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Abstract: This paper discusses issues associated with integrating model checkers
into a model-based development environment for embedded systems. The environ-
ment, DMOSES, is based on a formalization of UML Activity Diagrams and is used
to generate correct and efficient code from such models; a key application area is the
medical-device domain. A recent effort has focused on introducing formal reason-
ing into the development flow so that modelers can assess the correctness of their
models before generating code from them. The verification of system requirements
is shown using a case study of an infusion pump. This paper discusses issues in-
volved in integrating model checkers into DMOSES and reports on a performance
evaluation of two model checkers in particular: NuSMV and UPPAAL

Keywords: UML activity diagrams, model checking, UPPAAL, NuSMYV, embed-
ded systems

1 Introduction

The importance of software in embedded-system engineering has been growing steeply, as the
ongoing decline in the price of microprocessors has made the inclusion of computing capability
economically feasible in more and more applications. The migration of control functionality into
software has afforded device designers opportunities for richer and more sophisticated function-
ality, and indeed, in industries such as automotive, aerospace and medical-device, software is
integral. At the same time, the production of such software is imposing greater costs, and risks,
on such companies. On the cost side, the (increasingly complex and sophisticated) software must
be written; on the risk side, software errors can lead to annoyance and, worse, safety issues for
users, and to liability and warranty exposure for device manufacturers.

To cope with costs of software production, embedded-systems developers are turning to the
use of model-driven development (MDD). In MDD approaches, designers first build models of
the software to be constructed, then employ synthesis tools to generate the source code for the
application automatically. The use of modeling languages such as MATLAB®)/Simulink®) for
MDD is already widespread in industries such as automotive, and the Unified Modeling Lan-
guage (UML) [24] is also gaining credibility, and adherents, for this purpose in the embedded-
system domain, due to its status as a non-proprietary, independently maintained standard. UML
includes several graphical sublanguages, a precise abstract syntax given via a metamodel, and a
semantics described in prose form. Various enrichments to UML also support the modeling of
real-time behavior, which is essential for control-system modeling.
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The models constructed during MDD may be seen as system specifications; formally verifying
that these models meet system requirements offers an appealing approach to coping with the
abovementioned risks associated with embedded software. This observation has stimulated a
variety of efforts aimed at integrating model checking into MDD methods [25]. Model checking
allows a mathematical verification of a system according to a set of requirements. In order to
introduce formal verification in MDD processes, one must create or adapt methods that allow
the verification of models like UML, which commonly do not have a formal semantics. In this
context, special attention has focused on model checking of UML activity diagrams. An activity
diagram is a graphical representation of processing flows defined by nodes and edges, together
with constructs for choice, iteration and concurrency. A node represents a function that takes
inputs and converts them into outputs. Several approaches have proposed the use of model
checkers such UPPAAL [2], NuSMV [3] and SPIN [18] for the verification of activity diagrams
[11,20, 12,21, 19, 16]. The verification is typically carried out by a tool chain that is composed
of a mapping of the UML models into the mathematically well-defined language supported by
the model checker, followed by an analysis of the translated model using the model checker.
Such a translation-based approach necessarily ascribes a formal semantics to activity diagrams,
and indeed much of the work in the aforementioned papers focuses on these semantic issues. In
particular, performance aspects of the tool chains (mapping + model checker) for UML activity
diagrams are typically not considered, making the decision about which model checker to use a
difficult one for tool-chain builders.

The purpose of this paper is to present the results of a comparative study of the integration
of two different model checkers, NuSMV and UPPAAL, into a UML-based MDD framework
for embedded software. The MDD method, DMOSES [8], supports the automated generation
of real-time control software from activity diagrams extended with information regarding exe-
cution time, parallelism and priority. In support of this, the paper formalizes UML 2.x activity
diagrams, whose semantics are based on Petri nets, via translations into timed automata (UP-
PAAL) and the NuSMYV input language. The performance of both tool chains using the model
checkers NuSMV and UPPAAL is evaluated on the verification of a set of benchmark UML
activity diagrams; the UPPAAL-based tool chain, which demonstrates significantly better per-
formance on the benchmarks, is then used to analyze the controller of an infusion pump. The
remainder of this paper is structured as follows. Section 2 discusses related work for verification
of UML models using model checking, while Section 3 reviews the DMOSES method. Section
4 presents the integration approach for automatic verification of DMOSES\UML models, and
Section 5 presents the translations from DMOSES activity diagrams into the timed automata and
the NuSMYV language. Section 6 shows an experimental evaluation of the proposed translations
using test models as well as the verification of system requirements by means of an infusion
pump. We conclude the paper and present future work in Section 7.

2 Related Work

This section summarizes related work on model checking for UML activity diagrams. It should
be noted that the semantic account of these diagrams changed dramatically from UML 1.x [23],
which uses state machines as the underlying mathematical model, to UML 2.x [24], in which
Petri nets are the foundational theory. Accordingly, the following discussion distinguishes which
version of UML the different approaches target.
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Eshuis [10, 11] proposes a symbolic model checking approach built on NuSMYV for activities
defined in UML 1.5 that is based on an adaptation of UML semantics for workflow modeling
based on the use of hypergraphs. The mapping from UML to the NuSMV language is based
on these hypergraphs. Similar to Eshius, we formally specify activity-diagram behavior by first
defining a denotational model for the diagrams (e.g. hypergraphs) and then using a translation
into model-checker notations to define the execution semantics. In contrast to Eshius, we use the
UML 2.x. Since the Eshius approach is based on state-machine semantics, it cannot be directly
applied to UML2.x activity diagrams.

NuSMYV has been used for the verification of UML 2.x activity diagrams in other approaches.
Lam [20] presents a light mapping of activities into NusMYV, in which each model element is
represented by a state machine. A similar mapping is presented in Grobelna [12], in which activ-
ity diagrams are transformed into basic Petri nets and verified using NuSMV. A state-reduction
technique is also proposed to alleviate explosion during the transformation process. SAT-based
Bounded Model Checking (BMC) are used to verify hierarchical state machines by encoding
the different levels in [9]. This approach is not further considered because the focus is different
from our work and we use only the complete model-checking approach of NuSMYV instead the
SAT-based Bounded Model Checking (BMC) due to our interest in full verification. However,
BMC can be added in future works.

Latella [21] proposes the use of SPIN for the verification of UML hierarchical state charts, and
this work has been extended for verifying UML 2.x activity diagrams in Jing [19]. Guelfi [16]
proposes a PROMELA translation that considers timed execution of UML 2.x model elements.
Timers are defined using integer variables in this modeling (the other works do not typically
consider time). In contrast to Guelfi, we consider multiple tokens and limited buffers in order to
allow the verification of overwriting data, which is a crucial aspect for embedded systems.

Since the UML 2.x activities semantics are based on Petri nets (PN), verification approaches
for PNs can be partially used for activities. The SPIN tool is used in Riberio [22] for model
checking of embedded systems modeled with synchronous and interpreted Petri nets. Cortes[5]
verifies system properties, including timing behavior, described in PRES+ (Petri nets based Rep-
resentation for Embedded Systems) using HyTech [17]. PRES+ considers execution time and
value requirements in its modeling. This tool is not maintained at the moment. Gu [13] analyzes
embedded real-time systems modeled by timed petri nets (TPN). The verification is based on a
translation from TPN to timed automata and carried out using UPPAAL. This approach models
both execution time and multiple tokens. They also studied multiprocessor scheduling analysis
using NuSMYV [15] and UPPAAL [14]. They concluded that NuSMV has a better performance
for this application.

All of the above mentioned approaches only use one model checker, except for Gu [14, 15].
This fact and the different considered features of the models, make it difficult to compare tool
chains for model checking UML activity diagrams. However, the literature does show that
NuSMYV and SPIN are often used for the verification of these diagrams, while in contrast, UP-
PAAL is used for timed Petri Nets. In this work, we propose the comparison between two tool
chains based on NuSMYV and UPPAAL for timed extensions of activity diagrams. NuSMV has
been chosen because they already showed a detailed description of UML activities in [11] and
because its better performance in contrast to UPPAAL for scheduling analysis in [15]. UPPAAL
has been chosen for its ability to model time.
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3 Model-Driven Development with DMOSES

DMOSES (Deterministic Models for Signal-processing Embedded Systems) is a model-driven
development method for embedded systems based on UML behavioral models [8]. This method
extends UML semantics in order to ensure precise accounts of embedded-system behavior. These
UML/DMOSES models may then be transformed into source code that can be executed on dif-
ferent hardware platforms (MCUs and FPGAs). The development process is supported by an
eclipse plug-in (see www.dmoses.org).

( activity DMOSES ( source code ) [ |-Z) DMOSES y 1
.9 Modeling |13 1 M2m 4 M2t 15[ Implementation 7 S > source
TV /' DMOSES URYCVER i g °
N models 0 Models \ 4\\ VHDL
| . Atomic
DMOES C++/VHDL WCET | Timing
7[ Metamodel Templates Analysis J Values

Figure 1: Overview of the DMOSES development method

Figure 1 shows an overview of the process that contains the most relevant steps for this work.
Embedded systems are modeled using interconnected UML activities and state machines, which
are extended using the DMOSES profile. These models are transformed into source code by
a model-to-model transformation (M2M) and a model-to-text transformation (M2T) step. The
M2M step translates UML models into DMOSES models that are then transformed into source
code in the M2T step. The DMOSES models are intermediate models that combine the extended
UML semantics with their implementation. DMOSES models are independent of the hardware
platform on which they run. M2T uses different templates for each programming language.
The templates are based on frameworks that implements the behavior defined by the models
according to the extended UML semantics. UML atomic elements are defined at the code level in
the implementation step. Existing atomic elements can be chosen from libraries. New elements
can be implemented into wrapper structures automatically created by the code generator. Thus,
the level of abstraction of the UML models depends on the functionality of the atomic elements,
which can represent anything, from a simple mathematical operation to a complete algorithm.
After the implementation step, the source code is ready to be compiled or synthesized. The
DMOSES method also integrates timing analysis based on the analysis of atomic element [7].
The atomic analysis is performed by worst-case execution time (WCET) tools that analyze the
source code of the atomic elements. Thus, extended UML models are enriched with the real
information about the execution time. That allows further analysis about timing requirements
relevant for real-time embedded systems.

Extended UML Activity Diagrams UML activity diagrams are composed of nodes and edges.
Nodes are divided into control nodes and action nodes. Control nodes are used to manipu-
late flow processing (e.g DecisionNode), while action nodes represent a specific functionality.
Among the action nodes included are: SendSignalAction, AcceptEventAction, Action and Call-
BehaviorActions. Actions are the atomic elements within the UML activity diagram and are
notated as rounded rectangles. An action resembles a mathematical function; it takes a set of
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inputs and converts them into a set of outputs. The functionality of the action is implemented
outside of the model. Activity diagrams may also be composed hierarchically.

UML activity-diagram semantics has been extended by the DMOSES profile to allow the ad-
dition of information at the model level using stereotypes such as asyc (presence of concurrent
processing), priority, WCET (the maximal execution time of a model element), platform (execut-
ing hardware platform), etc. The complete semantics of the extended activity is shown in detail
in [8]. The extended UML semantics allows modeling the functionality and the execution of the
system separately, thereby facilitating the management of concurrent processing. Moreover, this
semantics ensures also a unique implementation.

activity ActivityA( out1, out2) [ @ ActivityAﬂ
WNCET» | @NCET» )

i _ «priorityy A_2 ? A_4 \7)4‘ out1

«WCET» flevel = 1 }{cycles =30} {cycles =10 }

A1 J \ \
les = 10 iorif \ \
(cyc g i «priority «WCET» «WCET»
fevei=2) A3 [}>] A5 [T out
{cycles = 50 } {cycles =25 } J

Figure 2: UML activity that defines an execution order (priority) and execution times (WCET)

The semantics of activity diagrams is token-based. Action nodes need “token” (potentially
bearing a value) to be present in some number of its input edges in order to fire; after doing
so, the node deposits a (value-bearing) token on some number of its output edges. The number
of tokens depends on the type of the node and on their own connections [24]. For example, a
ForkNode requires a token in all its inputs for its execution, while the merge node requires only
one token. The execution of the ActivityA (Figure 2) begins with the token firing by InitialNode
(black circle), as consequence, A_I is invoked. After the execution that takes 10 cycles, A_/
offers two tokens in its outputs. The absence of the stereotype async determines that tokens are
fired sequentially. Therefore, the first token with highest priority is fired, which invokes A _2.
Note the highest priority corresponds to the lowest number. The following edge is fired only
after the flow processing of the previous edge is finished. The processing of a flow finishes when
it reaches a FlowFinalNode or the flow does not have nodes that can be executed due to the lack
of tokens. The execution of A_2 is followed by A_4, which sets the out pin out! with a data
denoted as a square. The execution of the ActivityA finishes if and only if all outputs are set.
Therefore, the processing returns to the action A_/ that fires the second token, thereby invoking
A_3. The execution order of the activity of figure 2is {A_1, A2, A4, A3, A_5}.

4 A Framework for Integrating Model Checking into DMOSES

This section develops a framework for integration of model-checking techniques into DMOSES.
The approach relies on the use of an intermediate format, flow diagrams, together with a transla-
tion of DMOSES models into flow diagrams. Incorporating a model checker into the DMOSES
environment then may be done by giving a translation of flow diagrams into the model checker’s
input notation. The DMOSES process (Figure 1) has been extended by adding the formalization
process shown in figure 3.
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(activity FormalizationProcess Q) NuSMV Templates W
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Figure 3: Extension of the DMOSES process for the automatic formalization of UML activities
using NuSMYV language and UPPAAL language

The formalization process uses the following indirect mapping strategy: M2M, Optimization,
and M2T. This strategy facilitates the addition of new input models (e.g. UML models) as
well as target languages (input languages for model checkers). Intermediate models (i.e. flow
graphs) abstract only the relevant information for the formal description, reducing the complexity
of the model and facilitating optimizations and further transformations. DMOSES models are
transformed into graphs based on the FlowGraph Metamodel (A similar transformation used for
timing analysis purposes in the DMOSES method is showed in [7]). The vertices of the graph
are enriched with timing information obtained by the analysis of the source code of the atomic
elements. Timing values are optional. Thus, the models can be formally verified without timing
information (e.g. in early phases of the development before code generation) or by considering
real timing values of the system (e.g. in final phases of the development). The resulting graphs
are translated into the corresponding languages required by NuSMV and UPPAAL using M2T
transformations. The translation is based on templates, which depend on the description of the
UML activity behavior in these languages (Section 5).

Definition 1 A flow graph is a tuple G = (V,E,vy) where:

1. V is a finite non-empty set of vertices. A vertex is a pair v = (r, f) where r is a non-
negative real number representing the WCET, and f € {OR,AND} is a logic function that
determines if at least one edge or all edges are required for the execution.

2. E is a finite non-empty set of tuples of form e = (v,V/, p) where v is the source vertex, v/
the target vertex and p the priority representing by a positive integer.

3. vg € V is the distinguished start vertex.

Flow graphs aim to abstract the processing flow from interconnected UML activities and state
machines. The flow graph is a directed graph. Each element of the UML activity is transformed
into a vertex or a set of vertices according to the semantics. For instance, vertices corresponding
to SendSignalActions are connected to the respective AcceptEventActions.

After transforming UML activity diagrams into flow graphs, an optimization step is carried
out in order to reduce unnecessary states that can lead to a state explosion. The optimization
step aims: 1) integration of multiple abstraction levels, 2) reduction of the number of vertices.
CallBehaviorActions instance a type of functionality described by an activity, thereby allowing
multiple levels of abstraction. Vertices corresponding to CallBehaviorActions (e.g. Pump in
figure 8) are substituted by the graph of their type (e.g. activity Motor_control). In order to
reduce the number of vertices, consecutive actions are grouped into one vertex that integrates

Proc. AVoCS 2013 6/15



Eg ECEASST

intrinsic characteristics (e.g. execution time). Two actions are consecutive if the outputs of the
first action activate only the second action and the second action can be only activated by the
first action. Furthermore, the cycles assigned to an action are reduced by using the least common
multiple of the entire system. Figure 4 shows an example of the transforming process from the
activity in 2, into the flow graph in 4a and into the optimized flow graph in 4b.

Root
(5, AND)
| p=1
A_l
(10, AND)
p=2
o ido
_ 3, AND
(30, AND) p=1 ¢ ] p=2
P 11 id3
(10, AND) (15, AND) (8, AND)
p=1 p=1 - p=1
FinalAct id2
(5, AND) (1, AND)
(a) Flow graph (b) Optimized flow graph

Figure 4: Resulting flow graph and optimized flow graph from the UML activity of figure 2
5 Translating Flow Graphs into UPPAAL and NuSMV

In this section, we presented two translations from flow graphs into model-checker languages
based on the extended UML activity semantics. An activity diagram describes a system behavior
with the help of interconnected elements. Each element represents a functionality that does not
depend on the system, on which it is currently used. However, its execution point is directly
related to the connections, which is specific to the system. The behavior described by an activity
can, therefore, be separated between system specific and nonspecific. These parts of the behav-
ior are called system and token management respectively. That facilitates the formalization of
activity diagrams. The system defines the interaction between components and the foken man-
agement specifies the behavior of each component. This interaction is given in the UML diagram
by edges and priorities. The translation from UML activity into model-checker languages en-
sures a total transition relation for elements that have a related execution according to the UML
standard. Edges represent a bidirectional relationship between components. The transition from
source node to target node is called forward transition. It is triggered after finishing the execution
of a component. In contrast, the transition from target node to source node is called backward
transition. It is triggered when the flow processing is finished (see previous section).

The token management specifies the beginning, the end and the result of a component execu-
tion. The token management is divided into the processes: incoming, calculate and outgoing.
Incoming specifies the receiving of tokens as well as the beginning of the execution. Calculate
defines the execution duration in machine cycles, which is given in the model. Outgoing specifies
the firing process after the execution.

5.1 Timed Automata (TA)

TA was proposed in [1] as a formal language to model the behavior of real-time embedded
systems. The UPPAAL model checker can verify safety and liveness properties from systems
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modeled using TA. In order to transform a UML activity into a TA, the behavior of the system
is formalized in terms of TA by the system TA (Figure 5b) and the token management is formal-
ized by three TAs incoming, calculate and outgoing (Figure 5a, 5c, 5d). These three TAs are
instantiated for each vertex in the graph.

execute!

evaluating inT>=inTokens idOInc

{ waiting

inT<inTokens
busy:=false

setlncoming?
inT:=inT+1,
busy:=true

setlncoming?
inT :=inT +1

id1Busy==false
idOOut!

id3Busy==false
idOOut!

finish?
idle inT:=inT - inTokens, busy:=false

idOOut?
idOOutT==

idOOut?

a) incoming TA
@ & idOOutT==2

idle execute?
c:=0 calculate
ready! id10utT== id30utT==
(c) calculate TA ' id30ut?
id2Inc
. ready? fire  setOutgoing! .
idle — _ wait
O outT:=1 moutT<~outTokens id10ut! 430utl
id2Busy==false id2Busy==false
finish! outT:=0 setOutgoing? id2
outT>outTokens outT:=outT+1

(d) outgoing TA (b) system TA (corresponding to the flow graph of figure 4b)

Figure 5: TA-model for the specification of UML activities. The channels id,In of the system
TA are connected to the channel setlncoming of the corresponding incoming TA as well as the
channels /d,Out are connected to the channel setOutgoing of the corresponding outgoing TA.

The incoming TA is responsible for receiving tokens through the set/ncoming channel trig-
gered within the system TA. The number of received tokens is saved in the variable inT. If this
variable reaches the required number of tokens, inTokens, the incoming TA informs the calculate
TA via the execute channel and changes to the waiting state. During this state, incoming tokens
can still be received. In case that the required number of tokens for execution is reached again,
the execute signal is sent once the current execution is finished. The finish signal is sent from
the outgoing TA, which indicates that all outgoing transitions have been fired. The calculate TA
models the time that a node needs to be executed by using a clock variable. After the execution,
the calculate TA notifies the outgoing TA via the channel ready, which changes to the state fire.
In case that there are tokens to be fired, the outgoing TA changes to the state, wait. This TA stays
in the wait state until there is a transition that synchronizes with the channel setOutgoing. After
firing all tokens, the TA returns to the state idle notifying the incoming TA that the firing process
is finished.

The system TA (Figure 5b) is composed of states, which indicate the receiving of tokens and
the activation of a node (but not its execution), and transitions, which consist in forward transi-
tions (e.g. 1d0 to id1) and backward transitions (e.g. id1 to id0). The state id,Inc indicates only
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that an incoming has been received and state id,, indicates the activation. The representation of
one vertex of the flow graph using two states in the system TA is because double synchronization
is not allowed in one transition. The double synchronization is carried out by sending and re-
ceiving of setOutgoing within the system TA via channels id,,Out. This synchronization reduces
the possible transitions, thereby decreasing the complexity in the model checking.

Forward transitions are divided in two transitions. The first transition (e.g. id0 to id1Inc)
synchronizes the system TA (channel id,Out) with the outgoing TA (channel setOutgoing) of
the source state (e.g. id0) according to the given priority, id,OutT. This priority is determined
by the corresponding outgoing TA via the variable outT. The second transition (e.g. id1Inc to
id1) synchronizes the system TA (channel id, In) with the incoming TA (channel setIncoming) of
target state (e.g. id1). By contrast, backward transitions are synchronized with the setOutgoing
of their target state (e.g. id0). Backward transitions are enabled only if the source state (e.g. id1)
is finished with firing, which is indicated by the flag, id,Busy. This flag is set in the incoming TA
via the variable busy.

5.2 NuSMYV Language

The NuSMV language allows the modeling of finite state systems using case structures and
Boolean operations. Table 1 shows the rules for transformation of a flow graph into the NuSMV
language. In order to specify UML activities, system and token management are described sepa-

rately.
Y Table 1: Transformation Rules of flow graphs into NuSMV language

1 Forevery x € Vertex For edge z = {y € Vertex|z = (y.x)}
VAR INIT -- ’receiving tokens”
«InT" 0. maxTokens InT — ifv= r.oot system =z & zOutT =1 : xIntT + 1
otherwise esac;
xOutT: 0..maxTokens xOutT =0 5 For every x € Vertex
xC: -1.xR -- ”"WCET” xC=-1 ASSIGN
2 For every x € Vertex next(xC) :=
DEFINE case
xReady := (xInT < ReqTokens | xC=xR: -1 --"idle”
x0utT = xMaxOutgoings + 1) system =x & xC! =1 : xC + 1 -- ”execution”
3 ASSIGN -- V’start”
next(system) := system = x & xInT > ReqTokens & xOutT: 0
case esac;
system = root : x0; -- “’Initial state” 6 For every x € Vertex
For edge z € Egde z = (x,y,p) ASSIGN
system =x & xOut = p: y -- "FT” next(xOutT) =
system =y & yReady & xOut = p: x -- "BT” case
esac; system =x & xC = xR : 1 -- ”start”
4 Forevery x € Vertex -- ”finish”
ASSIGN system = x & xOut = xMaxQutgoings+1: 0
next(xInT) := For edge z = {y € Vertex|z = (x,y)}
case -- ’firing”
-- ’finish” system = z & zReady & zOutT = xP: xP + 1
system =x & xOut = 1 : xIntT — ReqTokens esac;

The space of states of the system is determined by a state variable, which corresponds to the
vertices of the graph plus a root state (Rule 3). Using a case statement, the behavior of the system
is specified by defining transitions (Rule 3). Forward transitions (FT) are triggered according
to the priority value p. Backward transitions (BT) are triggered at the end of the firing process,
which is determined by the Boolean variable xReady (Rule 2).
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Incoming tokens, outgoings tokens and the execution time are defined as integer variables
named xInT, xOutT, and xC respectively. Incoming and outgoing variables are limited and range
from O to the maximum number of tokens that can be saved by an UML element. Note that the
maximum value has to be greater than the required number of tokens for the execution (Rule 1).
The range of the clock variable is from -1 to the WCET value given in the model. The NuSMV
language only enables changes to the value of variables by using case structures. Hence, a case
structure has to be defined for each variable. The incoming structure specifies that xInT has to
be incremented by one after triggering off the corresponding FT and decreased by the number of
consumed tokens (ReqTokens) after the execution (Rule 4).

Within the calculate structure, the execution clock (xC) is incremented by one while the system
is in the respective state (Rule 5). After the clock reaches the WCET value (xR), the calculate
structure switches to an idle state denoted by the value -1. It remains in the idle state until
the node is executed again after receiving a new set of tokens. The outgoing structure defines
which transition has to be fired (Rule 6), which is taken into account in the system structure. The
first transition of the outgoing structure, value 1, is triggered after the clock reaches the WCET
value. The following transitions are triggered consecutively once the processing of the current
transaction is finished indicated by the xReady. The last value triggers the corresponding BT.

6 Experimental Evaluation

6.1 Performance Evaluation

UML activities have been selected as input data to evaluate the performance of the proposed tool
chains (mapping + model checker) using UPPAAL and NuSMYV. The input of the tools is auto-
matically generated based on the two translations introduced in the section 5. The performance
is evaluated by measuring the verification time of deadlock freedom (Formula 1 for UPPAAL
and formula 2 for NuSMYV). These formulas evaluate whether the final state is reached, which
represents the finalization of an activity. An average value is obtained using 10 measures.

E <> idfizqCal.calculate (1)  EF(system = idfing & idfingC =0) (2)

The model checking experiments were run on a Windows 7 PC with a 3.07GHz Intel Core 17
CPU and 6 GB of memory. A set of 30 activities has been created to cover a wide spectrum of
model characteristics: number of vertices [1, 224], number of edges [0,290], abstraction levels
[1, 5] and with or without deadlocks. This allows the comparison of the performance in relation
to the variation of these characteristic (e.g. the performance by increasing the number of actions).
The selected activities are created based on test models used for testing the DMOSES method.

The first experiment evaluates the verification performance in relation to the size of the model
by increasing of the number of actions and connections. All actions have the same execution time
(1 cycle) in order to obtain results that are independent from the real time constraints handling.
The difference between UPPAAL and the NuSMV begins to become evident in relatively small
activities with only 11 vertices. While UPPAAL requires 0.08 seconds to verify the formula
1, NuSMV requires 2221.77 seconds (Figure 6). The verification time is the determined by
the average of the verification (average) time of activities with the same number of vertices.
Analyzing the translation from UML into NuSMYV, we conclude that the increase in the state
space is directly proportional to the number of the incoming and outgoing edges of an action.
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This happens because these parameters are represented by integer variables. Each value that
these variables can take increases the state space of the FSM.
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Figure 6: Verification performance of the two presented translations from UML activities

The second experiment evaluates the verification performance in relation to execution time of
the actions. The timing of only one action in the model is varied from 1 cycle to 1000 cycles.
The relation between the cycles and the state space is depicted in figure 7a. The increase of
the cycles influences the state space and, as a consequence, raises the verification time as shows
figure 7b. The same experiment was performed using UPPAAL. No changes in the performance
are evident, since the execution time is realized in one step that changes the value of the clock
from O to the maximal time. The above-mentioned conclusion can be generalized for the time
execution as well, because the time, incoming and outgoings are represented as integer variables.
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Figure 7: Impact on the state space and performance of NuSMYV due to the WCET of one action

The significant difference between the presented approaches is caused by the numerical vari-
ables that are needed to encode model information, such as multiple tokens and timing behavior.
This information is required to verify data overwriting and timing constraints. NuSMV targets
non-numerical symbolic modeling. Therefore, UML activities for embedded systems are out-
side of the scope of this model checker. In contrast, UPPAAL showed better performance for
this specific application domain due to a more suited handling of numerical variables.
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6.2 Verification of systems requirements

The verification method proposed in this paper has been used to verify an optical tracking sys-
tem for navigation aided liver biopsy taking into account medical workflows [6]. In this work,
the presented verification approach has been applied to an infusion pump. An infusion pump is
used to administer medicaments or nutrients into a patient’s circulatory system. This medica-
ment/nutrients infusion is classified as a safety-related system since errors in the functionality of
the system can lead to degradation of the patient’s health or even his death. The control system
of the infusion pump is modeled using UML models and generated by using the DMOSES tool.
The design is targeted to an ARM?7 processor (LPC2368).

(activity InfusionPump ( Sensor_Motor, KB_pressed, Motor_isr ) [ :5‘ InfusionPurmu

[errorHandling == High]

[errorHandling = High]#‘
Motor_isr
«async»

N Pump : -
Sensor_Motor 21 Motor_c‘c’mtrol | Frequency Motor_driver

= Sensor_Motor
Motor_isr

KB_pressed Input Volume m Control :
KB_pressed ————>1 Processing : { Syséennm;)"etrro controlled | Motor_off 9(8
«asyncy» KB_edit lh Ih ‘ Volume ‘ %
KVO |
activity Motor_control( Motor, Sensor_Motor, Volume, Motor_off ) [|-F) Molor_controlu

m_h n «priority» {level=1}  f_in [errorHandling = High]

fi f_out
Chisckt = Motor

———>/ | calculate «async» i D
I Volume frequency | frequency
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f—motor_on

Motor_start

Motor_off
% Motor_stop

Figure 8: UML models used for the development of an infusion pump using DMOSES

The volume per hour (VH) in mL\ h is set by the user using a keyboard. This value is translated
into a motor frequency. A display shows the selected value of VH and the currently injected
volume. In order to ensure a safe behavior, the system contains additionally sensors that monitor
the current behavior of the pump. These sensors measure the velocity of the motor, battery level,
and the position of the injection. Using the sensors, the control system can verify if the infusion
process is following the specified settings. In case of a failure, the system reacts in a way so
that the patient cannot be injured (e.g. alarm, stopping the motor). Figure 8 presents the highest
abstraction level on the top and the detailed function of the Motor_control on the bottom. The
system starts with the user input of the VH. This value is read and verified according to given
requirements in Input Processing. After the verification, the data is processed by the action
System Control. This action does not only consider the input data but also the status of the
system. The action Pump calculates the frequency of the motor and verifies the resulting value
against to motor requirements. The Motor_driver sets the motor’s frequency by writing in the
corresponding registers of the processor when the interrupt Motor _isr is triggered.

The activity Infusion Pump can fire the event KVO (keep vein open) via an accept action.
The KVO represents a slow infusion that provides enough fluid flow to keep the end of the
catheter from clotting off. In some error cases, the motor has to run in a KVO frequency. The
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corresponding value for the motor is calculated within the System Control. If the send action
is processed by the same flow that has begun by the accept action, the event will never be sent.
This happens because the accept action is waiting for an event and the send action is waiting
for a token. This leads to a deadlock. If both hierarchical levels are not examined together, it is
impossible for the developer to identify the deadlock. In larger and more complex system, this
task can become very difficult and error prone if done by manual verification. In this system, the
KVO event is sent in different points of the system (e.g. in Motor_control). The diagrams present
parameter sets that are represented by the marked pins. Parameter sets allows grouping of pins
and to execute different functionalities according to the set. For example, the value measured
by the motor’s sensor is processed by the Moror_control without waiting for tokens in the other
inputs. Therefore, the parameter sets have a OR function assigned to them in the flow graph.
Liveness and safety requirements have been verified for the Infusion Pump example (Figure
8). The flow graph of this system contains 200 vertices and 288 edges. Due to the previous
performance results and the size of the model, the system requirements have only been verified
using the UPPAAL. The formula 3 shows an example of a safety requirement. This requirement
evaluates whether the motor runs with the frequency corresponding to KVO level after the battery
reaches the minimal value. The wait state belongs to the outgoing TA and the evaluating state
belongs to the incoming TA. This formula is true if the execution of the action, idpgpsin, implies
the execution of the action, ids.sxvo. The average verification time of this formula is 0,7 seconds.

E <> idpap1inOut .wait and ids.gyoln.evaluating 3)

7 Conclusion

This work presented an approach to integrate model checking into DMOSES, a model-driven
development approach for embedded systems. This MDD method has been extended in order
to allow automatic verification of UML models and can be downloaded in www.dmoses.org.
The translation between these models into model checker’s input notation is carried out by an
indirect metamodel transformation based on flow graphs. We proposed two ways to specify
UML activities by using Timed Automata and the NuSMV languages. In order to choose the
most adequate verification tool for the extended UML activity, we realized an empirical study to
evaluate the performance of tool chains that use UPPAAL and NuSMV. The results demonstrated
that UPPAAL achieves a considerable better performance than NuSMV. This is attributed to the
fact that there is a proportional relation between the variables and the state space in the NuSMV
translation. Such variables represent execution time and multiple tokens and are required for the
verification of embedded systems. Although NuSMV has been used to verify UML activities
in several approaches, the presented comparison clearly showed that the limitations of NuSMV
significantly compromise the verification performance of these UML models. In order to extend
the comparison, some works about the improving the variable’s managements of NuSMV such
as [4] may be used in future studies. The UPPAAL model checker was used to verify safety and
liveness properties in a infusion pump. This device has been developed by using the DMOSES
method. In future works, we will extend the proposed formal description to interconnected UML
activity and state machines as well as the optimization step to improve the analysis of multiple
hierarchical levels. Furthermore, we plan to include the best case execution time (BCET) and
WCET in order to evaluate the entire working timing range.
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