
Electronic Communications of the EASST
Volume 66 (2013)

Proceedings of the
Automated Verification of Critical Systems

(AVoCS 2013)

Fully Symbolic TCTL Model Checking for Incomplete Timed Systems 1

Georges Morbé and Christoph Scholl

15 pages

Guest Editors: Steve Schneider, Helen Treharne
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

1 This work was partly supported by the German Research Council (DFG) as part of the Transregional Col-
laborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS,
http://www.avacs.org/).

http://www.easst.org/eceasst/

ECEASST

Fully Symbolic TCTL Model Checking for Incomplete Timed
Systems ∗

Georges Morbé and Christoph Scholl

Department of Computer Science, University of Freiburg,
(morbe, scholl)@informatik.uni-freiburg.de

Abstract: In this paper we present a fully symbolic TCTL model checking algo-
rithm for incomplete timed systems. Our algorithm is able to prove that a TCTL
property is violated or satisfied regardless of the implementation of unknown timed
components in the system. For that purpose the algorithm computes over- approxi-
mations of sets of states fulfilling a TCTL property φ for at least one implementation
of the unknown components and under-approximations of sets of states fulfilling φ

for all possible implementations of the unknown components. The algorithm works
on a symbolic model for timed systems, called a finite state machine with time
(FSMT), and makes use of fully symbolic state set representations containing both
the clock values and the state variables. In order to handle incomplete timed sys-
tems our model checking algorithm deals with different communication methods
between the system and its unknown components, e.g. shared integer variables and
urgent and non-urgent synchronization. Our experimental results demonstrate that it
is possible to prove interesting properties at early stages of the design when parts of
the overall system may not yet be finished. Additionally, fading out components of
a large system may dramatically reduce the complexity of the system and thus the
effort for verification.

Keywords: Timed Automata, TCTL Model Checking, Black Box Model Checking

1 Introduction
Both the application areas and the complexity of real-time systems have grown with an enormous
speed during the last decades. Moreover, in many applications the correct operation of real-
time systems is safety-critical. These reasons make verification of such systems crucial. Timed
Automata (TAs) [AD94, Alu99] have become a standard for modeling real-time systems. They
extend finite automata to the real-time domain by adding real-valued clock variables. All clock
variables evolve over time with the same rate. During a discrete step that happens in zero-time a
clock variable may be reset.

Model checking approaches for TAs based on reachability analysis can be classified into semi
symbolic and fully symbolic approaches. Semi-symbolic approaches represent discrete locations
of TAs explicitly whereas sets of clock valuations are represented symbolically e.g. by unions of
clock zones. Clock zones are convex regions that result from an intersection of clock constraints
of the form xi− x j ∼ d where d ∈Q, ∼ ∈ {<,≤,=,≥,>} and xi, x j are clock variables.

Uppaal [LPY97, BDL04], the probably most prominent semi-symbolic approach, represents
clock zones by so-called difference bound matrices (DBMs) and provides efficient methods for
manipulating DBMs. In [MPS11] a fully symbolic model checking algorithm for reachability
analysis based on finite state machines with time (FSMTs) and LinAIGs (‘And-Inverter-Graphs

∗ This work was partly supported by the German Research Council (DFG) as part of the Transregional Col-
laborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS,
http://www.avacs.org/).

1 / 15 Volume 66 (2013)

mailto:(morbe, scholl)@informatik.uni-freiburg.de

Fully Symbolic TCTL Model Checking for Incomplete Timed Systems 1

with linear constraints’) [DDH+07, SDPK09, DDD+12] was presented. An FSMT is a for-
mal model to represent real-time systems using transition functions and reset functions, which
is especially suited for symbolic verification algorithms. TAs may be translated into FSMTs.
LinAIGs provide a fully symbolic representation both for the continuous part (i.e. the clock
values) and the discrete part (i.e. the state variables). A review of a number of alternative data
structures for a fully symbolic representation of timed systems as well as their comparison to
LinAIG representations can be found in [MPS11] as well.

In this paper we consider verification approaches for incomplete timed systems, i.e., timed
systems that contain unknown components. Unknown components are called ‘Black Boxes’
(BBs), whereas all known components are combined into the so-called ‘White Box’ (WB). Our
verification algorithm deals with different communication methods between the WB and the BB,
namely shared integer variables and urgent and non-urgent synchronization.

We address two interesting questions: The question whether there exists a replacement of the
BB such that a given property is satisfied (‘realizability’) and the question whether the property
is satisfied for any possible replacement (‘validity’).

The verification of incomplete timed systems can provide three major benefits: First of all,
certain verification steps can be performed at early stages of the design of a timed system, when
parts of the overall system may not yet be finished, so that errors can be detected as early as
possible. Second, complex parts of a complete timed system can be abstracted away and just
the relevant components for verifying a certain property are considered. Finally, the location of
design errors in timed systems not satisfying some property can be narrowed down by iteratively
masking potentially erroneous components.

We use fully symbolic methods to do full TCTL model checking for incomplete timed systems.
We use over-approximations of the set of states satisfying the given TCTL property φ for at
least one implementation of the BB and we use under-approximations of set of states satisfying
φ for all BB implementations. Using these sets, we provide sound proofs of validity and non-
realizability.

The paper is organized as follows. In Sect. 2 we give a brief review of Timed Automata
(TAs), TCTL model checking, and finite state machines with time (FSMTs) as a fully symbolic
representation for real-time systems. In Sect. 3 we compare our approach to related work. Our
model checking algorithm for incomplete systems is given in Sect. 4. We conclude the paper in
Sect. 6 after presenting experimental results in Sect. 5.

2 Preliminaries

2.1 Timed Automata

Real-time systems are often represented as Timed Automata (TAs) [Alu99, AD94]. TAs use
real-valued clock variables X := {x1, . . . ,xn} to represent time. The set of clock constraints
C (X) contains atomic constraints of the form (xi ∼ d) and (xi− x j ∼ d) with d ∈ Q and ∼ ∈
{<,≤,=,≥,>}.

We consider TAs extended with integer variables. Let Int := {int1, . . . , intm} be a set of
bounded integer variables with fixed lower and upper bounds for each integer.

A TA has a finite number of discrete locations. A state of a TA is a combination of a location
and a valuation of the clock variables and integer variables. When a TA stays in a location, a
continuous transition may take place, i.e., all clock variables evolve over time with the same rate
without changing the location or the values of the integers. In addition to continuous transitions,
TAs may take discrete transitions from one location to another (which happen in zero time).
Assignments to clocks and integers on a discrete transition take effect after taking the transition.

Proc. AVoCS 2013 2 / 15

ECEASST

r0
i = 2

a

i := 2

a

x1 ≤ 5

x0 ≥ 6
au

x0 := 0

r1 r2

l0 l1 l2

au

x1 := 0

a aui

p0

p1

Figure 1: Timed System

In general, transitions in TAs are labeled with guards, (syn-
chronization) actions, assignments to integers and resets of clocks.
Guards are restricted to conjunctions of clock constraints and con-
straints on integers. A transition can only be taken, if its guard is
satisfied, i.e., if it is ‘enabled’. Actions from Act := {a1, . . . ,ak} are
used for synchronization between different TAs. For our purposes
they do not have a special meaning when considering one timed au-
tomaton in isolation. Transitions in different automata labeled with
the same actions have to be taken simultaneously. If a transition
in a TA is not labeled with an action, then this transition can only
be taken if all other TAs stay in their current location. If several transitions without action are
enabled at the same time it is chosen non-deterministically which one to take. Resets are assign-
ments to clock variables of the form xi := 0. If a transition is taken, then all resets and integer
assignments on the transition are executed.

A transition in a TA may be declared as urgent. Whenever an urgent transition in the system
is enabled, the current location must be left without any delay. Just like transitions, actions may
be declared as urgent. Let au be an urgent action. If several TA components are composed in
parallel and in all components containing au-transitions a transition labeled with au is enabled,
then there must not be any time delay before taking a transition.

Example 1 The timed system shown in Fig. 1 consists of two TAs p0 and p1. Each TA has three
locations, p0 has clock variable x0, p1 has clock variable x1. The bounded integer i is used to
pass numerical information from one TA to the other. Initially, the timed system is in locations
l0 and r0 with clock values x0 = 0 and x1 = 0 and integer value i = 0. When – starting from the
initial state – time passes for 4.6 time units, e.g., the state s = (l0,r0,x0 = 4.6,x1 = 4.6, i = 0) is
reached. The guards are used to enable transitions, for example the transition (r0,r1) is enabled
in s whereas the transition (l0, l1) is only enabled when x0 has a value higher than or equal to 6.
With the assignment i := 2 on the transition (l0, l1) integer i is set to 2. In p1 i is read in the guard
i = 2 on the transition (r1,r2). Clock variable x0 is reset on (l2, l0) in p0, x1 is reset on (r2,r0) in
p1. Both TAs synchronize over the non-urgent action a and the urgent action au. Because of a
the two transitions (l2, l0) and (r2,r0) can only be taken in parallel. Similarly, (l1, l2) and (r1,r2)
synchronize over the action au. Since au is an urgent action, when p0 is in l1, p1 is in r1, and
i has a value of 2, time is not allowed to pass until the transitions (l1, l2) and (r1,r2) have been
taken (in parallel).

If there is a continuous or a discrete transition leading the TA from state s to state s′, we write
s→ s′. A trajectory of a TA is a finite or infinite sequence of states (s j) j≥0 with initial state s0

and s j−1→ s j for each j > 0. A state is reachable if there is a trajectory ending in that state.
In many definitions for TAs found in the literature (e.g. [LPY97]) locations are connected

with so-called invariants as an alternative to urgent transitions and urgent actions. Invariants
in TAs are conjunctions of clock constraints of the form xi ∼ d with ∼∈ {<,≤}, d ∈ Q+. A
TA is only allowed to stay in a location as long as the location invariant is not violated. In
some sense invariants are a means to define urgency implicitly: If a location l0 has the invariant
x <= 5 and for instance one outgoing transition (synchronizing or non-synchronizing), then the
outgoing transition becomes urgent as soon as the clock value of x equals 5. Especially for
synchronizations between different components we prefer to make it explicit whether they are
urgent (i.e. require a transition without letting time pass) or not. For that reason we do not allow
invariants in this paper. This is not a real restriction, because it is easy to see that for each TA
with closed location invariants there is a TA without invariants which is semantically equivalent

3 / 15 Volume 66 (2013)

Fully Symbolic TCTL Model Checking for Incomplete Timed Systems 1

x ≤ 5

x ≤ 5

x = 5
TA TA′

x := 0 x := 0

(a) urgent transitions

x ≤ 5

x ≤ 5

x := 0
x = 5

TA TA′

a

au

a

x := 0

(b) urgent synchroniztation

Figure 2: Urgency caused by invariants

(i.e. allows the same trajectories) and uses urgency only explicitly:

Lemma 1 For each TA without urgency and with closed location invariants of the form
∧k

i=1(xi ≤ di) with clock variables xi, di ∈ Q+ for i ∈ {1, . . . ,k}, there exists a semantically
equivalent TA with urgency and without invariants.

Consider a location l in timed automaton TA with the closed invariant x≤ n. When transform-
ing TA into a semantically equivalent TA TA′, l is copied into an equivalent location l′ without
invariant. For each incoming transition of l′ without reset on x in the copy an additional guard of
the form x≤ n is added to guarantee that l′ cannot be entered with a clock value x > n. For each
outgoing non-synchronizing (and non-urgent) transition e of l with a guard g, g∧ (x = n) 6= 0,
there are two edges in the copy: One non-urgent transition with all original labels and one urgent
transition with the additional guard x = n corresponding to the boundary of the invariant. This
has the effect that whenever in l′ the value of x is n a discrete transition must be taken to leave the
location. For a transition with a guard g′, g′∧ (x = n) 6= 0, leaving l labeled with a synchronizing
(and non-urgent) action a, there are two transitions in TA′ as well: The original transition and an
additional transition with identical labels, apart from the additional guard (x = n) and an urgent
action au replacing the original action a. (In other components composed in parallel, transitions
which were originally labeled by a are also duplicated into two edges, one with the non-urgent
action a and one with the urgent action au.) Figs. 2(a) and 2(b) illustrate these transformations.
New urgent transitions (resp. transitions with urgent synchronization) are represented by dashed
arrows.

The connection of urgency and invariants has already been studied by Bornot et al. in [BST97],
introducing TAs with deadlines that provide a general model for enforcing time progress condi-
tions. In this model, transitions may be associated with deadlines and time progress is stopped
whenever the deadline of such a transition is reached. Urgent transitions are called eager transi-
tions in [BST97], non-urgent transitions are called lazy transitions. According to [BST97] any
TA with deadlines may be transformed into a TA using only eager and lazy transitions.

A timed system is a system of p timed automata {TA1, . . . ,TAp}. A timed system has an
interleaving semantics, i.e., transitions in different TAs may not be taken simultaneously unless
they synchronize over non-urgent or urgent actions. For simplicity, we assume that only two
timed automata are able to synchronize over a (binary) synchronization action. As usual, the
composition of p timed automata is again a timed automaton. The interface of a TA TAi is
formed by the synchronization actions that it has in common with other TAs TA j (i 6= j) and
by integers on its transitions that are written / read by other TAs. In this paper we consider the
urgency of a synchronization action in a TA TAi as a property of its interface. An urgent action
au enforces an immediate synchronization without letting time pass, whereas time is allowed to
pass before the synchronization if TAs synchronize over a non-urgent action a.

Remark 1 A timed system TA1, . . . ,TAp is called well-formed, if for each integer i and each
synchronizing action a there is a unique TA TA j that is allowed to have transitions which are
labeled by a and perform assignments to i. In well-formed systems write-conflicts on integers
cannot occur. We only consider well-formed timed systems.

Proc. AVoCS 2013 4 / 15

ECEASST

In this paper we deal with incomplete networks of TAs. In such a system not all components
are known in detail. Some components are modelled by a Black Box (BB) whose behavior is
unknown. The remaining system is called White Box (WB). A BB is a part of the system and
like all other components it interacts with the rest of the system. There are several types of
communication between a BB and the WB, namely (1) shared bounded integer variables, (2)
non-urgent and (3) urgent synchronization actions.

(1) With shared bounded integer variables numerical values within the integer bounds can be
passed from one TA to another. In an incomplete system the BB is allowed to update
certain shared integer variables. The exact value after the update is then unknown to the
WB.

(2) Two enabled transitions synchronizing over a common non-urgent action have to be taken
in parallel. If only one of the transitions is enabled, synchronization cannot take place and
none of the two transitions can be taken. The problem of a synchronization between the
WB and the BB consists in the fact that it is unclear when the BB sends a synchronization
action.

(3) As for non-urgent actions, transitions synchronizing over urgent actions have to be taken
in parallel, but additionally a discrete transition must be taken without any delay, when
an urgent synchronizing transition may take place. Thus, a BB can cause two effects via
urgent actions: It may enable a transition in the WB ‘waiting for synchronization’ (just as
for non-urgent actions) and it can disable time evolution (continuous transitions) until a
discrete transition is taken.

With these three types of communication in a timed system the BB is not only able to affect
the discrete behavior of the WB but, because of urgency, the timing behavior of the WB may
also be influenced.

Remark 2 Note that we do not allow communication via shared clock variables in this paper.
This means that we assume local clocks of the WB and the BB components. In particular, clocks
that are written (i.e., reset) in the BB are not allowed to be used in guards of WB components.
We make the (realistic) assumption that only discrete information can be communicated from
one component to the other.

Remark 3 Furthermore, we restrict our consideration to BBs that cannot enable infinitely many
non-synchronizing urgent transitions during a finite amount of time. We call those BBs ‘non-
Zeno’ BBs. Other BBs are not interesting for us, because they can stop time evolution without
any interaction with the WB components.

2.2 Timed Computation Tree Logic
Timed CTL [ACD93, HNSY92, BK08] is an extension of the temporal logic CTL [CE82] used
to express properties for real-time systems. As usual, Eϕ holds in a state s when there exists
a path starting in s that satisfies the path formula ϕ . Aϕ holds in a state s when ϕ is satisfied
on all paths starting in s. A path formula is defined by ϕ ::= Φ UJ

Ψ where J ⊆ R≥0 is an
interval of real numbers. Intuitively, a path satisfies Φ UJ

Ψ whenever at some point in J, a state
satisfying Ψ is reached and at all previous time instants Φ∨Ψ holds [BK08]. Timed variants of
the modal operators F (eventually) and G (always) can be derived as follows: FJΦ = true UJ

Φ,
AGJΦ = ¬EFJ¬Φ, and EGJΦ = ¬AFJ¬Φ. TCTL formulas with J = [0,∞) may be considered
as a CTL formula and can be verified using normal CTL model checking algorithms. Any other

5 / 15 Volume 66 (2013)

Fully Symbolic TCTL Model Checking for Incomplete Timed Systems 1

intervals J 6= [0,∞) in a TCTL formula can be handled as follows: For J 6= [0,∞) a new clock
variable xnew is introduced that is neither used in the TA nor in the formula Φ. The variable xnew

is used to measure the elapsed time until a certain property holds. A TCTL formula EFJΦ holds
in a state s, e.g., iff the formula EF(Φ∧ xnew ∈ J) holds in (s,xnew = 0). Model checking of a
TCTL formula Φ uses a recursive method to compute for all subformulas Ψ the sets of states
Sat(Ψ) for which Ψ is satisfied (similar to CTL model checking). If Ψ = EFJΨ1, J 6= [0,∞),
e.g., then Sat(EFJΨ1) is computed by a fixed point iteration starting from Sat(Ψ1 ∧ xnew ∈ J)
using the predecessor operation Pre which computes for a state set S the set of all states s′ with
s′ → s, s ∈ S. Pre is repeatedly applied until the fixed point is reached. Sat(EFJΨ1) simply
results by fixing xnew to 0 in resulting fixed point.

As usual, we say that a TA fulfills a property Φ, if all initial states are included in Sat(Φ)
(similar to CTL model checking). A complete exposition of TCTL model checking can be found
in [BK08],e.g..

2.3 Finite State Machine with Time (FSMT)

In TAs locations are represented explicitly. By parallel composition of several TAs the number
of locations may explode. For that reason FSMTs have been considered for symbolic represen-
tations in [MPS11]. FSMTs do not define explicit representations of locations and thus, they are
better suited for fully symbolic algorithms. An FSMT is basically an extension of finite state
machines by real-valued clock variables.

Let X := {x1, . . . ,xn} be the set of real-valued clock variables, Y := {y1, . . . , yl} a set of
(binary) state variables, I := {i1, . . . , ih} a set of (binary) input variables. Let Cb(X) be the
set of arbitrary boolean combinations of clock constraints and Cb(X ,Y) be the set of arbitrary
boolean combinations of clock constraints and state variables (similarly for Cb(X ,Y, I)). As
usual, c ∈ Cb(X ,Y) describes a subset of Rn×{0,1}l , namely the set of all valuations of vari-
ables in X and Y that evaluate c to true. An FSMT is defined as follows:

Definition 1 (FSMT) A finite state machine with time, called FSMT, is a tuple 〈X ,Y, I, init,
(δ1, . . . ,δl),(resetx1 , . . . ,resetxn),urgent〉where X := {x1, . . . , xn} is a set of clock variables, Y :=
{y1, . . . ,yl} is a set of state variables, I := {i1, . . . , ih} is a set of input variables, init : (R+

0)
n×

{0,1}l→{0,1} is a predicate describing the set of initial states, δi : (R+
0)

n×{0,1}l×{0,1}h→
{0,1} (1≤ i≤ l) are transition functions, resetx j : (R+

0)
n×{0,1}l×{0,1}h→{0,1} (1≤ j≤ n)

are reset functions, urgent : (R+
0)

n×{0,1}l×{0,1}h→{0,1} is a predicate indicating when an
urgent transition is enabled. The functions δi, resetx j and urgent can be represented by boolean
combinations from Cb(X ,Y, I), init can be represented by a boolean combination from Cb(X ,Y).

A state of an FSMT is a valuation s = (xv
1, . . . ,x

v
n,y

v
1, . . . ,y

v
l) ∈ (R+

0)
n×{0,1}l of the clock

variables and the state variables. A valuation (yv
1, . . . ,y

v
l) is also called a location of the FSMT.

Trajectories of an FSMT always start in states fulfilling init. An FSMT may perform discrete
steps that are defined by transition functions δi based on the valuations of clocks, state variables,
and inputs. When performing a discrete step, the state variable yi is set to 0 (1) iff δi evaluates
to 0 (1) and a clock xi is reset to 0 iff resetxi evaluates to 1. Moreover an FSMT may perform
continuous steps (or time steps) where it stays in the same location, but lets time pass. This
means that all clocks are increased by the same constant as long as the predicate urgent does not
evaluate to 1.

We consider systems of FSMTs {F1, . . . ,Fp}, where the components are running in parallel.
Communication in such a system is realized just as for communicating FSMs. FSMTs commu-
nicate by reading each other’s state variables, clocks, and shared input variables. A system of

Proc. AVoCS 2013 6 / 15

ECEASST

FSMTs therefore is again an FSMT.
In [MPS11] timed systems of several TAs are translated into FSMTs. The state bits y1, . . . ,yl

result from logarithmic encodings of locations and integer variables of the TAs. The transition
functions δi represent transitions in the TAs and the reset functions are computed based on clock
resets on these transitions. In order to obtain deterministic transition functions, self loops have
to be added before the transformation and the decision between non-deterministic transitions
is resolved by additional (pseudo-)inputs. Additional input variables are used for the selection
between different interleaved TAs (in case of the so-called “pure interleaving behavior”) and
for resolving read-/write-conflicts on integers and clocks (in case of the so-called “parallelized
interleaving behavior”). Altogether we arrive at a set of inputs {i1, . . . , ih}. In the following we
abbreviate x1, . . . ,xn by~x, y1, . . . ,yl by~y, i1, . . . , ih by~i etc..

For ease of exposition we assume that there is a one-to-one relation between the integer values
in the allowed range and the assignments to the state bits corresponding to these integers. We
omit easy but slightly tedious technical details due to invalid codes.

3 Related work
Our approach shares ideas with Modal Transition Systems (MTSs) [LT88, LX90] (and their
successors like Partial Kripke Structures (PKSs) [BG99] and Kripke Modal Transition Systems
(KMTSs) [HJS01]) which exhibit must- and may-transitions between states. In our context must-
transitions are transitions between states that exist for all possible BB implementations. May-
transitions are transitions that may exist for at least one possible BB implementation. In that
sense our method is strongly related to 3-valued model checking [HJS01] and its extensions using
symbolic representations [CDEG03, NS04, NS13]. The approaches mentioned above were given
for discrete systems, whereas we extend and adapt these ideas to timed systems and properties
in TCTL (Timed Computation Tree Logic) [ACD93, HNSY92, BK08].

The module checking problem [KV96] may be seen as a validity problem (‘is a given property
satisfied for all possible replacements of the BBs’) confined to a single BB (which models the
environment behavior). Kupferman and Vardi use tree automata techniques to solve the mod-
ule checking problem for discrete systems specified by branching time properties (CTL, CTL*)
[KV96].

The realizability problem (‘does a replacement of the BBs exist, so that a given property is
satisfied?’) is strongly connected to the controller synthesis problem [MPS95, AMPS98], where
a system interacts with an unknown controller. In the real-time domain the controller synthesis
problem is modeled as a timed two-player game [BCD+, EMP10, PEM], where the controller
(BB) tries to satisfy a safety property and plays against the WB (who tries to violate it).

unsafe

a

BB
a

WB

x := 0

x ≥ 6

l0

l1

l2

Figure 3: BB example

By Fig. 3 we illustrate that these approaches with their ‘classical
notion’ of controller synthesis are not able to decide the realizability
question for safety properties as defined in our context. The figure
shows a small WB with an initial location l0, two additional loca-
tions and two transitions labeled with the non-urgent action a and
the guard x ≥ 6, respectively. The location l2 is considered to be
unsafe and the task is to implement the BB in such a way that the
unsafe location cannot be reached. The interface between the WB
and the BB is given by a non-urgent synchronization action a. Since the synchronization action
a is non-urgent, it is not possible to define such an implementation for the BB, since time is
allowed to pass until x = 6 and the transition to the unsafe location can be taken even if the BB is
always in a location with an enabled outgoing transition labeled by a. However, the mentioned
controller synthesis approaches lead to the result that the property is realizable, i.e., it is possible

7 / 15 Volume 66 (2013)

Fully Symbolic TCTL Model Checking for Incomplete Timed Systems 1

to replace the BB by a controller such that the unsafe location cannot be reached. This is due to
the fact that these approaches assume that the controller is able to make transitions urgent (either
explicitly or implicitly by invariants in the controller). This clearly gives the controller more
power than allowed in our model where the BB and the WB are components with equal rights,
that have to respect urgency or non-urgency of synchronization actions in the interface. If parts of
an existing timed system that do not include invariants and communicate with their environment
by non-urgent synchronization actions are abstracted away into a BB, then our approach may
prove unrealizability (which means that the safety property is not valid for the original design)
in cases when controller synthesis classifies the problem as realizable, since it gives the BB too
much power. An example for such a case is given by the benchmark ‘arbiter error’ considered in
Sect. 5, where ‘classical’ controller synthesis cannot identify the error, which is found with our
TCTL model checking algorithm. Additionally, whereas existing controller synthesis tools like
Uppaal-Tiga [BCD+] consider only reachability of safety properties, our algorithm goes beyond
and is able to handle full TCTL properties.

4 Model Checking of Incomplete Timed Systems
TCTL model checking for complete timed systems is based on the computation of a set Sat(Φ)
of all states satisfying a TCTL formula Φ, followed by checking whether all initial states are
included in this set (see also Sect. 2.2). The situation becomes more complex, if we consider
incomplete timed systems, since for each implementation of the BB we may have different state
sets satisfying Φ.

For that reason we do not compute the set Sat(Φ), but two sets Sat∃(Φ) and Sat∀(Φ): Sat∃(Φ)
contains all states, for which there is at least one BB implementation so that Φ is satisfied.
In a similar manner, Sat∀(Φ) contains all states, for which Φ is satisfied for all possible BB
implementations. It is easy to see that the following holds:

• A property Φ is valid for an incomplete timed system (i.e. for all BB implementations the
property is satisfied), if all initial states are included in Sat∀(Φ).

• A property Φ is not realizable for an incomplete timed system (i.e. there is no BB imple-
mentation that satisfies Φ), if there is an initial state that does not belong to Sat∃(Φ).

In order to obtain sound results for validity resp. non-realizability, it is enough to compute
approximations for Sat∃(Φ) and Sat∀(Φ). If we replace Sat∀(Φ) by an under-approximation
Satappr
∀ (Φ) ⊆ Sat∀(Φ) and Sat∃(Φ) by an over-approximation Satappr

∃ (Φ) ⊇ Sat∃(Φ), then the
statements made above certainly remain correct. (An initial state that is in Satappr

∀ (Φ) is certainly
in Sat∀(Φ) as well; an initial state that is not in Satappr

∃ (Φ) is not in Sat∃(Φ) either.)
In the following we show how to compute such sets. In order to simplify notations we usually

write Sat∃(Φ) and Sat∀(Φ), even if the computed sets are approximations. In the next section we
start with transformations needed to compute fully symbolic representations of sets Sat∃(Φ) and
Sat∀(Φ).

4.1 Modeling Incomplete Systems
More precisely, we begin with a sketch of how to extend the translation of TAs into FSMTs for
incomplete systems. For our model checking algorithm the communication between the BB and
the WB is of particular importance. We distinguish between four different types of transitions in
the WB:

Proc. AVoCS 2013 8 / 15

ECEASST

(1) non-urgent transitions without synchronization with the BB, called nu-transitions in the
following

(2) urgent transitions without synchronization with the BB, called u-transitions

(3) transitions with a non-urgent synchronization with the BB, called nu-sync-transitions

(4) transitions with an urgent synchronization with the BB, called u-sync-transitions

In our algorithm we do not work with one transition (reset) function for the incomplete system
at hand, but with different transition (reset) functions for different types of transitions.

First, we consider only the transitions in the TAs that do not synchronize with the BB at all
(i.e. only nu-transitions and u-transitions) and apply the transformation from [MPS11] (includ-
ing addition of self loops etc.) resulting in transition functions δ

no−sync
i (~x,~y,~i). Secondly, we

consider only u-sync-transitions, leading to transition functions δ
u−sync
i (~x,~y,~i). These transition

functions are computed by the transformation from [MPS11] restricted to u-sync-transitions.
The transition functions δ

no−sync
i and δ

u−sync
i are used in the computation of Sat∀(Φ).

To compute Sat∃(Φ) a third transition function is needed. Here, actions used for communi-
cation with the BB on nu-sync-transitions and u-sync-transitions can be omitted, because there
can always be a BB implementation sending the requested action such that synchronizing transi-
tions are always enabled. The functions δ all

i (~x,~y,~i) for the state bits yi are then computed by the
transformation from [MPS11] considering all transitions in the WB.

Similarly we compute three reset functions for each clock variable xi ∈ X . Two reset functions
are used for the computation of Sat∀(Φ), one for the resets on the nu-transitions and u-transitions
(resetno−sync

xi (~x,~y,~i)) and a second for u-sync-transitions (resetu−sync
xi (~x,~y,~i)). A third reset func-

tion (resetall
xi
(~x,~y,~i)) for all transitions in the WB (with neglected synchronization actions with

the BB) is needed for the computation of Sat∃(Φ).
Finally, we need two additional urgency predicates in our algorithm (Sect. 4.2): uno−sync(~x,~y)

is a predicate evaluating to 1, if a u-transition is enabled in state (~x,~y) and uu−sync(~x,~y) is a
predicate evaluating to 1, if a u-sync-transition is enabled in state (~x,~y).

4.2 Model checking algorithm
Now we show how to do fully symbolic TCTL model checking for incomplete real-time systems
modeled as incomplete FSMTs by computing fully symbolic representations of the sets Sat∃(Φ)
and Sat∀(Φ) as defined above.1 The most important ingredient of TCTL model checking is the
predecessor operation Pre (see also Sect. 2.2); thus the essential contribution is how to define
two variants of Pre for computing Sat∃ and Sat∀.

Definition 2 (Pre∃(S), Pre∀(S)) s′ is included into Pre∃(S) iff for at least one BB implementa-
tion there is a transition s′→ s with s ∈ S. (This transition can be regarded as a may transition
following the notion from [LT88]). A state s′ is included in Pre∀(S) iff for all BB implementa-
tions there is a transition s′→ s with s ∈ S. (The transition is a must transition.)

For formulas like Φ = EFΨ whose evaluation needs a fixed point iteration we make use of
Pre∃ to compute Sat∃(Φ) (instead of Pre which is used for complete systems). In the special case
Φ = EFΨ we start with the set Sat∃(Ψ) (that at least includes the set of states that may satisfy Ψ

1 If clear from the context, we do not always differentiate between sets like Sat∃(Φ) and predicates describing these
sets.

9 / 15 Volume 66 (2013)

Fully Symbolic TCTL Model Checking for Incomplete Timed Systems 1

depending on the concrete BB implementation) and we use Pre∃ to compute the set of states that
can reach Sat∃(Ψ) via one ‘may transition’. By iteratively applying Pre∃ we obtain Sat∃(EFΨ)
that includes all states from which there is a computation path to a state from Sat∃(Ψ) for at least
one BB implementation.

Likewise for Sat∀(Φ) we replace Pre by Pre∀. In the special case Φ = EFΨ we start with the
set Sat∀(Ψ) (that at most includes the set of states that definitely satisfy Ψ independently from
the BB implementation) and we use Pre∀ to compute the set of states which can reach Sat∀(Ψ)
via one ‘must transition’, i.e. independently from the BB implementation. Again, we obtain
Sat∀(EFΨ) by iteratively applying Pre∀.

The remaining operations are more or less straightforward. It is easy to see that Sat∀(¬Φ) =
¬Sat∃(Φ), Sat∃(¬Φ) = ¬Sat∀(Φ), i.e., negation plays a special role here, since it turns ‘exis-
tential quantification of BBs into universal quantification’ and over-approximation into under-
approximation (and vice-versa). Moreover, it holds Sat∀(Φ1 ∧Φ2) = Sat∀(Φ1)∧ Sat∀(Φ2) and
Sat∃(Φ1∧Φ2)⊆ Sat∃(Φ1)∧Sat∃(Φ2). In the second case we only have ‘⊆’ instead of ‘=’, since
a certain state may fulfill Φ1∧¬Φ2 for certain BB implementations and ¬Φ1∧Φ2 for all others,
thus it belongs to Sat∃(Φ1)∧Sat∃(Φ2), but not to Sat∃(Φ1∧Φ2). For approximations we over-
approximate by identifying Satappr

∃ (Φ1∧Φ2) with Satappr
∃ (Φ1)∧Satappr

∃ (Φ2). A second source
of approximation stems from the fact that we assume that the BB can make different decisions
based on the current state of the WB, i.e., the BB ‘can read the state bits of the WB’. (Note that
the same assumption is implicitly made in classical controller synthesis approaches for safety
properties as well [BCD+, EMP10, PEM].)

The evaluation of general TCTL formulas needs both Pre∀ and Pre∃.
In the following we describe the computation of Pre∀(Φ) and Pre∃(Φ) separately for discrete

steps and time steps. We start with Pre∀(Φ).

4.3 Pred
∀(Φ) – The Discrete Step for Pre∀(Φ)

Starting with a state set Φ(~x,~y) the discrete (backward) step needed for Pre∀(Φ) computes all
predecessors from which Φ can be reached over a discrete transition in the WB, independently
from the implementation of the BB.

Since it is possible that the BB does not synchronize with the WB at all, we consider only
u-transitions and nu-transitions which are described by the functions δ

no−sync
i . The discrete step

can then be computed similarly as in [MPS11] using the transition functions δ
no−sync
i and the

reset functions resetno−sync
xi .

Lemma 2 The resulting state set Pred
∀(Φ)(~x,~y) contains only states from which Φ(~x,~y) is

reachable by a discrete transition in the WB independently from any BB behavior.

The proof of the lemma is straightforward, since due to the interleaving semantics of TAs, the
u-transitions and nu-transitions of the WB can always be taken independently from the imple-
mentation of the BB.

On the other hand, discrete steps that reach Φ independently from the BB use only u-transitions
and nu-transitions. This is easy to see by considering a special BB implementation BBno−sync that
never synchronizes with the WB and thus disables all nu-sync-transitions and u-sync-transitions.

4.4 Prec
∀(Φ) – The Time Step for Pre∀(Φ)

Proc. AVoCS 2013 10 / 15

ECEASST

l0

i = 1
au

i = 0

au

x = 5

x = 6

x = 7

au

iBB

l1

l2

Figure 4: Time step

Starting with a state set Φ(~x,~y) the time step for Pre∀(Φ) com-
putes all predecessors from which Φ(~x,~y) can be reached through
time passing, independently from the BB implementation. Because
of urgent synchronization, the BB can affect the timing behaviour
in the WB by enabling a u-sync-transition and thus stopping time
evolution.

Example 2 We illustrate the time step by a small example shown
in Fig. 4. Here, the BB communicates with the WB over an urgent synchronization action au

and a shared integer i with i ∈ {0,1}. Let Φ be the state set already computed by our backward
model checking algorithm. We assume that (l0,x = 7, i = 0) ∈ Φ, (l0,x = 7, i = 1) ∈ Φ and ask
whether we can include (l0,x = 0, i = 0) into the states reaching Φ independently from the BB
implementation. If the BB never sends the action au, then no u-sync-transitions (dashed lines)
would be enabled and time would be allowed to pass starting from (l0,x = 0, i = 0). (The time
evolution could be interrupted by discrete urgent and non-synchronizing transitions inside the
BB possibly writing on i, but only by finitely many of those, since we consider only non-Zeno
BBs, see Remark 3.) Finally we would arrive at (l0,x = 7, i = 0) or (l0,x = 7, i = 1). However,
the situation is more complicated, since we have to consider all possible BB implementations
including BBs which send au and thus disable time evolution. We consider two cases.

Case 1: The BB is not allowed to write i on synchronizing transitions with au, because i is
written on such transitions in the WB (see Remark 1). Then the BB cannot change i on the
u-sync-transitions in Fig. 4. (All the same, the BB can always interrupt time evolutions by
discrete urgent and non-synchronizing transitions inside the BB and switch between i = 0 and
i = 1.) Only if both (l1,x = 5, i = 0) ∈ Φ and (l2,x = 6, i = 1) ∈ Φ, we can conclude that we
can definitely reach Φ from (l0,x = 0, i = 0). Time evolution may lead from (l0,x = 0, i = 0) to
(l0,x = 5, i = 0). If the BB then enables the transition from l0 to l1 in Fig. 4, then Φ is reached
via this u-sync-transition. If not, time evolution may continue until x = 6. Again, if the BB then
enables the transition from l0 to l2 (this presumes that the BB has set i := 1 before), then Φ is
reached via this u-sync-transition. Otherwise the time evolution continues until (l0,x = 7, i = 0)
or (l0,x = 7, i = 1) that are both in Φ.

Case 2: The BB is allowed to write i on synchronizing transitions. Then the BB may switch
the integer i from 0 to 1 while taking the u-sync-transitions in Fig. 4. Compared to Case 1,
we have thus to demand (l1,x = 5, i = 1) ∈ Φ and (l2,x = 6, i = 0) ∈ Φ as well, if we want to
guarantee that we can definitely reach Φ from (l0,x = 0, i = 0).

Based on the ideas given in Ex. 2 we arrive at the following formula Prec
∀(Φ) for the time step:

Prec
∀(Φ)(~x,~y) =

[
∧n

j=1 (x j ≥ 0)
]
∧(

¬uno−sync(~x,~y)∧
[
uu−sync(~x,~y) =⇒ ∀~yu−sync

BB ∀~i Preu−sync
d (Φ)(~x,~y,~i)

])
∧

∃λ
[
(λ > 0)∧∀~yall

BB

(
Φ(~x+~λ ,~y)∧

{
∀λ ′(0 < λ

′ < λ) =⇒
(
¬uno−sync(~x+ ~λ ′,~y)∧[

uu−sync(~x+ ~λ ′,~y) =⇒ ∀~yu−sync
BB ∀~i Preu−sync

d (Φ)(~x+ ~λ ′,~y,~i)
])})]

(1)

with~x+~λ abbreviated for (x1+λ , . . . ,xn+λ) for a scalar λ , Preu−sync
d (Φ)(~x,~y,~i) being obtained

from Φ(~x,~y) by computing a discrete step using δ
u−sync
i (~x,~y,~i) and resetu−sync

x j (~x,~y,~i).
The subset ~yall

BB ⊆~y represents the state variables corresponding to the integer variables that
are allowed to be written by the BB (see Case 1 of Ex. 2) and~yu−sync

BB ⊆~yall
BB represents the state

variables that are allowed to be written by the BB on u-sync-transitions (see Case 2 of Ex. 2).

11 / 15 Volume 66 (2013)

Fully Symbolic TCTL Model Checking for Incomplete Timed Systems 1

Lemma 3 The resulting state set Prec
∀(Φ)(~x,~y) contains only states from which states of Φ

can be reached (via time evolution and/or via u-sync-transitions), independently from the BB
behaviour.

The proof of the lemma is rather tedious and omitted due to lack of space. The ideas and all
relevant arguments and cases have been given in Ex. 2.

4.5 Pred
∃(Φ) – The Discrete Step for Pre∃(Φ)

In Pre∃(Φ) the discrete step computes all predecessors such that there exists a BB implemen-
tation for which Φ can be reached over a discrete transition in the WB. Pred

∃(Φ)(~x,~y) can be
computed as in [MPS11] using δ all

i (~x,~y,~i) and resetall
xi
(~x,~y,~i).

Lemma 4 The resulting state set Pred
∃(Φ)(~x,~y) contains all states for which there exists a BB

implementation such that Φ(~x,~y) is reachable by a discrete transition in the WB.

The proof follows from the following argument: The result corresponds to a backwards eval-
uation of discrete WB transitions of any kind (nu-transitions, u-transitions, nu-sync-transitions,
u-sync-transitions). Of course, more transitions can never be enabled in the WB, not even by a
BB implementation that always provides all synchronization actions needed to enable synchro-
nizing transitions in the WB.

4.6 Prec
∃(Φ) – The Time Step for Pre∃(Φ)

The time step for Pre∃(Φ) can be described by

Prec
∃(Φ)(~x,~y) =

[
∧n

j=1 (x j ≥ 0)
]
∧¬uno−sync(~x,~y)∧∃∃λ

[
(λ > 0)∧(

(∃~yall
BBΦ(~x+~λ ,~y))∧

{
∀λ ′(0 < λ

′ < λ) =⇒
(
∃~yall

BB¬uno−sync(~x+ ~λ ′,~y)
)})]

(2)

Lemma 5 The resulting state set Prec
∃(Φ)(~x,~y) contains all states for which there exists a BB

implementation such that Φ(~x,~y) is reachable through time elapsing.

The correctness of the lemma follows from the following facts: There may be a time evolution
of length λ > 0 from (~x,~y) to a state (~x+~λ ,~y′) in Φ, if (1) ~y′ results from ~y by replacing state
bits ~yall

BB corresponding to shared integer variables and (2) the time evolution is not stopped by
urgent transitions in between. The reason for part (1) is given by the fact that an arbitrary BB is
able to interrupt the time evolution by non-synchronizing urgent transitions that change~y into ~y′
by writing to the shared integers. This is expressed by the existential quantification ∃~yall

BB before
Φ(~x+~λ) in Eqn. (2). Part (2) is ensured as follows: First, condition ¬uno−sync(~x,~y) in Eqn. (2)
ensures that no u-transition is enabled in (~x,~y). Secondly, condition ∃~yall

BB¬uno−sync(~x+ ~λ ′,~y)
has to hold for each λ ′ between 0 and λ . Since for each λ ′ between 0 and λ the BB may
arbitrarily interrupt the time evolution and write on the shared integer variables, it is enough
that u-transitions are disabled for an arbitrary value of the shared integer variables~yall

BB (which is
expressed by the quantification ∃~yall

BB).
4.7 Discrete and Time Steps Together
In our implementation we apply alternating discrete steps and time steps for the operations Pre∃
and Pre∀. For Pre∃ we additionally apply an existential quantification of the shared integer

Proc. AVoCS 2013 12 / 15

ECEASST

variables~yall
BB after each application of Pred

∃ and Prec
∃. This existential quantification corresponds

to an interleaving with a potential discrete backwards step of the BB. Since we have to consider
all possible BB implementations for Pre∃, we have to assume that the shared integers can be
set to arbitrary values in this step. Since for Pre∀ we only have to consider effects shared by
all possible BB implementations and there are certainly BB implementations that do not write
shared integers at all, we completely omit potential discrete BB backward steps (and thus the
existential quantification of~yall

BB) for Pre∀.

5 Experiments
We implemented the TCTL model checking algorithm for incomplete timed systems in the pro-
totype model checker FSMT-MC [MPS11]. Tab. 1 shows the results of the new method on
several parameterized benchmarks with parameter n. Parameterized benchmarks made it easy
for us to generate sets of increasingly complex benchmarks for comparison. Actually we do not
consider parameterized benchmarks as the main field of application for our algorithm and thus
we did not make use of symmetry reduction, neither within our tool nor within any competitor.
‘CPP’ is a system of communicating parallel processes. The complete version of CPP has n
components, an incomplete version with BB only 2 WB components. The benchmark ‘arbiter’
[MPS11] models n processes which are controlled by a distributed arbiter. The complete ver-
sion contains 2n+ 1 components, an incomplete version contains n+ 3 WB components. The
Leader Election benchmark (‘leader’) [EFGP10] models a timed leader election in a ring proto-
col. We modeled a version of the system with an error such that the leader is not found within
a certain time limit. The complete version has n components, the incomplete version has only
3 WB components, but their size increases linearly with n. The Carrier Sense Multiple Access
with Collision Detection (‘CSMA’) benchmark [Yov97] is a system with several senders trying
to access a common bus. In its complete version it has n+3 components, the incomplete version
has 3 components; one of them increases linearly with n. In all cases the WB components com-
municate with the BB components which are abstracted away by exchanging integers values and
urgent resp. non-urgent synchronization actions.2 The first column (‘nbr.’) in Tab. 1 gives the
parameters n. All times in Tab. 1 are given in CPU seconds. We ran FSMT-MC on the complete
version (‘comp.’) and on the incomplete version (‘inc.’) of the benchmarks and compare the
results to the state-of-the-art model checkers Uppaal v.4 (UPP.), RED 8 and Kronos 2.5 (KR.).
Uppaal performs a forward analysis and RED does a backward traversal. Both can only be used
for reachability analysis whereas Kronos can also be used for full TCTL model checking, but
cannot handle benchmarks containing integer variables (like ‘arbiter’ and ‘leader’). All bench-
marks were originally modeled as TAs and were automatically translated into FSMTs [MPS11].
CPU times of the (un-optimized) translator for the complete (‘comp.’) and the incomplete (‘inc.’)
timed systems are given in Tab. 1 in columns TA2FSMT. In all cases when the model checker did
not timeout, the sum of translation times and model checking times did not exceed the timeout
either. The experiments have been conducted on an Intel Xeon with 3.3 Ghz with a time limit of
2 CPU hours and a memory limit of 2 GB.

For the benchmark CPP we test freedom of Zeno behaviour (‘CPP zeno’) with the property
ΦNZ = AG(EF{=1}true). To verify this property we need full TCTL model checking and there-
fore we compare our results only to the tool Kronos. For the complete system, we detect Zeno
behaviour (i.e. ΦNZ is not satisfied) for n up to 6, Kronos reaches n = 3. For the incomplete
system FSMT-MC easily verifies non-realizability of ΦNZ for n up to 50. This means that the
reason for Zeno behaviour lies in the WB components and cannot be fixed by BB implementa-

2 More details about the benchmarks as well as the benchmark files themselves can be found at
http://www.informatik.uni-freiburg.de/∼morbe/bb-tctl/.

13 / 15 Volume 66 (2013)

Fully Symbolic TCTL Model Checking for Incomplete Timed Systems 1

tions. (For the CPP benchmark this result is more interesting than the shorter CPU times, since
the size of the WBs remains constant for increasing n.)

For the arbiter benchmark we considered a correct version (arbiter) and an erroneous version
(arbiter error). For the complete and correct version our model checking algorithm can prove
correctness for n up to 16, whereas Uppaal and RED cannot go beyond n = 6. For the incomplete
(correct) version, FSMT-MC can prove validity of the safety property for n up to 50. For the
erroneous version, the situation is similar. FSMT-MC is able to prove that the safety property is
not realizable for the incomplete (and incorrect) version, i.e., no BB implementation can prevent
the system from reaching the unsafe states. This is achieved with much smaller run times than
for the complete version. Remember that for the arbiter as well as for the following benchmarks
the complexity of the WB increases with n.

For the incomplete leader benchmark we can prove unrealizability for large systems as well,
i.e., independently from the BB behaviour no leader can be found within a given time limit. In
contrast to the cases above Uppaal and RED outperform our tool for the complete system.

On the CSMA benchmark we tested freedom of Zeno behaviour with property ΦNZ . Kronos
falsifies property ΦNZ for systems with up to 7 senders. For incomplete variants with BB FSMT-
MC easily proves unrealizability of ΦNZ for large systems using full TCTL model checking.

nbr. UPP. RED FSMT-MC TA2FSMT
comp. inc. comp. inc.

ar
bi

te
r

5 30.5 4.6 12.6 2.3 1.7 6.4
6 3556.9 40.7 20.9 3.0 2.9 8.8
7 to to 25.6 3.3 3.7 10.8

16 to to 1687.6 24.5 18.4 52.2
17 to to to 28.1 20.4 58.3
50 to to to 561.7 214.2 512.5

ar
bi

te
re

rr
or

3 0.1 0.6 1.3 1.0 1.2 2.7
4 0.1 to 1.2 1.4 1.4 4.4

10 2648.0 to 5.9 2.3 7.4 21.4
11 to to 6.8 2.3 8.7 25.7
49 to to 122.5 16.9 199.5 490.7
50 to to to 17.2 209.3 509.9

le
ad

er

5 0.4 18.3 to 124.7 4.0 15.3
6 2.3 to to 72.6 5.7 21.1

10 2960.7 to to 163.0 17.7 59.8
11 to to to 149.5 21.4 72.3
50 to to to 421.8 3702.2 2376.5

nbr. KR. FSMT-MC TA2FSMT
comp. inc. comp. inc.

C
PP

ze
no

3 0.5 6.1 7.3 1.5 3.0
4 to 131.5 5.5 2.2 4.6
6 to 2205.1 5.5 4.8 9.0
7 to to 8.2 6.4 11.9

49 to to 16.8 345.0 502.9
50 to to 16.0 357.1 522.1

C
SM

A

3 0.1 to 6.2 1.2 2.2
6 0.7 to 7.2 2.5 5.0
7 0.5 to 10.5 3.2 6.4
8 to to 11.9 4.0 7.9

49 to to 13.0 138.3 184.2
50 to to 18.2 142.5 192.5

Table 1: Experimental results

In summary, we observe that after abstracting timed components our new TCTL model checker
is still able to prove interesting validity and unrealizability results within much smaller times than
needed for the complete system.

6 Conclusion
We presented a fully symbolic TCTL model checking algorithm for FSMTs able to handle in-
complete timed systems. We described the computation of the discrete step and the time step
to be able to handle incomplete FSMTs communicating with the BB over shared integers and
urgent and non-urgent synchronization. For a given TCTL property and an incomplete FSMT
our model checking algorithm can prove non-realizability (there is no BB implementation such
that the property is satisfied) and validity (the property is satisfied for all possible BB implemen-
tations). The experimental results show that it is possible to prove interesting properties early
when parts of the overall system may not yet be finished. Additionally the results demonstrate

Proc. AVoCS 2013 14 / 15

ECEASST

that fading out complete components of a timed system dramatically reduces the complexity of
the system and the verification effort.

As mentioned in Sect. 4 our algorithm is sound, but approximate since different decisions of
the BB can be made based on different states of the WB. An interesting task for the future would
be to investigate exact (or more exact) solutions taking the ‘restricted degree of informedness’ of
the BB into account (possibly for restricted scenarios like one single BB, e.g..).

Bibliography
[ACD93] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-time. Information and Computation, 1993.
[AD94] Alur, Dill. A Theory of Timed Automata. Theoretical Computer Science, 1994.
[Alu99] Alur. Timed Automata. Theoretical Computer Science, 1999.
[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller Synthesis For Timed Automata. 1998.
[BCD+] Behrmann, Cougnard, David, Fleury, Larsen, Li. UPPAAL-Tiga: time for playing games! CAV’07.
[BDL04] Behrmann, David, Larsen. A Tutorial on Uppaal. In SFM. 2004.
[BG99] Bruns, Godefroid. Model Checking Partial State Spaces with 3-Valued Temporal Logics. In CAV. 1999.
[BK08] Baier, Katoen. Principles of Model Checking (Representation and Mind Series). The MIT Press, 2008.
[BST97] S. Bornot, J. Sifakis, S. Tripakis. Modeling Urgency in Timed Systems. In COMPOS. 1997.
[CDEG03] Chechik, Devereux, Easterbrook, Gurfinkel. Multi-valued symbolic model-checking. ACM Trans. Softw.

Eng. Methodol. 12, 2003.
[CE82] Clarke, Emerson. Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal

Logic. In Logic of Programs. 1982.
[DDD+12] Damm, Dierks, Disch, Hagemann, Pigorsch, Scholl, Waldmann, Wirtz. Exact and fully symbolic verifi-

cation of linear hybrid automata with large discrete state spaces. Sci. Comput. Program. 77, 2012.
[DDH+07] Damm, Disch, Hungar, Jacobs, Pang, Pigorsch, Scholl, Waldmann, Wirtz. Exact State Set Representa-

tions in the Verification of Linear Hybrid Systems with Large Discrete State Space. In Proc. of ATVA.
2007.

[EFGP10] Ehlers, Fass, Gerke, Peter. Fully Symbolic Timed Model Checking Using Constraint Matrix Diagrams.
In Proc. of RTSS. 2010.

[EMP10] Ehlers, Mattmüller, Peter. Combining Symbolic Representations for Solving Timed Games. In Proc. of
FORMATS. 2010.

[HJS01] Huth, Jagadeesan, Schmidt. Modal Transition Systems: A Foundation for Three-Valued Program Anal-
ysis. In Europ. Symp. on Programming. 2001.

[HNSY92] Henzinger, Nicollin, Sifakis, Yovine. Symbolic Model Checking for Real-time Systems. Information and
Computation, 1992.

[KV96] O. Kupferman, M. Y. Vardi. Module Checking. In CAV. LNCS 1102, pp. 75–86. 1996.
[LPY97] Larsen, Pettersson, Yi. UPPAAL in a Nutshell. STTT 1, 1997.
[LT88] Larsen, Thomsen. A Modal Process Logic. In LICS. 1988.
[LX90] Larsen, Xinxin. Equation Solving Using Modal Transition Systems. In LICS. 1990.
[MPS95] Maler, Pnueli, Sifakis. On the Synthesis of Discrete Controllers for Timed Systems. In STACS. 1995.
[MPS11] Morbé, Pigorsch, Scholl. Fully Symbolic Model Checking for Timed Automata. In Proc. of CAV. 2011.
[NS04] Nopper, Scholl. Approximate Symbolic Model Checking for Incomplete Designs. In FMCAD. 2004.
[NS13] Nopper, Scholl. Symbolic Model Checking for Incomplete Designs With Flexible Modeling of Un-

knowns. IEEE Transactions on Computers, 2013.
[PEM] Peter, Ehlers, Mattmüller. Synthia: Verification and Synthesis for Timed Automata. CAV’11.
[SDPK09] Scholl, Disch, Pigorsch, Kupferschmid. Computing Optimized Representations for Non-convex Poly-

hedra by Detection and Removal of Redundant Linear Constraints. In Tools and Algorithms for the
Construction and Analysis of Systems. 2009.

[Yov97] Yovine. Kronos: A Verification Tool for Real-Time Systems. Journal on Software Tools for Technology
Transfer, 1997.

15 / 15 Volume 66 (2013)

	Introduction
	Preliminaries
	Timed Automata
	Timed Computation Tree Logic
	Finite State Machine with Time (FSMT)

	Related work
	Model Checking of Incomplete Timed Systems
	Modeling Incomplete Systems
	Model checking algorithm
	Pred() – The Discrete Step for Pre()
	Prec() – The Time Step for Pre()
	Pred() – The Discrete Step for Pre()
	Prec() – The Time Step for Pre()
	Discrete and Time Steps Together

	Experiments
	Conclusion

