(0, ...)∗
f
. . .

f
COP(n, ...)∗ is linearizable if the premises

of RG rule (2) and the refinement proof obligation (3) holds.

The abstraction function for the data stack simply corresponds todstack[ls(DTop.ref,x)]. The
refinement proofs (3) for the stack also use rule (1). This gives compositional proofs that replace
the generic push and pop operations with basicallyskip∗;{LIN ∧ ◦ last};skip∗ or justskip∗ for
the data and free stack, respectively.

5.2 A Decomposition of Lock-Freedom based on RG Reasoning

Lock-freedom is a progress property that is relevant in various application domains, such as high-
availability or real-time systems. A concurrent system is lock-free if infinitely often one of its
running operations progresses, i.e., both deadlocks and livelocks areexcluded. In the following,
two simple local termination conditions for an individual COP(p, . . .) are defined, which ensure
lock-freedom of the interleaved system.

The first termination condition requires that COP must terminate whenever it does not suffer
from critical interference from its environment. This interference is specified using an additional,
reflexive and transitive predicateU (“unchanged”).3

Idlep(S),COP(p, In;S,Out),✷ (Rp(S
′,S′′) ∧ Inv(S) ∧ Inv(S′)) ⊢ ✸ ✷ U(S′,S′′)→ ✸ last (4)

3 PredicateU specifies under which conditions the termination of COP can be guaranteed. Different from rely
conditionsRp, which are safety properties that always hold, predicateU can be repeatedly violated.

Proc. AVoCS 2013 12 / 15

ECEASST

The second termination condition, enforces that COP violatesU only a finite number of times.
Formally, executions in whichU is violated infinitely often in COP transitions are ruled out as
follows.

Idlep(S),COP(p, In;S,Out),✷ (Rp(S
′,S′′) ∧ Inv(S) ∧ Inv(S′)) ⊢ ✷ ✸ ¬ U(S,S′)→ ✸ last (5)

Theorem 2 The concurrent systemCOP(0, ...)∗
f
. . .

f
COP(n, ...)∗ is lock-free if the premises

of RG rule (2) and the termination conditions (4) and (5) hold.

In the running example, the unchanged relation is simply defined as the identity relation over
DTopandFTop. The actual proofs of lock-freedom are also compositional, i.e., they verify (4)
and (5) for the generic operations (largely automatically) and apply rule (1) to complete the proof
for the client code.

Our previously published termination condition for lock-freedom [TBSR10] requires that
when COP violatesU once, then it subsequently terminates, i.e., the right hand side of (5) was
✷ (¬ U(S,S′)→ ✸ last). This can not be shown in the running example, since a step of POP
can violateU by removing a node from the data stack and then the operation can starve while
executing the subsequent CAS loop of the free stack. However, predicateU is violated at most
once in infinite runs, which corresponds to our more generic proof obligation (5) that tolerates
an arbitrary finite number of such violations.

6 Related Work

This section compares our work with related approaches. Full coverageis impossible here for
two reasons: the plentitude of existing approaches and the lack of space.

To our knowledge, the only proof of the stack with modification counters is thepen-and-paper
proof in Groves et al. [GC09]. Their verification approach is rather different from ours, since
it is based on trace reduction and incremental refinement. They consider linearizability of a
data stack with modification counters that reuses memory from an abstract set of free locations,
while we consider an actual implementation of a free stack and give fully mechanized proofs of
memory-safety, ABA prevention, linearizability and lock-freedom.

RGSep [VP07] is a program logic that combines RG reasoning and separation logic for heap-
modular, Hoare-style reasoning about the safety of concurrent programs. A tool for automatically
verifying linearizability based on RGSep has also been developed. In contrast to RGSep, heaps
are not part of the semantics of RGITL, which makes no restrictions on the possible modifications
of a program to a heap variable. This makes it more difficult for us to express which part of the
heap a program leaves unmodified, without changing the semantics, and our current approach
with ownership annotations is a step towards this end. In RGSep, local and shared assertions refer
to either the local heap of one process or the shared heap, which corresponds to our annotations
of portions of the heap with a distinct owner. Different from RGITL, deriving decomposition
theorems, refinement and liveness proofs are not in the scope of RGSep.

Most approaches to RG reasoning justify their rules on a semantic level (e.g., [RBH+01]). A
mechanized soundness proof for global RG rules for interleaved programs with shared variables
has been given in [Pre03]. The verification is based on Isabelle’s higher-order logic and therefore

13 / 15 Volume 66 (2013)

Compositional Verification of a Lock-Free Stack with RGITL

in essence had to explicitly formalize intervals. Our soundness proofs of RG decomposition rules
are simpler, since they are based on a compositional temporal logic, where intervals are already
part of the semantics.

In general, reduction techniques for symmetric system components (as theycan often be found
in concurrent data type implementations) have also been developed for model checking. How-
ever, proving linearizability using (symmetric) model checking fails in general [VYY09]. Model
checking approaches are fully automated and useful to quickly find bugsby checking short runs
of usually two interleaved operations, but do not give full derivations.

Several concepts that we use in our approach are also implemented in tools for specific pro-
gramming languages, e.g., [CMST10, JP08] for annotated (concurrent) C code.

7 Conclusion

This paper describes an approach for the verification of concurrentalgorithms, which is based
on a combination of different techniques. These were illustrated on a non-trivial running exam-
ple. The approach incorporates RG reasoning into a compositional temporallogic, which also
makes liveness proofs possible. For the verification of concurrent heap algorithms, ownership
annotations and separation logic are used. Finally, we have briefly sketched two decomposition
theorems for the important properties of linearizability and lock-freedom.

Some possible areas of future work are as follows. Concrete proofs ofpremise 2 of rule
(1) require several interactions (mainly for the symbolic execution of the abstractionψ1 with
induction). We leave it for our own future work to implement derived rules for specific classes
of formulas, to better automate these proofs. Another option for future work is to integrate
our current ownership and separation approach with the RG decomposition rule (2) and the
verification of further challenging case studies.

Bibliography

[BDF+04] M. Barnett, R. DeLine, M. F̈ahndrich, K. R. M. Leino, W. Schulte. Verification of
Object-Oriented Programs with Invariants.Journal of Object Technology3, 2004.

[BSTR11] S. B̈aumler, G. Schellhorn, B. Tofan, W. Reif. Proving Linearizability with Temporal
Logic. Formal Aspects of Computing (FAC)23(1):91–112, 2011.

[CMST10] E. Cohen, M. Moskal, W. Schulte, S. Tobies. Local verification of global invariants
in concurrent programs. InProc. of CAV. Pp. 480–494. Springer, 2010.

[GC09] L. Groves, R. Colvin. Trace-based Derivation of a Scalable Lock-Free Stack Algo-
rithm. Formal Aspects of Computing (FAC)21(1–2):187–223, 2009.

[HW90] M. Herlihy, J. Wing. Linearizability: A Correctness Condition for Concurrent Ob-
jects.ACM Trans. on Prog. Languages and Systems12(3):463–492, 1990.

[Jon83] C. B. Jones. Specification and Design of (Parallel) Programs.In Proceedings of
IFIP’83. Pp. 321–332. North-Holland, 1983.

Proc. AVoCS 2013 14 / 15

ECEASST

[JP08] B. Jacobs, F. Piessens. The VeriFast Program Verifier. Technical Report CW-520,
KU Leuven, 2008.

[KIV13] KIV. Presentation of KIV proofs for AVOCS’13. 2013. URL:
https://swt.informatik.uni-augsburg.de/swt/projects/avocs13.html.

[Mos00] B. C. Moszkowski. A Complete Axiomatization of Interval TemporalLogic with In-
finite Time. InLICS 2000: Proc. of the 15th IEEE Symposium on Logic in Computer
Science. Pp. 241–252. IEEE Computer Society Press, 2000.

[MP91] H. Massalin, C. Pu. A Lock-Free Multiprocessor OS Kernel. Technical re-
port CUCS-005-91, Columbia University, 1991.

[Pre03] L. Prensa Nieto. The Rely-Guarantee method in Isabelle /HOL. InDegano (ed.),
ESOP’03. LNCS 2618, pp. 348–362. Springer, 2003.

[RBH+01] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
J. Zwiers.Concurrency Verification: Introduction to Compositional and Noncompo-
sitional Methods. Cambridge Tracts in TCS 54. Cambridge University Press, 2001.

[Rey02] J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. InProc.
of LICS. Pp. 55–74. IEEE Computer Society, 2002.

[STER11] G. Schellhorn, B. Tofan, G. Ernst, W. Reif. Interleaved Programs and Rely-
Guarantee Reasoning with ITL. InProc. of TIME. IEEE CS, pp. 99–106. 2011.

[TBSR10] B. Tofan, S. B̈aumler, G. Schellhorn, W. Reif. Temporal Logic Verification of Lock-
Freedom. InIn Proc. of MPC 2010. Springer LNCS 6120, pp. 377–396. 2010.

[Tre86] R. K. Treiber. System programming: Coping with parallelism. Technical report RJ
5118, IBM Almaden Research Center, 1986.

[TSR11a] B. Tofan, G. Schellhorn, W. Reif. Formal Verification of a Lock-Free Stack with
Hazard Pointers. InProc. ICTAC. Pp. 239–255. Springer LNCS 6916, 2011.

[TSR11b] B. Tofan, G. Schellhorn, W. Reif. Local Rely-Guarantee Conditions for Linearizabil-
ity and Lock-Freedom. Reports in Informatics 26, KIT, 2011.

[VP07] V. Vafeiadis, M. J. Parkinson. A Marriage of Rely/Guarantee and Separation Logic.
In CONCUR. Springer LNCS 4703, pp. 256–271. 2007.

[VYY09] M. Vechev, E. Yahav, G. Yorsh. Experience with Model Checking Linearizability. In
Proceedings of the 16th International SPIN Workshop on Model Checking Software.
Pp. 261–278. Springer-Verlag, 2009.

15 / 15 Volume 66 (2013)

https://swt.informatik.uni-augsburg.de/swt/projects/avocs13.html

	Introduction
	The Lock-Free Data and Free Stacks
	RGITL
	Syntax and Semantics
	Deduction
	Rely-Guarantee Assertions

	Rely-Guarantee Reasoning with Ownership and Separation
	Rely-Guarantee Decomposition
	Ownership Annotations for the Stack
	Concurrent Heaps with Ownership and Separation
	Instantiating the RG Predicates for the Running Example

	A Decomposition of Linearizability and Lock-Freedom
	A Decomposition of Linearizability based on RG Reasoning and Refinement
	A Decomposition of Lock-Freedom based on RG Reasoning

	Related Work
	Conclusion

