
Electronic Communications of the EASST
Volume 66 (2013)

Proceedings of the
Automated Verification of Critical Systems

(AVoCS 2013)

Verifying a Mix Net in CSP

Efstathios Stathakidis, David M. Williams and James Heather

15 pages

Guest Editors: Steve Schneider, Helen Treharne
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Verifying a Mix Net in CSP

Efstathios Stathakidis1∗, David M. Williams2† and James Heather1

1 {e.stathakidis, j.heather}@surrey.ac.uk
Department of Computing, University of Surrey, Guildford, UK

2 d.m.williams@vu.nl
Theoretical Computer Science, VU University Amsterdam, The Netherlands

Abstract: A Mix Net is a cryptographic protocol that tries to unlink the corre-
spondence between its inputs and its outputs. In this paper, we formally analyse a
Mix Net using the process algebra CSP and its associated model checker FDR. The
protocol that we verify removes the reliance on a Web Bulletin Board during the
mixing process: rather than communicating via a Web Bulletin Board, the protocol
allows the mix servers to communicate directly, exchanging signed messages and
maintaining their own records of the messages they have received. Mix Net analy-
ses in the literature are invariably focused on safety properties; important liveness
properties, such as deadlock freedom, are wholly neglected. This is an unhappy
omission, however, since a Mix Net that produces no results is of little use. Here we
verify that the Mix Net is guaranteed to terminate, outputting a provably valid mix
agreed upon by a majority of mix servers, under the assumption that a majority of
them act according to the protocol.

Keywords: Mix Nets, formal methods, model-checking, CSP, FDR

1 Introduction

A Mix Net is a cryptographic protocol which conceals the correspondence between the initial vec-
tor of encrypted input values and the permuted vector of decrypted values given as output. No
protocol participant should be able to link a single encrypted input to its specific corresponding
decrypted output, although all participants must be assured that a bijective relationship between
inputs and outputs exists. It was first introduced by Chaum [Cha81] for anonymous mail. Usu-
ally, a Mix Net consists of a number of mix servers that collectively execute a protocol; most
recent Mix Nets rely on a public-key encryption scheme, such as ElGamal [Gam85], that allows
re-encryption of ciphertexts. The inputs are submitted under the joint public key of the Mix Net,
and each individual mix server receives a list of encrypted messages (ciphertexts), re-encrypts
each of them, permutes the resulting vector and outputs the re-encrypted and re-ordered list to
the Web Bulletin Board (WBB). The re-encryption and mixing is peformed by each mix server
sequentially. To ensure the correctness of the operation to the other mix servers, each mix server
produces a “proof of shuffle”. The output of the last mix server may be decrypted by a threshold
number of tellers and then posted on the WBB for public verification. Golle et al. [GJJS04]
outline such a Mix Net.
∗ Author sponsored by the EPSRC under the Trustworthy Voting Systems (TVS) project.
† Author sponsored by the NWO under the Design and Analysis of Secure Distibuted Protocols (DASDiP) project.

1 / 15 Volume 66 (2013)

mailto:\protect \T1\textbraceleft e.stathakidis, j.heather\protect \T1\textbraceright @surrey.ac.uk
mailto:d.m.williams@vu.nl

Verifying a Mix Net in CSP

Mix Nets have been proposed for use in real-life applications, including anonymous Web
browsing and electronic cash payments, RFID tags and untraceable mail systems. Their main
application is electronic-voting [Adi08, RBH+09, BCH+12], where they are used to ensure that
a voter’s vote cannot be tracked and revealed throughout the process, providing voter privacy
and anonymity. Although their anonymity has been exhaustively analysed and proved, early
Mix Nets were not fault-tolerant as a dishonest mix server could corrupt the execution in order
to stop the whole process or result in an invalid or inconsistent output. In this work we are
interested in both liveness and safety properties that a Mix Net should fulfil, namely robustness
and privacy as described in Section 4.

Furthermore, one assumption often made in the Mix Net literature is the existence of a pub-
licly verifiable and trusted site, called a Web Bulletin Board (WBB) [HL08, WG06, Wik04].
The mix servers communicate with each other via the WBB and the Mix Net achieves universal
verifiability as anyone has read access to it and can verify the stored information. However, the
bulletin board has proved notoriously slippery to construct in practice. Here, we replace this as-
sumption with two others that are far easier to realise: first, that all communication is performed
over authenticated channels; and secondly, the honest majority assumption, under which strictly
more than half of the mix servers act according to the protocol. On this basis, we remove the
need for a WBB during mixing, and verify a Mix Net that allows direct communication between
the mix servers.

In what follows, we will retain some notion of a WBB for publication of the final mix data
from each server. This is simply because the final result of the mix needs somehow to be pub-
lished; obviously if there is no way at all of making something available permanently for public
consumption then there is no way of effectively completing the mix. However, this is a much
weaker assumption than that of its existence during mixing. The final publication problem can
be solved by putting the mix data up, suitably signed, on various news organisations’ web sites,
for example, or releasing it on BitTorrent; but these mechanisms are not appropriate for live
communication between mix servers during the mixing process. Essentially, the WBB that we
use to publish the final mix data corresponds simply to an assumption that after the mix servers
have done their work, the honest servers have a reliable way of getting the message ‘out there’.

Our Contributions. Our primary contribution is the formal analysis of a Mix Net that performs
mixing with no centralised trusted authority in place but instead enables direct communication
between the mix servers using authenticated channels. Rather than posting to, and reading from,
a central WBB that records a consistent record of all messages sent, each mix server maintains
its own local perspective throughout the rounds of mixing, receiving signed messages broadcast
to them by other mix servers and broadcasting their own signed messages to all others. Secondly,
we verify that our proposed protocol meets its requirements using the CSP process algebra and
the FDR model-checker. We analyse our protocol in the presence of a realistic intruder model,
based on Roscoe and Goldsmith’s perfect spy [RG97]. It is important to analyse Mix Nets’
security properties before using them, as many constructions have been broken after they were
introduced. Combined, our results show that our protocol guarantees to terminate and guarantees
consensus among a majority of mix servers of the final chain of mixes in the presence of a
minority of dishonest mix servers that do not faithfully follow the protocol.

Proc. AVoCS 2013 2 / 15

ECEASST

Organisation. We begin, in Section 2, by discussing previous work on Mix Nets. In Section 3,
we describe a subset of the CSP process algebra that is sufficient for constructing our model. We
propose our protocol in Section 4 that removes the need of the WBB during mixing. We then
construct a CSP model of our Mix Net in Section 5. Results of the formal analysis of the model
are given in Section 6, and we conclude the paper in Section 7 with a discussion of possible
future research directions.

2 Previous Work

In this section, we survey previous work in Mix Nets where liveness is of major concern. Ro-
bustness is the liveness property regarding successful termination in the presence of faulty mix
servers. The first Mix Net introduced by Chaum [Cha81] is not robust, as in the case where one
of the mix servers does not work, the execution stops and no output is obtained. Sako and Kilian
[SK95] proposed Mix Net constructions that are not robust either: if at least one mix server stops
responding, then the entire system stops without outputting a result. Jakobsson [Jak98] presented
a practical Mix Net which was believed to be robust until Desmedt and Kurosawa [DK00] found
an attack such that at least one malicious mix server can prevent the Mix Net from computing
the correct result. In these approaches the mixing can not proceed if a single mix server is un-
available. Distributed consensus protocols, such as [PSL80], guarantee agreement on a vector of
values that includes those of all honest nodes. Our requirements of Mix Nets need not be this
strong: we require that some mix of threshold length be agreed by a majority of mix servers,
although all honest mix servers’ mixes need not be included.

Another weakness in the Mix Net literature is the assumption of the existence of a WBB that
supervises the mixing process. Each mix server reads what is posted on the WBB, operates on
what was read and posts back to the WBB. Most of the constructions are based on the strong as-
sumption that the WBB is authenticated, tamper-proof and resistant to denial-of-service attacks.
Wisktröm and Groth [WG06] proposed an adaptively secure Mix Net based on ideal function-
alities for a WBB [Wik04]. The existence of such a publicly verifiable site is not realistic and
practical in real-life applications, however, as it is a single point of failure. If it is unavailable,
the entire process stops and the Mix Net does not complete and does not produce an output.

Although they are the building blocks for constructing secure real-life applications, Mix Nets
have been proposed without formal analysis and automated verification. Wikström [Wik04]
proved that his Verificatum Mix Net is secure in the universal composable symbolic model, but
his analysis excludes constructions with proofs of shuffles. Moreover, his scheme does not satisfy
the liveness property, as when a mix server raises a complaint about another’s honesty, then the
whole process stops and manual intervention is needed in order to exclude the faulty mix server.

Process algebras like π-calculus [AF01] have been used to analyse electronic voting schemes
with very limited references to Mix Nets. Kremer et al. [KRS10] and Delaune et al. [DKR09]
used the π-calculus language to model and analyse important voting properties like voter-privacy,
coercion-resistance, receipt-freeness and verfiability in the presence of an ideal WBB-based
Mix Net, and the use of CSP and its associated refinement checker FDR have proved successful
in finding previously unknown flaws in security protocols [Low96, RS01]. We use the CSP/FDR
approach to analyse the robustness of a Mix Net, the first such analysis for a Mix Net.

3 / 15 Volume 66 (2013)

Verifying a Mix Net in CSP

3 Preliminaries

Communicating Sequential Processes (CSP) is a process algebra used for verifying complex
concurrent systems. The core of the CSP algebra is a process, which is described by the way it
communicates with its environment. Processes proceed from one state to another by engaging
in events. The alphabet of a process P, denoted αP, records the set of all visible events that this
process may perform. The set of all possible events is denoted by Σ. In CSP, all the communica-
tion events are instantaneous and they happen only when both the processes and the environment
agree on their occurrence. For a more detailed explanation of CSP we refer the reader to [Ros98].

STOP is the simplest CSP process, which does nothing. The process a→ P is initially willing
to communicate a and then behaves like P. P 2 Q can act either as P or Q, the choice of which is
in the hands of the environment. Replicated external choice replicates the choice over the set A ,
and is denoted by 2

x∈A
P(x). By P ‖

A
Q we denote generalised parallel, which synchronises P and Q

on events lying in the set A . Alphabetised parallel is denoted by P ‖
αP αQ Q, and synchronises P

and Q on events lying in the intersection of αP and αQ. We write ‖i∈I [αP]P(i) for the replicated
alphabetised parallel composition of processes P(i) indexed over I, where each P(i) is allowed
to perform events from αP and the processes are synchronised on the common events. In hiding,
P \ A , the internal events from A are hidden from the environment. In renaming, [[a/b]], the
events b occurring in the process are replaced by the events a.

For two decades the Failures/Divergences Refinement (FDR) checker has been the principal
tool for verifying properties of models expressed in CSP. FDR tests whether the CSP model of
the system being analysed refines some specification of the system’s desired behaviour, which is
also written in CSP. We omit details of the datatypes and channel definitions in the CSP model of
a Mix Net presented in Section 5, as they can be inferred from the data values ascribed to them;
however, we shall provide definitions of certain sets and functions used throughout the model.

The set of all mix servers is denoted by P and is defined to be H ∪D , where H (resp. D)
denotes the set of all honest (resp. dishonest) mix servers. By max(D), we denote the dishonest
mix server with the highest identity. By |A |, we denote the cardinality of a set A , by PA we
denote the powerset function as applied to a set A , and we use A 8B to denote set difference,
subtracting all elements of a set B from a set A . Honest mix servers send broadcast messages to
all other mix servers at once, whereas the intruder is able to send different messages to individual
mix servers. Thus, it is useful to define a set R = {X ∈ PP | |X| = N− 1or |X| = 1} of the
possible message recipients, where N is the total number of mix servers.

By α , we denote an unmixed vector. By Mj(m), we denote the vector m mixed using mix
server j’s secret permutaion value, where m is either the unmixed vector α or some mix thereof.
By ρ(Mj(m)) we denote the zero knowledge proof that the operation producing Mj(m) from
m was performed as attested to. Messages, also referred to as chains, then have the form
Sj(Mj(m),ρ(Mj(m)),s), where s is its corresponding sub-chain. Chains are so called, as they
are extended at each mixing stage, although a better analogy is of a Matryoshka nesting doll.
The mix from a previously received chain (or α in the base case) is mixed, the mixing operation
attested to and the whole of the previously received chain are all signed together, such that a
proof of each operation in the chain is nested within each ‘layer’ of the message. The length
of a message m is denoted by #m and is calculated by counting these layers of signatures, i.e.,

Proc. AVoCS 2013 4 / 15

ECEASST

sub-chains. Messages cannot be longer than the total number of mix servers.
The set of all messages that can be feasibly sent and received in a protocol run is denoted by

M . Messages do not require every mix server to be included, signing some sub-chain within
the chain, but the signatures throughout a chain are required to be in strictly increasing order.
Moreover, it is not possible for a mix server to deduce how a vector of values has been mixed,
even with knowledge of the values before and after mixing as well as the zero knowledge proof.
An honest mix server will never sign a mix chain unless it has produced the final mix in the chain.
This is not necessarily true of the dishonest mix servers. The message space of M takes these
properties into account, omitting messages that could not feasibly be sent in a protocol run. The
outer signatory of a message is verified using the corresponding public key; we use a function
outer(m) to return the signatory of a given message m. Likewise, seq(m) returns the outer mix
sequence of m. The set of all possible output mixes, O , is taken to be {seq(m) | m ∈M }.

4 Our Proposed Mix Net

In this section we propose our Mix Net, which avoids use of the WBB for communication be-
tween mix servers during the mixing process. Our protocol is guaranteed to terminate in the
presence of a dishonest minority. Upon termination of the mixing process, the mix servers post
partial decryptions to the WBB and at least one valid chain of threshold length will be fully de-
crypted/agreed upon by a majority of mix servers. The primary difference from current Mix Nets
found in the literature is that each mix server maintains their own ‘local’ record of the chain of
mixes instead of maintaining a consistent ‘global’ record via the WBB.

4.1 Requirements

An honest mix server follows the protocol without deviating from it, produces correct shuffles
and valid proofs. It sends the same message to all other mix servers using authenticated channels.
Conversely, a dishonest mix server tries to disrupt the protocol such that it does not terminate, or
otherwise, upon termination, causes a dispute among the honest mix servers. To try and achieve
these goals, the intruder acts as a Byzantine faulty node under the limitation of a perfect cryptog-
raphy assumption, i.e., the intruder can refuse to send messages, it need not send messages to all
other mix servers, and can try to send messages that it can construct but that do not necessarily
follow the protocol. The intruder may send different messages to different mix servers.

The output of a Mix Net should be a complete chain of provably valid mixes. A chain is con-
sidered complete if its length is strictly greater than N

2 , where N is the number of servers, and
each mix is a proven valid mix of the mix in its sub-chain. We consider the Mix Net robust if
it always returns such output, regardless of the behaviour of the dishonest minority. It is con-
ceivable that not every honest server has a mix represented in the final chain; it is a requirement,
however, that at least one mix has been produced by an honest server to maintain privacy.

4.2 Protocol description

When the protocol starts, all mix servers are provided with the initial list of unmixed ciphertexts,
α , as the initial candidate mix to be mixed. Each mix server has a unique identity between 1 and

5 / 15 Volume 66 (2013)

Verifying a Mix Net in CSP

2

1 3

S2(M2,S1(M1,α))

S1(M1,α) S3(M3,S2(M2,S1(M1,α)))

Figure 1: A Mix Net with three honest mix servers

the total number N of mix servers. Mix server 1 is the first mixer and all mix servers maintains a
counter to record the identity of the current mix server. Initially, mix server 1 re-encrypts α using
new randomness and shuffles using its own local and secret permutation, thus producing the mix
M1(α). To prove the correctness of the re-encryption and shuffling, it proves, in zero-knowledge,
that M1(α) was formed correctly from α , producing the proof ρ(M1(α)). It then signs those two
values along with α , with its own signing key, to produce S1(M1(α),ρ(M1(α)),α). We shall
call such messages chains, where the length of this chain is said to be 1, as it has just one layer
of mixing and signing.

The other mix servers acting as checkers wait to receive the first mixer’s signed output or for
a timeout to occur. Each checker extracts the message from inside the signature and checks the
proofs against the latest mix. In later rounds they will also have to do this for the inner signatures
and inner proofs. If any of the proofs do not check out, then the message is rejected and the
checker waits for a message containing valid proofs to arrive or for a timeout to occur. If the
message is valid, i.e., is a chain containing a complete sequence of valid proofs, then the length
of the chain is calculated by counting the number of layers of signatures. If the length of the chain
is equal to or exceeds the length of the checker’s current candidate chain, the current candidate
chain is updated to be the most recently received chain. Otherwise it remains unaltered. They
increment the counter and, if it is their turn, they do the mixing.

Having received the message S1(M1(α),ρ(M1(α)),α) and verified the signature and proof
of mixing, the second mix server mixes M1(α) to produce M2(M1(α)) and must also produce
the associated zero knowledge proof ρ(M2(M1(α))). He signs this to produce the message
S2(M2(M1(α)),ρ(M2(M1(α))),S1(M1(α),ρ(M1(α)),α)), which is a complete chain of length
two. As chains get longer throughout the protocol, we abbreviate this to S2(M2,S1(M1,α)).

Figure 1 illustrates the messages exchanged in a run of the protocol in the presence of three
honest mix servers faithfully following the protocol. Following receipt of the first two messages,
the third mix server acts as mixer and sends S3(M3,S2(M2,S1(M1,α))) to the other two mix
servers. All the mix servers maintain a record of the valid chains that they sent or received
during the protocol that are longer than N

2 . Subsequently, they shall post all such chains, partially
decrypted, onto the WBB. Hence, a polynomial number of different outputs will appear on the
WBB. Any chain that has been partially decrypted by at least a majority of mix servers can be
used as the final output, with preference given to the longest.

Proc. AVoCS 2013 6 / 15

ECEASST

5 Modelling and Formal Analysis in CSP

In this section, we present the processes and specifications used to model and analyse our Mix
Net. We describe the processes modelling the honest and dishonest mix servers, and then com-
pose them into models to be checked for robustness and privacy. The complete script can be
found at http://www.tvsproject.org/csp/mixnet.csp.

5.1 Honest mix servers
The behaviour of the honest mix servers can be split into four phases: checking before mixing;
mixing; checking after mixing; and posting the results to the WBB. The first mixer will of course
perform no checking before mixing and the final mixer will do no checking after mixing.

CHK1(me,curr, toBeMixed) =
ifcurr < me then

timeout→ CHK1(me,curr+1, toBeMixed)

2 2
m∈{m′∈M |outer(m′)=curr}


recv.m→
timeout→
if#m≥ #toBeMixed then

CHK1(me,curr+1,m)
elseCHK1(me,curr+1, toBeMixed)




elseMIX(me,curr, toBeMixed)

CHK1 models the initial phase of checking before mixing. Using toBeMixed, the honest
checker keeps track of the chain that it will use once it becomes mixer, and also records the
identity of the current mixer, curr. The checkers are willing to receive any valid mix, repre-
sented in CHK1 by the external choice over valid chains signed by the current mixer, but block
receipt of invalid mixes, and mixes signed by a server who is not the current mixer. This abstracts
away the behaviour of receiving a mix containing an invalid proof, or an incorrectly signed mes-
sage. If a checker times out before (resp. after) receiving a valid chain, then toBeMixed remains
the same (resp. is updated with the new chain if not shorter than the last) and curr is incremented.

MIX(me,curr, toBeMixed) = send.Sme(Mme, toBeMixed)→
timeout→
CHK2(me,curr+1)


CHK2(me,curr) =
ifcurr ≤ N then

timeout→ CHK2(me,curr+1)

2 2
m∈{m′∈M |outer(m′)=curr}

 recv.m→
timeout→
CHK2(me,curr+1)




elsedone→ STOP

If the mix server counter is its own, the mix server enters the mixing phase. It performs the
mixing using toBeMixed, and sends a new chain to the other mix servers. Honest mix servers do
not time out before sending a message (we assume that the timeout value is sufficiently large that
an honest mix server will have time to complete its work and send the result out). Thereafter, the
mix server need not keep track of toBeMixed as it will not need to perform any more mixing. The
current mix server counter is incremented by one, and the mix server continues to be involved in
checking other servers’ mixes (that is, it continues on to the CHK2 process).

In the checking after mixing phase, checkers can time out before or after receiving a valid
chain, in a similar manner to the previous checking phase. Once curr exceeds the total number

7 / 15 Volume 66 (2013)

http://www.tvsproject.org/csp/mixnet.csp

Verifying a Mix Net in CSP

of mix servers, the mixing protocol terminates as modelled by the done event. The mix server
is now ready to post its results to the WBB. Each mix server must record all chains it sent or
received during mixing, and post partial decryptions of those with length greater than N

2 .
A particular mix could become known to a mix server in a number of ways. It could feasibly

have arrived several times, in messages signed by different mix servers. Like the various learn-
able facts in Roscoe and Goldsmith’s perfect spy [Ros98], a mix server starts off being ignorant
of each possible mix, as modelled by IGN. Note that IGN is defined in terms of a mix, sq, and
not a message. The mix can be learnt, after which it becomes known; thereafter it can be said.
The mix server could also calculate the mix themselves from its toBeMixed value, modelled here
as say, which can only occur in synchrony with the MIX process. Otherwise, the protocol termi-
nates before the occurrence of a learn or say of this mix and the process deadlocks. Once known,
a mix could potentially be learnt or said again in the KNW process, without changing the state.
Following a done event, the mix can be posted (to the WBB), as long as the chain is over the
threshold length, as defined in PST .

IGN(sq) = done→ STOP
2 learn.sq→ KNW(sq)
2 say.sq→ KNW(sq)


KNW(sq) = done→ PST(sq)

2 learn.sq→ KNW(sq)
2 say.sq→ KNW(sq)


PST(sq) = if#sq > N

2 then
post.sq→ PST(sq)

elseSTOP


To realise when a mix is received via a message, we rename each learn.sq to all possible

recv.m in which the message would return the corresponding mix, and likewise we rename say.sq
to all possible send.m. The renamings of all IGN processes, one for each possible mix, are
composed in parallel, synchronising only on the one event their alphabets share, namely done.
Subsequently all send, recv and done events are synchronised with the process CHK1(me,1,α),
which initialises the local perspective of the mix server, me, with the current mix server counter
set to the first mixer and the toBeMixed parameter set to the unmixed value α .

HON(me) = CHK1(me,1,α)‖
{|send,recv,done|}

(‖sq∈O
[{done}]IGN(sq)[[recm.m,send.m/learn.sq,say.sq m∈M ,seq(m)=sq]])

A global perspective of the honest mix server does not just send and recv messages. Instead
it is defined in terms of the connections a mix server shares with others. Hence, each send
is renamed to an outgoing comm.me.P8{me}, distributing the sent message to all mix servers
other than me. Likewise, each recv is renamed to an incoming comm.x.Z, where x is some mix
server other than me, and Z is either the singleton set containing only me or the set of all mix
servers other than x. Honest mix servers will send to everyone, whereas the dishonest mix server
could choose to send different messages to different mix servers or choose to send messages to
some mix servers but not others. The mix server does not know how the message arrived: he sees
the protocol only in terms of the HON process. However, when analysing the system, we can
see which messages were distributed to whom by synchronising the various renHON processes,
which gives a view of the protocol from a networking perspective. The post event is renamed in
a similar fashion such that groups of mix servers can synchronise on an agree event, modelling
the threshold decryption.

renHON(me) = HON(me)[[comm.me.P8{me}.m/send.m m∈M]]

[[comm.x.Z.m/recv.m m∈M ,x∈P8{me},Z∈R,x 6∈Z,me∈Z]]

[[agree.Z.sq/post.sq sq∈O,Z∈PP,|Z|>N
2 ,#sq>N

2
]]

Our final models are constructed using alphabetised parallel composition. As things stand, if
both are honest, mix server 1 will communicate with mix server 2 each time 1 sends a mix to

Proc. AVoCS 2013 8 / 15

ECEASST

all mix servers via comm.1.P8{1}. However, although mix server 2 is willing to receive this
message, it is also willing to communicate via comm.1.{2} as, locally, it is unable to distinguish
the two types of communication. The alphabetised parallel composition will ensure that no
events comm.1.{2} ever occur in the model, as long as we define appropriate alphabets. The
alphabet of mix server me is defined below.

αHON(me) ={comm.me.Z.m |m∈M ,Z∈R,me6∈Z}∪{comm.y.Z.m |m∈M ,y∈P8{me},Z∈R,me∈Z,y 6∈Z}
∪{agree.Z.m |m∈M ,Z∈PP,|Z|>N

2 ,me∈Z,#m>N
2
}∪{timeout,done}

We can already compose a system in which all mix servers are honest, that is D = /0.

ALLHON = ‖i∈H
[αHON(i)]renHON(i)

To perform a more rigorous analysis we must of course include an intruder model.

5.2 Dishonest mix servers

We use the Roscoe and Goldsmith’s perfect Spy process [RG97], more specifically its encoding
in [Ros98], as the basis of the intruder (dishonest mix server) behaviour, although we use a
different renaming as we are not considering a Dolev Yao attacker [DY83]. The Spy can receive
messages sent to it over learn, infer events based on messages received and its initial knowledge
and say messages that it has inferred that may be accepted by the honest mix servers.

Upon receipt of a message, the intruder can sometimes make a number of independent in-
ferences in any order. Roscoe and Goldsmith’s perfect spy avoids refinement checking an un-
necessarily large state space caused by this combinatorial explosion. Whenever an inference is
made, the intruder does not lose the ability to perform any action that could be done prior to the
inference. This observation allows one to force the intruder immediately to perform every possi-
ble inference in some arbitrary order before taking any other action. This causes no observable
difference in the intruder’s behaviour, but avoids otherwise troublesome state space explosion.

Furthermore, deductions need only be made for the misbehaving agent’s set of learnable
facts. That is, the intruder can never learn a fact that it knew initially or that cannot be de-
duced from its initial knowledge and all the messages it could hear. Roscoe and Goldsmith’s
Spy elegantly omits inferences of such facts. Each deduction function operates on a subset of
the set of facts conforming to a particular type. Two deduction rules are sufficient for our pur-
pose. The first allows a signed fact to be learnt from knowledge of the fact and the signing
key, and to deduce the fact from knowledge of the signed fact and the signatory’s public key.
The second allows a sub-chain to be deduced from a chain. Remember S2(M2,S1(M1,α)) ab-
breviates S2(M2(M1(α)),ρ(M2(M1(α))),S1(M1(α),ρ(M1(α)),α)). From knowledge of this
message and mix server 2’s public key the intruder can extract a sequence of three values: the
mix, the proof and the sub-chain. Even with knowledge of the mixed values before and after this
round of mixing, as well as the zero knowledge proof, the mixer’s secret permutation value is
not revealed. Hence, in our abstract representation of this message, the intruder cannot deduce
the value M2, but can deduce the sub-chain included in this chain, or the chain as signed by the
intruder, or can extend the chain with an extra mix as signed by the intruder.

deductions1(X) = {({m,sk(i)},Si(m)),({Si(m),dual(sk(i))},m) | Si(m) ∈ X}
deductions2(X) = {({m,m′},(m,m′)),({(m,m′)},m′) | (m,m′) ∈ X}

The only other change we make to Spy is to redefine the intruder’s initial knowledge. This
consists of all mix server identities, the secret permutation values of all dishonest mix servers,
all mix servers’ public keys for verifying signatures, and the initial unmixed vector of values.

9 / 15 Volume 66 (2013)

Verifying a Mix Net in CSP

Known′ = P ∪{Mi,sk(i) | i ∈D}∪{pk(i) | i ∈P}∪{α}

The Spy process has in its alphabet learn allowing information to be received and say allowing
messages to be sent. Internally, infer actions allow messages to be inferred such that additional
say actions may become possible, i.e., additional messages can be sent once they have been
deduced by the intruder. In order to compose Spy with the honest mix server processes renHON,
we must rename Spy such that it appropriately communicates with the other mix servers.

renSPY = Spy[[comm.x.P8{x}.m,say.m,comm.max(D).{x}.m/learn.m,say.m,say.m m∈M ,x∈H]]

[[agree.Z.seq(m)/say.m m∈M ,Z∈PP,|Z|>N
2 ,Z8H 6= /0,#m>N

2
]]

Each say event is renamed to comm.max(D).{x}. Locally, the mix servers are unable to
distinguish where messages originated from, and so it does not matter which of the identities of
the dishonest mix servers the intruder uses to send messages. As such, we reduce the number
of transitions by enabling the intruder to use only the highest numbered dishonest mix server,
without limiting the intruder’s capability to attack the protocol. The intruder can send different
messages to different mix servers, so each message is sent to an individual mix server—that
is, to the singleton set {x}, where x is the identity of some honest mix server. If the intruder
wishes, like the honest servers, to send the same message to all mix servers, he simply unicasts
the same message to each honest mix server. The intruder learns all messages sent to any of the
dishonest mix servers’ identities, so it is not necessary for, say, dishonest mix server 1 to send
messages to dishonest mix server 2. As the intruder hears all messages sent to any of the mix
servers identities, and all honest mix servers send to all mix servers other than themselves, learn
events are renamed to comm.x.P8{x} where x is again the identity of some honest mix server.
We may wish our intruder to contribute to the group agreements of the final output, so the say
events should also be renamed to agree.Z events, where Z is any set of servers that contains the
identity of at least one dishonest mix server.

Our use of the alphabetised composition operator ensures that the mix servers are synchronised
on appropriate events.

αSPY ={comm.y.P8{y}.m |m∈M ,y∈H }∪{comm.x.Z.m |m∈M ,x∈D ,Z∈R,x 6∈Z}
∪{agree.Z.m |m∈M ,Z∈PP,|Z|>N

2 ,Z8H 6= /0,#m>N
2
}

Now that we have constructed processes that capture the behaviour of the honest and dishonest
mix servers, we can compose them together for analysis.

5.3 Requirements and assertions

We shall construct three systems for the analysis of the protocol. Each system involves a set
of honest mix servers that follow the protocol faithfully, and may include an intruder that has
control over a subset of mix servers, receiving any message sent to these mix servers.

Initially, we analyse ALLHON, in which all mix servers faithfully follow the protocol. In this
case, we expect all servers to agree on the longest of the mix chains that is sent on the network,
received in the final round. Each mix server partially decrypts this chain and publishes the result.

If more than half of the mix servers post a partial decryption of the same chain to the WBB,
then this decrypted chain of mixes will be considered as the final output of the mix. This output is
modelled in our system as a synchronous agree event among a majority of mix servers agreeing
on the output message. We wish to check that it is guaranteed that some agree event occurs.

Proc. AVoCS 2013 10 / 15

ECEASST

RBST = agreement→ RBST

RBST vFD (ALLHON \ Σ8{| agree |})[[agreement/agree.X.sq |X∈PP,sq∈O]]

Using the Failures/Divergences model (FD), we check that it is not possible for our model
to diverge or deadlock before the occurrence of the agreement event. As all events other than
agree have been hidden and all agree events renamed to agreement, this checks that no loops
or deadlocks exist prior to the performance of some agree. Thus, this captures our robustness
requirement that agreement on some complete and valid mix is guaranteed.

Once we introduce the intruder model, it will be possible that some chains have been received
by some mix servers but not by others. We check the same robustness requirement of this model.

RBST vFD((ALLHON ‖
αALLHON αSPY renSPY) \ Σ8{agree})[[agreement/agree.X.sq |X∈PP,sq∈O]]

whereαALLHON =
⋃
({αHON(i) | i ∈H })

We perform the same check on a model in which the intruder outputs no chain, in an attempt
to stop any chain being agreed upon by a threshold of mix servers.

RBST vFD((ALLHON ‖
αALLHON αSPY (renSPY ‖

{|agree|}
STOP)) \ Σ8{agree})[[agreement/agree.X.sq |X∈PP,sq∈O]]

We also require a message to be private as described in Section 4.1. For this we check that no
majority of mix servers can agree on a non-private mix.

PRIV = 2
X∈PP
y∈{sq∈O|private(sq),#sq>N

2 }

agree.X.y→ PRIV

PRIV vT(ALLHON ‖
αALLHON αSPY renSPY) \ Σ8{agree}

These assertions are sufficient for guaranteeing that our protocol terminates and guarantees
consensus among a majority of mix servers of a complete chain of mixes in the presence of
fewer than N

2 mix servers that do not faithfully follow the protocol. We check these assertions in
FDR, considering all possible combinations of honest and dishonest mix servers, with up to five
mix servers in total, and a majority of them being honest. In all cases FDR confirmed that our
models satisfy the specified requirements.

6 Results of Analysis
In this section, we verify the protocol against liveness and safety properties. We start with all
mix servers being honest. When we check the protocol with five honest mix servers, as expected,
we find that they all agree on the same chain of valid mixes. Moreover, the privacy of the mixes
is guaranteed. The trace below illustrates this behaviour. Each of the traces discussed in this
section were obtained via simulation of the models in ProBE, a CSP animator that allows a user
to explore how a process behaves. In this first trace, each honest mix server times out when
sending out a new signed message.

〈comm.1.{2,3,4,5}.S1(M1,α), timeout,
comm.5.{1,3,4,5}.S2(M2,S1(M1,α)), timeout,
comm.3.{1,2,4,5}.S3(M3,S2(M2,S1(M1,α))), timeout,
comm.4.{1,2,3,5}.S4(M4,S3(M3,S2(M2,S1(M1,α)))), timeout,
comm.5.{1,2,3,4}.S5(M5,S4(M4,S3(M3,S2(M2,S1(M1,α))))), timeout,
done, agree.{1,2,3,4,5}.M5(M4(M3(M2(M1(α)))))〉

11 / 15 Volume 66 (2013)

Verifying a Mix Net in CSP

In fact, after the done event, any subset of mix servers larger than three can agree on any of the
three candidate mixes, M5(M4(M3(M2(M1(α))))), M4(M3(M2(M1(α)))) or M3(M2(M1(α))).
In this case M5(M4(M3(M2(M1(α))))) will be considered the final output as it is the longest mix
agreed upon by a majority of mix servers.

More interesting traces result from checking the protocol with three honest and two dishonest
mix servers. Analysing the protocol with the two last mix servers being dishonest leads to a
larger state space because (i) the intruder learns to say more throughout the execution, and (ii) the
honest mix servers accept longer messages and therefore many more messages throughout time,
so the intruder has lots of choices about what to send in the last two rounds.

The intruder can send different messages to different mix servers or can follow the protocol
faithfully. In the latter, we end up with the same trace as above. When the intruder behaves
dishonestly, we guarantee that a sufficient number of mix servers agree on the same output and
at least one of them is honest, which means that the privacy is satisfied. In the case where the
dishonest mix servers simply time out, all of them or any subset of length four or three would
agree on the chain produced by the honest mix servers, e.g., agree.{1,2,3}.M3(M2(M1(α))).

A more curious behaviour is illustrated below. Here, the intruder acting as dishonest mix
server 2 times out without sending any message. Later, acting as 5, the intruder sends a valid but
short message to an honest mix server, and sends two valid but differing messages to the other
honest mix servers. Honest mix servers 1, 3 and 4 follow the protocol faithfully: 1 constructs the
initial mix, 3 mixes what it received directly from 1 following the timing out of 2, and 4 mixes
what it received from 3. Dishonest 5 then proceeds to send the valid but differing mixes to the
honest mix servers.

〈comm.1.{2,3,4,5}.S1(M1,α), timeout,
timeout,
comm.3.{1,2,4,5}.S3(M3,S1(M1,α)), timeout,
comm.4.{1,2,3,5}.S4(M4,S3(M3,S1(M1,α))), timeout,
comm.5.{1}.S5(M5,α),
comm.5.{3}.S5(M2,S4(M4,S3(M3,S1(M1,α)))),
comm.5.{4}.S5(M5,S4(M4,S3(M3,S1(M1,α)))), timeout,
done, agree.{1,3,4}.M4(M3(M1(α)))〉

If the dishonest mix servers refrain from posting any partial decryptions then, as illustrated
in the trace, the only possible output is a chain of valid mixes mixed only by the honest mix
servers. If the dishonest mix servers are willing to post partial decryptions, then it is possible
that other mixes will be agreed upon as the final output. Dishonest 2 and 5 are able to agree with
honest 3 (resp. 4) on the mix M2(M4(M3(M1(α)))) (resp. M5(M4(M3(M1(α))))). As 2 received
a mix that was shorter than a mix previously received, the only threshold length mix he is willing
to decrypt is M4(M3(M1(α))). In any case the privacy is maintained, as each of these possible
outputs include mixing by all three honest mix servers.

A more interesting behaviour occurs when the dishonest mix servers swap valid mixes con-
structed by honest mix servers with valid mixes generated by dishonest mix servers. The reader
should note that the dishonest 2 can swap a valid mix by the first mix server with a valid mix
generated by himself and send it to all honest mix servers. Honest 3 mixes and signs what it
received from the second mix server and forward it to the others; honest 4 then does likewise.
On the other hand, dishonest 5 replaces what it received from honest 4 with his own valid mix
and sends the corresponding complete and valid chain to the other mix servers.

Proc. AVoCS 2013 12 / 15

ECEASST

〈comm.1.{2,3,4,5}.S1(M1,α), timeout,
comm.5.{1}.S2(M2,α),
comm.5.{3}.S2(M2,α),
comm.5.{4}.S2(M2,α), timeout,
comm.3.{1,2,4,5}.S3(M3,S2(M2,α)), timeout,
comm.4.{1,2,3,5}.S4(M4,S3(M3,S2(M2,α))), timeout,
comm.5.{1}.S5(M5,S3(M3,S2(M2,α))),
comm.5.{3}.S5(M5,S3(M3,S2(M2,α))),
comm.5.{4}.S5(M5,S3(M3,S2(M2,α))), timeout,
done, agree.{1,2,3,4,5}.M5(M3(M2(α)))〉

In this case, as in the other, three or more mix servers agree upon mixes of threshold length,
i.e., length three or more. The best the intruders can do is to swap valid mixes, such that the
agreed output M5(M3(M2(α))) excludes the mixes of honest 1 and 4. Honest 3’s mix is still
guaranteed to be a mix within the agreed upon chain, maintaining privacy. It is also possible that
an agreement is made on M4(M3(M2(α))) as all mix servers also have this valid mix, which is
equal in length to M5(M3(M2(α))). Either, or both, can be agreed to be the final output of the
Mix Net as both mixes decrypt to the same vector of values, only ordered differently. Moreover,
both are of threshold length include a mix by at least one honest mix server.

All these traces arise from our specification of the protocol and might not have been appre-
ciated without this formal analysis. However, none of them breaks the requirements. The best
the intruder could do was to replace some but not all of the honest mix servers’ mixes with valid
mixes of his own.

7 Conclusion and Future Directions

For the first time, we have conducted a formal analysis of a Mix Net, using CSP/FDR. We showed
how to remove the need of a trusted authority during the mixing phase, and instead introduced
direct communication between the mix servers. Our analysis demonstrates that our Mix Net
is guaranteed to terminate, and output a provably valid mix agreed upon by a majority of mix
servers, as long as a majority of them act according to the protocol. Moreover, at least one honest
mix server’s mix operation is guaranteed to be included in the output chain of mixes.

In our model, we included an intruder based on Roscoe and Goldsmith’s perfect spy that is
able to control some minority of mix servers. The dishonest mix servers can collaborate by
sharing knowledge between them. We have shown that our system remains free of deadlocks
and infinite loops, and is guaranteed to output a chain of valid mixes of length at least equal to
the number of honest mix servers. We included three different intruder models and verified the
protocol against them. In all cases we proved that its liveness and safety properties hold. Thanks
to the data-independence results by Lazic and Roscoe [LR99], a correctness result on a Mix Net
with x messages applies to Mix Nets with an arbitrary number of messages.

The number of mix servers we have used in this paper is typical for applications like electronic
voting. In Victoria [BCH+12], the election commission will be running the elections with five
mix servers, under the assumption that at least four of them are honest. Our analysis covers this
real-world case and more.

One future goal is to analyse the protocol under a stronger intruder model. To introduce a

13 / 15 Volume 66 (2013)

Verifying a Mix Net in CSP

Dolev-Yao attacker that has full control of the network [DY83], and that could intercept and
block every message, would clearly violate robustness. It is therefore of interest to consider to
what extent the assumptions made about the threat environment can be relaxed whilst still main-
taining the properties we have checked. For example, it may be pertinent to replace the current
synchronous communication between the honest mix servers with asynchronous communication
over resilient channels in the manner proposed in [WRF12]. Here, the intruder can intercept a
message sent between the honest mix servers and delay it from arriving, but cannot indefinitely
block the message’s receipt, as long as the recipient is always willing to receive it. There remains
outstanding work to scale the approach proposed in [WRF12] to cover our models, which have
state space and alphabets that are currently too large to be feasibly checked in this manner.

Acknowledgements: We would like to thank Chris Culnane and Steve Schneider, University
of Surrey, and Wan Fokkink, VU University Amsterdam, for their pertinent comments. We also
thank the insightful remarks of the anonymous reviewers.

Bibliography

[Adi08] B. Adida. Helios: Web-based open-audit voting. In Proceedings of the 17th USENIX
Security Symposium (Security ’08). 2008.

[AF01] M. Abadi, C. Fournet. Mobile values, new names, and secure communication. In
Hankin and Schmidt (eds.), POPL. Pp. 104–115. ACM, 2001.

[BCH+12] C. Burton, C. Culnane, J. Heather, T. Peacock, P. Y. A. Ryan, S. Schneider, S. Srini-
vasan, V. Teague, R. Wen, Z. Xia. A Supervised Verifiable Voting Protocol for the
Victorian Electoral Commission. In Kripp et al. (eds.), Electronic Voting. LNI 205,
pp. 81–94. GI, 2012.

[Cha81] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Commun. ACM 24(2):84–88, 1981.

[DK00] Y. Desmedt, K. Kurosawa. How to Break a Practical MIX and Design a New One.
In Preneel (ed.), EUROCRYPT. LNCS 1807, pp. 557–572. Springer, 2000.

[DKR09] S. Delaune, S. Kremer, M. Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4):435–487, 2009.

[DY83] D. Dolev, A. C.-C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory 29(2):198–207, 1983.

[Gam85] T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4):469–472, 1985.

[GJJS04] P. Golle, M. Jakobsson, A. Juels, P. F. Syverson. Universal Re-encryption for
Mixnets. In Okamoto (ed.), CT-RSA. LNCS 2964, pp. 163–178. Springer, 2004.

Proc. AVoCS 2013 14 / 15

ECEASST

[HL08] J. Heather, D. Lundin. The Append-Only Web Bulletin Board. In Degano et al. (eds.),
Formal Aspects in Security and Trust. LNCS 5491, pp. 242–256. Springer, 2008.

[Jak98] M. Jakobsson. A Practical Mix. In Advances in Cryptology – EuroCrypt ’98.
Pp. 448–461. Springer-Verlag, London, UK, 1998.

[KRS10] S. Kremer, M. Ryan, B. Smyth. Election Verifiability in Electronic Voting Protocols.
In Gritzalis et al. (eds.), ESORICS. LNCS 6345, pp. 389–404. Springer, 2010.

[Low96] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Us-
ing FDR. In Margaria and Steffen (eds.), TACAS. Lecture Notes in Computer Sci-
ence 1055, pp. 147–166. Springer, 1996.

[LR99] R. Lazic, B. Roscoe. Data Independence with Generalised Predicate Symbols. In
Arabnia (ed.), PDPTA. Pp. 319–326. CSREA Press, 1999.

[PSL80] M. C. Pease, R. E. Shostak, L. Lamport. Reaching Agreement in the Presence of
Faults. J. ACM 27(2):228–234, 1980.

[RBH+09] P. Y. A. Ryan, D. Bismark, J. Heather, S. Schneider, Z. Xia. Prêt à Voter: a voter-
verifiable voting system. IEEE Transactions on Information Forensics and Security
4(4):662–673, 2009.

[RG97] A. W. Roscoe, M. Goldsmith. The perfect spy for model-checking crypto-protocols.
In Proceedings of DIMACS workshop on the design and formal verification of
crypto-protocols. 1997.

[Ros98] A. W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.

[RS01] P. Y. A. Ryan, S. A. Schneider. Modelling and analysis of security protocols.
Addison-Wesley-Longman, 2001.

[SK95] K. Sako, J. Kilian. Receipt-Free Mix-Type Voting Scheme - A Practical Solution
to the Implementation of a Voting Booth. In Guillou and Quisquater (eds.), EURO-
CRYPT. LNCS 921, pp. 393–403. Springer, 1995.

[WG06] D. Wikström, J. Groth. An Adaptively Secure Mix-Net Without Erasures. In Bugliesi
et al. (eds.), ICALP (2). LNCS 4052, pp. 276–287. Springer, 2006.

[Wik04] D. Wikström. A Universally Composable Mix-Net. In Naor (ed.), TCC. LNCS 2951,
pp. 317–335. Springer, 2004.

[WRF12] D. M. Williams, J. de Ruiter, W. Fokkink. Model Checking under Fairness in ProB
and Its Application to Fair Exchange Protocols. In Roychoudhury and D’Souza
(eds.), ICTAC. Lecture Notes in Computer Science 7521, pp. 168–182. Springer,
2012.

15 / 15 Volume 66 (2013)

	Introduction
	Previous Work
	Preliminaries
	Our Proposed Mix Net
	Requirements
	Protocol description

	Modelling and Formal Analysis in CSP
	Honest mix servers
	Dishonest mix servers
	Requirements and assertions

	Results of Analysis
	Conclusion and Future Directions

