Electronic Communications of the EASST

Volume 66 (2013)

Proceedings of the
Automated Verification of Critical Systems
(AVoCS 2013)

Evaluation of Graphical Control Flow Management Approaches for
Event-B Modelling

Dana Dghaym, Michael Butler and Asieh Salehi Fathabadi

15 pages

Guest Editors: Steve Schneider, Helen Treharne

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Evaluation of Graphical Control Flow Management Approaches for
Event-B Modelling

Dana Dghaym', Michael Butler” and Asieh Salehi Fathabadi’

dd4gl12!, mjb?, asfO8r> @ecs.soton.ac.uk
University of Southampton, UK

Abstract: Integrating graphical representations with formal methods can help bridge
the gap between requirements and formal modelling. In this paper, we compare and
evaluate two graphical approaches aiming at describing control flows and refinement
in Event-B, and we use a fire dispatch system case study to perform this evaluation.
The fire dispatch system case study provides a good example of a complex workflow
through which we try to identify a process that facilitates defining the structural and
the behavioural parts of the Event-B model. In our case study, we focus on building
the dynamic part of the model to evaluate the two diagrammatic notations: UML Ac-
tivity Diagrams and Atomicity Decomposition Diagrams. Based on our evaluation,
we try to identify the advantages and limitations of both approaches. Finally, we try
to compare how both graphical notations can affect the Event-B formal modelling
of our case study.

Keywords: Event-B, Atomicity Decomposition, UML Activity Diagram, Control
Flow

1 Introduction

From requirements described in free natural language to specifications in mathematical notations
with strict semantics, a large gap exists that suggests the need for a semi-formal intermediate
layer. That is why many studies and experiments, such as [RSP07], suggest the integration of
graphical representations with formal methods to reduce the gap from the requirements document
to the formal model on one hand, and facilitate the understanding of the formal models effectively
on the other hand.

In this paper we study two graphical techniques that describe control flows and refinement in
the Event-B formal method. These modelling techniques are UML activity diagrams (ActD) and
atomicity decomposition (AD) diagrams, which have a hierarchical based structure but are not
as well known to industry as UML diagrams. We apply these representations to a fire dispatch
system case study, that has a complex control flow and thus these techniques can be very useful
to simplify the problem.

In this case study, we try to compare and evaluate these two diagrammatic approaches, where
both have their advantages and limitations. Atomicity decomposition’s strength appears in its
natural approach to describe explicit refinement and explicit constructs to describe replications
and multiple instances in control flows. Activity diagram’s strength lies in the flexibility of its
layout supported by directed arrows and the use of guards explicitly in decision-nodes. However,

1/15 Volume 66 (2013)

mailto:dd4g12
mailto:mjb
mailto:asf08r

Evaluation of Graphical Control Flow Management Approaches for Event-B Modelling E}

both have some limitations when it comes to multiple instances replicators, atomicity decompo-
sition with the limited behaviour of its all-construct, and activity diagram with the lack of some
explicit replicator constructs like the some-construct.

This paper is organised as follows: Section 2 describes some needed background information
about Event-B, activity diagrams and atomicity decomposition. Then in Section 3, we describe
our case study by presenting the requirements, the entity diagram that presents the structure of
the model, and finally to describe the behavioural part of our case study, we use activity and
atomicity decomposition diagrams. Later in Section 4, we compare and evaluate the dynamic
representations of the fire dispatch system, both graphically and in relation to the Event-B model.
Finally, we compare our approach with other related work and conclude in Sections 5 and 6
respectively.

2 Background

2.1 Event-B

Event-B is a formal method for modelling complex systems [Abr10]. Its language is based on
the set theory and first order logic. Correctness and consistency of models, are proved by means
of mathematical proofs [ABH " 10].

Refinement & Decomposition: Refinement is a key concept in the Event-B modelling, where
instead of building a single model, we start with an abstract one, focusing on the main functional-
ities of the system. Then during refinement levels, details of the model and/or new functionalities
are added gradually. Refinement process aids understanding the model and proving its correct-
ness and consistency [AHO7]. However, adding lots of details at different refinement levels,
sometimes results in complex and long models. In some cases only parts of the model need to
be refined, hence the need for model decomposition, which is another key concept in Event-B.
In model decomposition, we divide a large model into some sub-models, each can be refined
individually [AHO7].

Structure: The Event-B model is divided into a static part, the “Context” and a dynamic part,
the “Machine”. The context consists of the set types, constants and their properties as axioms.
The machine consists of variables, invariants describing the constraints applied on the variables,
and events that show how the variables’ values change provided some guard conditions hold. In
addition, theorems can be defined in both context and machine [MAVO05]. Figure 1 presents a
simple Event-B model showing both the static and the dynamic parts of the model. Machine M,
on the left, consists of two events: the INITILIASATION event and “Eventl”, which adds values
to the variable “ser”. In order to define this variable as a subset of “SET” in context C, using
invariant “inv_I"" enforced by the guard condition “grdI”, we add the “sees” clause to machine
M to access context C.

2.2 UML Activity Diagram

Unified Modelling Language (UML) [RJB98], is a graphical representation for modelling object-
oriented systems. UML consists of many graphical types representing objects, behaviours, and
states. Activity diagram (ActD) is one of these types, that describes the behavioural, or the

Proc. AVoCS 2013 2/15

Eg ECEASST

machine M sees C
variables set
invariants
@inv_1set < SET

events context C
event INITIALISATION sees sets SET
then end
@act1set:=0
end
event Event1
any p par

where
@ord1p ESET«—————— guard
then
@act1 set == set U {p} «——— action
end
end

Figure 1: Simple Event-B Model

dynamics, part of the system [Obj12].

An ActD is a directed graph, in which the direction of the arrows suggests the flow of activities.
In older versions of UML, an ActD was considered as a type of state machine diagram, but since
the introduction of version 2.0, ActD semantics is widely enriched, based on token flow inspired
by Petri Nets [Obj12]. However, it still lacks a formal definition and that is why many researchers
have tried to define a formal semantics of UML activity diagrams in different ways [Obj12].
Figure 2 describes some of the notations of UML ActD, that are used in this paper. We would like
to focus on expansion region [Obj12], which is a structured activity node that takes collections of
elements as input and can return output collections described in expansion nodes. The execution
of elements can be described in three different modes according to a keyword at the top of the
region, these modes are: parallel, where the elements execute concurrently and can overlap in
time. [terative, where execution is done in sequence, so an execution does not start until the
previous one is completed, and follows the same order if ordering is applied. Lastly in a stream
mode, there is exactly one execution in the region, where elements are offered to execution in a
stream, preserving ordering if applied.

2.3 Atomicity Decomposition

Atomicity Decomposition (AD) diagrams were first introduced by Butler [But09]. AD provides
a graphical representation based on Jackson’s diagrams (JSD) [Jac83], that helps understanding
the relations between the abstract and concrete levels of the Event-B models. AD also helps to
explicitly describe the flows of events, which are implicitly described through guarded events in
an Event-B model [But09].

Figure 3 shows a basic structure of the atomicity decomposition diagrams, where each node
represents an event. The AD diagram indicates that the atomicity of the abstract event, appears
in the root node, is decomposed into some concrete sub-events, appear in the leaf nodes. Similar
to Jackson’s structure diagrams, the leaf events are read from left to right, so Eventl is executed
first, followed by Event2 and finally Event3.

The dashed line represents a newly added event that does not have a counterpart at the abstract
level, which we refer to as refining skip. The solid line represents a refining event, where exactly

3/15 Volume 66 (2013)

Evaluation of Graphical Control Flow Management Approaches for Event-B Modelling

Symbol Description

Swimlanes or partitions group related actions and activities together,
usually according to whom/what is performing them.

53

i

Initial Node indicates the start of a process.

Final Node indicates the end of a process.

Flow final node indicates the end of a flow but not the whole activity.

Activity can include multiple actions and sub activities.

e

A rake symbol inside an activity indicates nesting of activities within that
activity

Action represents a single operation within an activity.

a guard or conditions, these guards must be mutually exclusive.

i Decision node branches the input into multiple flows and each branch has
>: Merge node brings alternate flows together without synchronisation.

Fork describes parallel or concurrent flows.

_>|3

~>|_> Join synchronises concurrent flows.
=

—Tn—~

— _m -

Expansion region is a nested activity with input and output expansion
, | nodes, it has a keyword to indicate whether the input will be processed in
parallel, iterative or a stream.

-
[
\

Note is not processed within a model but it includes useful information that
helps understanding or clarifying the model.

Figure 2: Some Notations of UML Activity Diagrams

one event can refine an abstract event. A construct can be one of the following: and, or, xor; loop,
all, some, one. The construct can be connected to one or more events depending on its type. We
can also add parameters to the events to indicate multiple instances modelling [But09, SBR12].

Abstract Event

Figure 3: Basic Structure of Atomicity Decomposition Diagram

Semantics is given to AD diagram by transforming it into an Event-B model. Salehi et al.
in [SBR12] describe some of the rules of AD transformation into Event-B modelling language.
They use the subset relations approach to describe the order between events. They also apply
AD to two case studies [SB10, SRB11] to evaluate its role in clarifying the refinement and the
explicit ordering of events in the Event-B modelling language. Figure 4 shows the corresponding
Event-B translation of Event2 in Figure 3, provided that there is no construct applied. As shown,
the ordering is specified by invariant inv_e2 _seq, indicating that Event2 must follow Eventl. In
the event, this is controlled by the guard grd_seq, indicating that Eventl has occurred first, before
Event2 is allowed to happen, which has not occurred yet according to grd_self.

Proc. AVoCS 2013 4/15

Single Instance Case

Multiple Instances Case

invariants
@inv_e1_type Event1 € BOOL
@inv_e2_seq Event2 = TRUE = Event1 = TRUE

event Event2
where
@grd_seq Event1 = TRUE
@grd_self Event2 = FALSE
then
@act Event2 := TRUE
end

invariants
@inv_e1_typeEvent1 € P
@inv_e2_seq Event2 c Event1

event Event2
any p
where
@grd_seqp €Event?
@grd_selfp gEvent2
then
@actEvent2 :== Event2 U {p}

end

Figure 4: Translation of the Sequencing Pattern from AD to an Event-B Model

3 Fire Dispatch System Case Study

3.1 Requirements Overview

In this section, we present the requirements of a fire dispatch system. We only try to model the
main operations of the dispatch system and discard some details for simplicity of presentation.
So, we do not include call waiting queues and we assume that all calls are served immediately and
there are enough resources to cover the incidents. We try to focus on the functional operations
that keep track of the status change of the incident and the resources throughout the dispatch
process, and also how these resources are assigned to an incident.

Functional Requirements: These can be divided into the following goals: location matching,
duplicate calls, action response, resources mobilisation to incident, resources attendance and
incident closure. First the control operator tries to get information about the incident, its location,
type and its emergency level that can be prioritised into 3 levels; critical, non critical or other.
Each incident type has a default priority level, that can be changed manually by the operator.
Then, the system tries to identify if the incident is a duplicate or not. If it is duplicate, it alerts the
operator who confirms that, resulting in an automatic closure of the incident call. From the type
and location (e.g. factory, school ...), the system can identify the suitable predetermined action
response plan, which in turn gives information about the type of resources needed.

As a result, the system will suggest the quickest available resources to the incident, that can
be allocated by the operator. The allocated resources will be notified automatically, and here
we assume an immediate response. At this point the tracking of the incident and resources
status change will start. Until the resource arrives to the incident location, the system will keep
looking for new quicker resources to become available, and suggest reallocating them to the
operator. After attending the incident and all resources get deassigned or deallocated, the incident
will be closed and the deallocated resources will either go back to station, or get reassigned to
new incidents. The status of the incidents changes from Opened, to In_Progress and finally to
Closed, and that of a resource can be any of the following: Station_Available, Mobile_Incident,
In_Attendance, Mobile_Station or Unavailable. We use detailed states of the resources and the
incidents to help us keep track of the events later.

To summarise: The case study is focused on solving the following problems: how the action
plan (PDA or Pre-Determined Actions) determines the resources needed for the incident. This

5/15 Volume 66 (2013)

Evaluation of Graphical Control Flow Management Approaches for Event-B Modelling E}

depends on the type, location and the priority level of the incident'. We also focus on how the
status of the resources and the incident is changed throughout the dispatch process, which mainly
depends on the location of the resources compared to the incident and the stations.

Figure 5 describes the class diagram including the main entities and relationships used in our
model, which helps us in modelling the structural part of the Event-B model. For example,
entities INCIDENTS and RESOURCES are defined as sets in the context. The “Assigned to”
relationship, the arrow between these entities, is described as a relation between incidents and
Resources using an invariant in the Event-B model.

s location | status _priority Default | priority
i ation P = B Determine_ PDA
LOCATIONS incidents| Lype TYPE PDA

INCIDENTS]

i pde—— e

yd
Assigned to ptype -
e

.
‘RESOURCE_STATUSH RESOURCES }—"U"-‘—>{ R_Type
r_status

Determine_PDA

.
r_location

v
s

Figure 5: Fire Dispatch System Entities and Relationships

3.2 UML Activity Diagram Representation

After using the class diagram to identify the main sets and relationships needed, we represent the
fire dispatch system using UML activity diagrams, which mainly help in identifying the required
events and their sequence. We start by making a detailed graph of all the operations derived
from the requirements, because we find it easier to visualise the overall sequence of the events
than trying to figure out the relationship between the different sub-problems. Then we group the
related events into nested activities and this helps in abstracting the system, and later elaborating
these activities as steps, we do not show all these steps due to space limitation.

Figure 6 shows the ActD of the fire dispatch system after applying abstraction. The approach
we follow in grouping the events is that whenever there is a decision-node, we apply grouping.
Because, decision-nodes usually describe different scenarios of the events flow, before merging
into the next event; which is similar in a way to different solutions of the same problem before
moving into the next one. However, in the case of a duplicate location which is represented as a
decision-node (Is_Duplicate), we leave it at the abstract level due to the presence of the activity
final node, where we want to indicate the end of the whole dispatch activity of the incident, and
not only one sub-activity like in the case of nesting.

Another grouping is used, when we need multiple instances in a sequence of events, or in
other words when we need expansion regions, and obviously these events are related by the same
objects, and consequently they represent the same sub-problem. At this point we end up with
three activity diagrams, but not shown for space limitation. The first one is an overall diagram
representing one instance, one resource, in the action plan. Then we apply grouping according
to the decision nodes, and finally add the second grouping of multiple instances, in this case the
resources in the action plan, to end up with Figure 6.

! In our model, the effect of priority on PDA is implemented indirectly through its relation with the incident type
“TYPE”, and we restrict its change to before setting the action plan, but the direct effect of priority changes throughout
the workflow and its effect on resource allocation is left for future work.

Proc. AVoCS 2013 6/15

@ ECEASST

As you can see in Figure 6, we represent the multiple instances, the resources, in the Resource
Allocation using an expansion region with the parallel keyword to indicate that all these events
should run in parallel or concurrently for each resource, and this is the reason why, we do not
just use a loop and a decision node to decide when to stop. The rake symbol indicates nesting
or further refinement, for example Resource Allocation can be further refined, at the right, to
include the sub-events Find Quickest Resource, Allocate Resource etc.

Create
Incident

Select Type Select [Is_Duplicate] Close
h Location C Incident O

Control Operator Dispatch System

Allocate Find Quickest
Resource Resource
Mobilise

<<Local Precondition>> AN
Resource_Status is
Station_Available
or Mobile_Station

|)

1 |

1 Resource Allocation |

1 t :

I[Allocaled Resource (r)]

A N
______ — TN

[Allocated| Resources]

<<Local Postcondition>> L
--|Resource_Status is
Mobile_Station

Deallocate
Resource

\ o

m

: H

]

x

bl

-]

']

]

e | §

5|

§

30
N———— S

Figure 6: Abstract Level of the Fire Dispatch System ActD, with Focus on Resource Allocation

3.3 Atomicity Decomposition Representation

As the next step, we represent the fire dispatch system using AD diagrams (Figure 7), which
focus on both control flows and refinement relationships between concrete events and the cor-
responding abstract events. As explained earlier in ActD, Figure 6; there are two activity final
nodes, which means two scenarios can close an incident call. That is why we split the AD into
two cases, one representing the normal case i.e. non-duplicate case, Figure 7(a); and the other is
when the incident is duplicate and hence it is closed immediately, Figure 7(b). The rake symbol
is used to indicate further refinements, which are omitted in this paper. The colour codes are
used to describe who/what performs the operations, like the swimlanes in ActD that are shown
only in the refinement of Resource Allocation, due to space limitation, in Figure 6.

In Figure 7(a), the root node of the tree represents the process name of the system, and it is dis-

7/15 Volume 66 (2013)

Evaluation of Graphical Control Flow Management Approaches for Event-B Modelling Eﬁ

tinguished from other event nodes by being connected to the abstract level events using dashed
lines only. Considering the event sequencing from left to right, in the abstract level, first event
Create _Incident executes, followed by Select event, which is in turn followed by Not_Duplicate
and so on. As you can see, event Select is further decomposed into two branches in the first
refinement level. The and-branch that has two events (Select_Type and Select_Location), and Fin-
ish_Select, which refines the abstract Select event. The and-constructor sub-events, Select_Type
and Select_Location, must execute in any order, before the execution of Finish_Select.

Fire Dispatch(i)

Abstract Level - - & ! N

=~
— —~ =~
Close Call (i)

-~
~
~

-
-

&l{r in action
plan)

-
-

=
First Refinement
-~

-7
- \ -

~
~
~
~
Select Select Finish Resource Finish Resource Book All Close Finish Close
Type (i) 4, || Location (i) Select (i) ion{in) 4, A i Home(i) i i Call(i)

Y .

Second Refinement all(r in
action plan
Book Resource, Finish Book
Home(i,r} h Resources(i)

(a) Atomicity Decomposition Diagram of Fire Dispatch System - Non-Duplicate Call Case

7o~

/

Legend

(Fire Dispatch Duplicate Location(i)] Actions Performed by
Operator

- , ST T - () Actons pertormes

- by System
Create Inci (i) [Selectl i 'i}] [Is Dupli (i)J [Close Incident(i)} D Actions including
Refinement by both Actors

by Further Refinement

(b) Atomicity Decomposition Diagram of Fire Dispatch System - Duplicate Call
Case

Figure 7: Fire Dispatch System Atomicity Decomposition Diagrams

4 Evaluation

4.1 Graphical Comparison

We start with the AD constructs and finding their counterparts in UML ActD. We do not find
counterparts the other way round, because the notation of UML ActD is very rich especially
after the introduction of UML 2.0; and in general the constructs used in AD are more focused on
the Event-B modelling language.

Figure 8 shows some of the AD constructs and their counterparts in UML ActD. The and-
construct in AD, top left, means both Evel and Eve2, should be executed before Eve3 is en-
abled. In ActD this is translated as a fork to describe the concurrent execution of Evel and Eve2,
and then they are joined or synchronised into one flow before Eve3 can be executed. The xor-
construct, top right, means only one of the sub-events can be executed, similar to a decision-node

Proc. AVoCS 2013 8/15

Eg ECEASST

with mutually exclusive guards in ActD. The guards (conditionl, condition2) are not shown ex-
plicitly in the AD diagram, they can be manually added to the event definition in the Event-B
model, but here they are shown for comparison purposes; the same applies to the loop conditions.
The or-construct means at least one of the sub-events is executed before the next event (Eve3)
can be enabled, that is why we use a merge-node in the ActD which requires at least one flow to
proceed and does not synchronise the flows like the join-node. While this case is not acceptable
in UML 1.x, UML 2.0 has removed the restriction of matching forks with joins, which makes
our comparison valid. Sequencing in AD is read from left to right, and in ActD the direction of
the arrow describes the order of events. Lastly, the star symbol indicates looping, zero or more
iterations of the event, which can be described by using a decision-node and a merge-node that
bring all flows together without synchronisation. Here the decision-node is added before the loop
event (Evel) to describe the zero iteration, but if we need one or more iterations, we place it after
the loop event. UML 2.0 has also introduced a structured loop-node which is equivalent to the
use of the decision and merge nodes as shown in Figure 8.

Fork Join Decision Node
. ‘ ‘ [condition1]
ﬁ’ ‘-Evel
O ‘ ‘ Eve3 ition1] 1 O O
“ Eve2 [[condition2]
Merge Node
|
0 © O +(oei) (w2)
:
loop,_ condition'= true) [loop_ condition = false]
@ [loop_ condition = false] O loop_ condition = true]

Figure 8: Comparison between AD Non-Replicator Constructs and UML ActD

Replicator Patterns AD describes another three replicator constructors, which introduce a
new parameter to the contruct’s sub-events. These replicators are: all-replicator, which is a
generalisation of the and-construct; some-replicator, a generalisation of the or-construct, and
lastly the one-replicator, which is a generalisation of the xor-construct, that describes exactly
one iteration of an instance. To find an equivalence of the all-replicator in ActD, we distinguish
between two cases; one where you know how many instances are in your collection, in this case
you can use expansion regions. The fire dispatch case study in Figure 6, uses an expansion
region with parallel execution in Resource Allocation. Since the collection of resources needed
is determined at runtime, during the Action Plan event, and in this case you can decide how
the events can be executed using a keyword in the expansion region, this can be either parallel,
iterative or stream execution. In the second case where you can not determine the size of the
input collection neither at design time nor during runtime, you can use a loop for the multiple

9/15 Volume 66 (2013)

Evaluation of Graphical Control Flow Management Approaches for Event-B Modelling E}

iterations and a decision node to determine whether you need to continue or stop these iterations.
Regarding the some-replicator and the one-replicator in AD, they can be represented in the same
way as the all-construct, Figure 7(a); but they have no explicit constructs in ActD.

Assessment We managed to represent the fire dispatch system using both AD and ActD,
and we found the corresponding construct for all the non-repliactors and some of the replicator
patterns of the AD to ActD, which shows that a transformation from AD to ActD should be
possible. But, we still have some limitations regarding the multiple instances representations of
both diagrammatic notations.

Regarding AD, the all-construct is described as a generalisation of the and-construct, so it only
describes parallel execution of events, unlike the expansion regions which are more general that
they can describe parallel, iterative and stream executions.

Take the example of a doctor who needs to visit “x” number of patients daily, this can not be
described as an all-construct in AD, because if the visit event is refined into further sequence
of sub-events, this event will be interleaving with other visits by the same doctor. This could
be described using a loop, but it is not so convenient because a loop means a zero or more
iterations, but here we have a specific number of iterations. To solve this problem, we need a new
description of the all-construct with sequential execution that preserves ordering of instances.

On the other hand, there is no explicit constructs of the some-construct and the one-construct
in the activity diagram. Although these can be described using a guard, this can lead to an
ambiguity in the representation and each modeller can use his own interpretation.

Select Type

Select Type (i

Select Type

A \
Change Prioriy(i) | | Keep priority(i)

Figure 9: Select_Type Refinement in Atomicity Decomposition and Activity Diagram

Concerning the layout of both diagrams, we find the directed arrows of the actD can be easier
to follow than the hierarchical representation of the AD diagrams. Take for example Figure 7(a),
if we want to follow the sequencing of the non-refining leaf nodes, we should start from Cre-
ate_Incident at the abstract level, then go to some refining level higher than the first refinement
because Select_Type will be further refined as indicated by the rake symbol, then back again to
the first refinement level for Select_Location and Finish_Select and so on. On the other hand,
the hierarchy and structure of AD restrict the way you build your model in a positive sense. Be-
cause the refinement layers come naturally with its structure; whereas with UML ActD, it is up
to the modeller, how to apply nesting and refinement. So AD diagrams can provide a guideline
for when and how to refine the Event-B model, like the constrain that, the all-construct should
be only applied to one event, so in this case we add an extra level of refinement to apply the
all-construct to a sequence of events e.g. Resource_Allocation in Figure 7(a). You can also see

Proc. AVoCS 2013 10/15

Eg ECEASST

explicitly how the new events and the refining events relate to the abstract event using solid and
dashed lines. On the other hand, the rake symbol in ActD can describe that a refinement exists,
but does not show how the concrete events are related to the corresponding abstract events.

Regarding details and clarity, UML ActD with its rich notations can help in understanding
the model more. By using notes with pre and post conditions, and explicit use of guards in the
diagram. These guards can clarify some of the details of the Event-B model, by describing why a
flow takes a certain route rather than the other. Like in the decision-node that describes explicitly
the guards needed, unlike its AD equivalent, the xor-construct, the guards are left for manual
implementation in the Event-B model, as shown in Figure 9.

4.2 Event-B Comparison

For both representations we use the entity diagram (Figure 5) to define the structure of the model,
where the entities describe the sets, and the associations between them describe the relations
needed. Since there is no available plug-in to translate ActD to Event-B in Rodin, we apply the
following approach: all actions become events in Event-B and the event conditions are added
as guards; and whenever we have call action behaviour indicated by a rake symbol, we use
refinement. In our overall diagram we use notes to help in clarifying the details needed for
events, like the local pre and post conditions used in the refinement of Resource Allocation in
Figure 6, where preconditions become event guards and postconditions become event actions.

The AD translation into Event-B is done both manually and automatically using the AD plug-
in [Wik12]. AD uses subset relations to describe sequencing, where each event has a correspond-
ing variable with the same name. Moreover one invariant and one guard are enough to describe
the ordering of the event, Figure 4, which facilitates tracking the workflow of events, especially
with the naming convention used. On the other hand, as a result of the flexible manual mod-
elling, the sequencing used in the ActD model is more related to the relations described in the
entity diagram and the status change of the resources, which sometimes requires more guards
to describe sequencing. For example, to describe the sequencing of the Action_Plan event in
ActD, we need to check that the incident “i” is not duplicate and it is in the domain of both
functions Select_Type and Select_Location, whereas for AD just checking if the incident “i”” be-
longs to Non_Duplicate is enough to describe the sequencing. However, we need to add the
application-specific data structures, described in the entity diagram, manually for the AD model
as a refinement to describe the details of the model, which can result in some kind of repetition.

AD can sometimes result in having extra events compared to ActD, take for example the
refinement of Select_Type as shown in Figure 9. In this case we want to say that the operator
has to select the incident type first, then if the default priority associated with this type is correct
continue to Action Plan, else change the priority and then go to the Action Plan. In AD, we
must have at least two leaves when using the xor-construct, similarly with the decision node in
ActD. However, the flexibility of directed arrows can take us directly to the next step, in this
case the join-node before the action_plan event; whereas in the hierarchical structure, we can not
have this flexibility and use the Finish_Select as the other leaf because this will change the whole
workflow logic. So we need to have a dummy event which is here the Keep_Priority that does
not make any changes.

Sometimes having the extra events can have advantages, because they can emphasise the be-

11/15 Volume 66 (2013)

Evaluation of Graphical Control Flow Management Approaches for Event-B Modelling Eﬁ

haviour and the logic behind the used constructs. Take for example the Finish_Select event in
Figure 10, it acts like a join-node in the ActD (Figure 6), and this is clear in the Event-B model
through the use of the logical-and between Select_Type and Select_Location (Figure 10). Also
the effect of the xor-construct in changing priority is clear by using the union of Change_Priority
and Keep_Priority. This encourages us to later study the practicality of translating the ActD
constructs as separate events or just imply their effects through guards in the existing events.

event Finish_Select refines Select event Finish_Select refines Finish_Select
any i any i
where where
@agrd_seq (i € Select_Type /i € Select_Location) @grd_seq (i € (Change_Priority U Keep_Priority) /i € Select_Location)
@agrd_self i g Finish_Select @ard_selfi & Finish_Select
then then
@act Finish_Select := Finish_Select u {/ } @act Finish_Select := Finish_Select u {/}
end end

Figure 10: Finish_Select Event at 1* and 2"¢ Refinement Levels

Regarding the all-construct of AD, it can only have one branch and is always associated with
a parameter. The intent is to execute the all-construct event for all instances of its parameter. In
the first refinement level of Figure 7(a), we apply the all-construct to the Resource_Allocation
event, which will be later refined into some sequence of events. Consequently, we have an extra
refinement because we can not apply the all-construct to a sequence of events. We also have the
extra event Finish_Resource_Allocation to refine the All_Resource_Allocation event. This shows
how the rules of AD can provide a guideline for how and when to use refinement.

The all-construct mainly affects Finish_Resource_Allocation, which is the directly following
event. This event can not be executed until all instances of the all-construct parameter finish
executing. Figure 11, top part, shows the Event-B translation of Finish_Resource_Allocation.
The invariant “inv_seq” and the guard “grd_seq”, ensure that Finish_Resource_Allocation can not
be executed before Resource_Allocation finishes executing for all instances of the parameter,
ptypeli_pda(i)]. The function i_pda describes the relation between incidents and PDA, and the
all-construct parameter, p_type, represents the resources types of the incident’s PDA.

AD @inv_seq Vi- i € Finish_Resource_Allocation = All_Resource_Allocation [{i}] = ptype[{i_pda(i)}]

Approach | eyent Finish_Resource_Allocation refines Resource_Allocation
any i
where
@grd1i €dom(i_pda)
@grd_seqAll_Resource_Allocation [{ i}] = ptype[{i_pda(i)}]
@grd_selfi & Finish_Resource_Allocation
then
(@act Finish_Resource_Allocation := Finish_Resource_Allocation U { i}
end

ActD @inv_Closed_stat Vi-i € dom(i_pda) A i_status(i) = Closed = r_types[{i}] = ptype[{i_pda(i)}]
Manual event Close_Incident extends Close_Incident
Approach any p
where
@grd3 p =i _pda(i)
d@grd4 r_types[{i}] = ptype[{p}]
en

Figure 11: All-Construct Effect on AD and ActD at 2"¢ Refinement Level

In the ActD manual model, the parallel execution of Book_Resource_Home and Close_Incident
follows the Resource_Allocation expansion region. Due to space limitation, we only show the

Proc. AVoCS 2013 12/15

Eg ECEASST

translation of Close_Incident in Figure 11, bottom part. In this case we added the relation r_types
to keep track of the allocated types. Similar to Finish_Resource_Allocation, we managed to de-
scribe the effect of the expansion region using the invariant inv_Closed and the guard grd 4.
However for Book_Resource_Home we only used grd_4 but could not enforce the sequencing us-
ing an invariant due to the complexity of the relations used to describe the Book_Resource_Home
especially after refinement. This shows how having an extra event, Finish_Resource_Allocation,
and using the subset relations in AD, in this case both Close_Incident and Book_Resource_Home
will be subset of Finish_Resource_Allocation, can simplify the sequencing invariants and make
the sequencing guard stronger by always being enforced by a sequencing invariant.

5 Related Work

Many researchers have studied the integration of formal methods and graphical representations in
an attempt to reduce the gap between requirements and formal language. A good example of such
approach is the translation of behaviour trees into CSP, that is extended to include state based
constructs [CH11]. Unlike our approach, behaviour trees as first introduced by Dromey [Dro03],
define each functional requirement as a separate tree and later all requirements’ trees are inte-
grated into one. This integration is not simple and requires interference of the modellers to solve
integration problems.

Both Matoussi et al. [MGL11] and Laleau et al. [LSM ™ 10] describe a formal translation of the
KAOS goal model. The first into Event-B and the latter use the KAOS goal model to extend the
SysML requirements model and then map it into the B method. Regarding refinement they both
follow the approach described in [DL96], where parent goals are refined into AND/OR refined
sub-goals, and they also use sequencing of sub-goals. Ben Younes et al. also use this approach
to describe refinement patterns of UML activity diagrams [YAH12], and they also describe the
translation of activity diagrams into Event-B in [BB08]. In both cases they do not describe, how
they determine the static part of the model.

Regarding UML activity diagrams de Sousa et al. [SSS11] also describe the translation of
10D, which is a variant of activity diagrams, into Event-B, but they include boundary-control-
entity class diagram to extend UML-B class diagram and describe the static part of the formal
model. However, when it comes to refinement in Event-B, they use the ICONICX process, that
includes four types of UML diagrams [SSS12].

In all the previously described approaches, there is no explicit notion of replicators like all-
construct and some-construct, even the ones that use activity diagrams, do not describe the use
of expansion regions or the loop case. When it comes to refinement, all these techniques do not
show how the new events relate to the abstract ones, the way AD explicitly describes.

6 Conclusion and Future Work

In this paper, we present an evaluation of two graphical approaches that show the behaviour of
a system and aim at facilitating the control flow of the Event-B model. Through the evaluation
of our case study, we would like to end up with a process to facilitate the Event-B formal mod-
elling of complex workflow systems. This process starts by deriving an entity diagram from the

13/15 Volume 66 (2013)

Evaluation of Graphical Control Flow Management Approaches for Event-B Modelling E}

requirements to model the structural part, and then using an activity diagram to better under-
stand the workflow and the details of the system through guards, pre and post conditions etc.
and finally using atomicity decomposition as a guideline for refinement and follow its translation
rules to formally model the system using Event-B, which can be further enriched with the help
of the details described in the activity diagram. Based on our comparison, we would like to study
the possibility of extending the atomicity decomposition patterns and translation rules and add
these extensions to the existing atomicity decomposition plug-in. We would also like to study
the possibility of integrating AD approach with ActD and the entity diagram. Finally, we intend
to enhance our case study to see the effects of the change of an event conditions on the rest of
the Event-B model.

Acknowledgements: Butler and Salehi were partly funded by the FP7 ADVANCE Project
(287563), www.advance-ict.eu. We would like to thank the reviewers for their helpful comments.

Bibliography

[ABH"10] J.-R. Abrial, M. Butler, S. Hallerstede, T. Hoang, F. Mehta, L. Voisin. Rodin: an open
toolset for modelling and reasoning in Event-B. International Journal on Software
Tools for Technology Transfer 12:447-466, 2010.

[Abr10] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

[AHO7] J.-R. Abrial, S. Hallerstede. Refinement, Decomposition, and Instantiation of Dis-
crete Models: Application to Event-B. Fundam. Inf. 77(1-2):1-28, 2007.

[BBOS] A. Ben Younes, L. J. Ben Ayed. From UML Activity Diagrams to Event B for the
Specification and the Verification of Workflow Applications. In Computer Software
and Applications. COMPSAC’08. 32nd Annual IEEE International. Pp. 643—648.
2008.

[But09] M. Butler. Decomposition Structures for Event-B. In Leuschel and Wehrheim (eds.),
Integrated Formal Methods. Volume 5423, pp. 20-38. Springer Berlin Heidelberg,
20009.

[CH11] R. J. Colvin, 1. J. Hayes. A semantics for Behavior Trees using CSP with specifi-
cation commands. SCIENCE OF COMPUTER PROGRAMMING 76(10, SI):891—
914, 2011. 7th International Conference on Integrated Formal Methods, Dusseldorf,
GERMANY, FEB 16-19, 2009.

[DL96] R. Darimont, A. van Lamsweerde. Formal refinement patterns for goal-driven re-
quirements elaboration. In Proceedings of the 4th ACM SIGSOFT symposium on
Foundations of software engineering. SIGSOFT *96, pp. 179-190. ACM, 1996.

[Dro03] R. Dromey. From requirements to design: formalizing the key steps. In Software En-
gineering and Formal Methods, 2003.Proceedings. First International Conference
on. Pp. 2-11. 2003.

Proc. AVoCS 2013 14 /15

E

ECEASST

[Jac83]
[LSM™10]

[MAVO0S5]

[MGL11]

[Obj12]

[RIB98]

[RSPO7]

[SB10]

[SBR12]

[SRB11]

[SSS11]

[SSS12]

[Wik12]

[YAH12]

M. A. Jackson. System Development. Englewood Cliffs, N.J. : Prentice-Hall, 1983.

R. Laleau, F. Semmak, A. Matoussi, D. Petit, A. Hammad, B. Tatibouet. A first
attempt to combine SysML requirements diagrams and B. Innovations in Systems
and Software Engineering 6(1-2):47-54, 2010.

C. Metayer, J.-R. Abrial, L. Voisin. Event-B language. RODIN Project Deliverable
3.2.2005. Available online at http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf.

A. Matoussi, F. Gervais, R. Laleau. A Goal-Based Approach to Guide the Design
of an Abstract Event-B Specification. In Engineering of Complex Computer Systems
(ICECCS), 2011 16th IEEE International Conference on. Pp. 139-148. 2011.

Object Management Group. OMG Unified Modeling Language Version 2.5. 2012.
http://www.omg.org/spec/UML/2.5/Betal/PDF [Accessed: 17 Mar 2013].

J. Rumbaugh, I. Jacobson, G. Booch. The Unified Modelling Language Reference
Manual. Addison-Wesley, 1998.

R. Razali, C. F. Snook, M. R. Poppleton. Comprehensibility of UML-based For-
mal Model: A Series of Controlled Experiments. In /st ACM International Work-
shop on Empirical Assessment of Software Engineering Languages and Technolo-
gies (WEASELTech). Pp. 25-30. November 2007.

A. Salehi Fathabadi, M. Butler. Applying Event-B Atomicity Decomposition to a
Multi Media Protocol. In Boer et al. (eds.), Formal Methods for Components and
Objects. Lecture Notes in Computer Science 6286, pp. 89—104. Springer Berlin Hei-
delberg, 2010.

A. Salehi Fathabadi, M. Butler, A. Rezazadeh. A systematic approach to atomicity
decomposition in Event-B. Lecture Notes in Computer Science 7504:78-93, 2012.

A. Salehi Fathabadi, A. Rezazadeh, M. Butler. Applying Atomicity and Model De-
composition to a Space Craft System in Event-B. 2011.

T. de Sousa, C. Snook, P. Silva. A proposal for extending UML-B to support a
conceptual model. Innovations and Systems and Software Engineering 7:293-301,
2011.

T. C. de Sousa, P. S. M. Silva, C. F. Snook. A practical Event-B refinement method
based on a UML-Driven development process. In Abstract State Machines, Alloy, B,
VDM, and Z. Pp. 357-360. Springer, 2012.

Wiki.event-b.org. Atomicity Decomposition Plug-in User Guide - Event-B. 2012.
http://wiki.event-b.org/index.php/Atomicity_Decomposition_Plug-in_User_Guide.

A. B. Younes, L. J. B. Ayed, Y. B. Hlaoui. UML AD Refinement Patterns for Mod-
eling Workflow Applications. In Computer Software and Applications Conference
Workshops (COMPSACW), IEEE 36th Annual. Pp. 236-241. 2012.

15/15

Volume 66 (2013)

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://www.omg.org/spec/UML/2.5/Beta1/PDF
http://wiki.event-b.org/index.php/Atomicity_Decomposition_Plug-in_User_Guide

	Introduction
	Background
	Event-B
	UML Activity Diagram
	Atomicity Decomposition

	Fire Dispatch System Case Study
	Requirements Overview
	UML Activity Diagram Representation
	Atomicity Decomposition Representation

	Evaluation
	Graphical Comparison
	Event-B Comparison

	Related Work
	Conclusion and Future Work

