
Electronic Communications of the EASST
Volume 66 (2013)

Proceedings of the
Automated Verification of Critical Systems

(AVoCS 2013)

On the Efficiency of Deciding
Probabilistic Automata Weak Bisimulation

Vahid Hashemi, Holger Hermanns and Andrea Turrini

15 pages

Guest Editors: Steve Schneider, Helen Treharne
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

On the Efficiency of Deciding
Probabilistic Automata Weak Bisimulation

Vahid Hashemi1, Holger Hermanns2 and Andrea Turrini3

1 hashemi@mpi-inf.mpg.de
Max Planck Institute for Informatics, Saarbrücken, Germany

1 vhashemi@cs.uni-saarland.de
2 hermanns@cs.uni-saarland.de

Department of Computer Science, Saarland University, Saarbrücken, Germany

3 turrini@ios.ac.cn
State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing, China

Abstract: Weak probabilistic bisimulation on probabilistic automata can be decided
by an algorithm that needs to check a polynomial number of linear programming
problems encoding weak transitions. It is hence polynomial, but not guaranteed to
be strongly polynomial. In this paper we show that for polynomial rational proba-
bilistic automata strong polynomial complexity can be ensured. We further discuss
complexity bounds for generic probabilistic automata. Then we consider several
practical algorithms and LP transformations that enable an efficient solution for the
concrete weak transition problem. This sets the ground for effective compositional
minimisation approaches for probabilistic automata and Markov decision processes.

Keywords: Complexity, Concurrency, Efficiency, Linear Programming, Markov
Decision Processes, Weak Bisimulation

1 Introduction

Probability and nondeterminism are core aspects of concurrent systems. Probability for instance
arises when a system, performing an action, is able to switch to more than one state and the
likelihood of each of these states can be faithfully estimated. Probability can model both specific
system choices (such as flipping a coin, commonly used in randomised distributed algorithms)
and general system properties (such as message loss probabilities when sending a message over
a wireless medium). Nondeterminism represents behaviours that we can not or do not want
to attach a precise (possibly probabilistic) interpretation to. This might reflect the concurrent
execution of several components at unknown (relative) speeds or behaviours we decide to keep
undetermined for simplifying the system model or allowing for different implementations.

Several models have been proposed in the literature to study formally systems where a com-
bination of probability and nondeterminism is considered: among others, there are Markov De-
cision Processes (MDP) [Der70], Labelled Concurrent Markov Chains (LCMC), Alternating
Probabilistic Models [Var85, Han91, PLS00], and Probabilistic Automata (PA) [Seg95].

1 / 15 Volume 66 (2013)

mailto:hashemi@mpi-inf.mpg.de
mailto:vhashemi@cs.uni-saarland.de
mailto:hermanns@cs.uni-saarland.de
mailto:turrini@ios.ac.cn

On the Efficiency of Deciding Probabilistic Automata Weak Bisimulation

Probabilistic automata extend classical concurrency models in a simple yet conservative fash-
ion. In probabilistic automata, there is no global notion of time, and concurrent processes may
perform probabilistic experiments inside a transition. This is represented by transitions of the
form s a�! µ , where s is a state, a is an action label, and µ is a probability measure on states.
Labelled transition systems are instances of this model family, obtained by restricting to Dirac
measures (assigning full probability to single states). Thus, foundational concepts and results
of standard concurrency theory are retained in full and extend smoothly to the PA model. Since
the PA model is akin to MDP model, its fundamental beauty can be paired with powerful model
checking techniques, as implemented for instance in the PRISM tool [HKNP06]. We refer the
interested reader to [Seg06] for a survey on this and other models.

Given a real system, we can conceive several different probabilistic automata models to re-
flect its behavior. Bisimulation relations provide a powerful tool to check whether two models
describe essentially the same system. They are then called bisimilar. The bisimilarity of two
systems can be viewed in terms of a game played between a challenger and a defender. In each
step of the possibly infinite bisimulation game, the challenger chooses one automaton, makes
a step, and the defender matches it with a step of the other automaton. Depending on how we
want to treat internal computations, this leads to strong and weak bisimulations: the former re-
quires that each single step of the challenger automaton is matched by an equally labelled single
step of the defender automaton, the latter allows the matching up to internal computation steps.
On the other hand, depending on how nondeterminism is resolved, probabilistic bisimulation
can be varied by allowing the defender to match the challenger’s step by a convex combina-
tion of enabled probabilistic transitions. This results in a spectrum of four bisimulations: strong
[Seg95, Han91, Var85], strong probabilistic [Seg95], weak [PLS00, Seg95, EHZ10a, EHZ10b],
and weak probabilistic [Seg95, EHZ10b, EHZ10a] bisimulation.

Besides comparing automata, bisimulation relations allow us to reduce the size of an au-
tomaton without changing its properties (i.e., with respect to logic formulae satisfied by it).
This is particularly useful to alleviate the state explosion problem notoriously encountered in
model checking. If the bisimulation is a congruence with respect to the operators of a pro-
cess calculus used to build up the automata out of smaller ones, this can give rise to a com-
positional strategy to associate a small automaton model to a large system without intermedi-
ate state space explosion. In several related settings, this strategy has been proven very effec-
tive [CGM+96, HK00, KKZJ07, BHH+09, CHLS09]; it can speed up the overall model analysis
or turn a too large problem into a tractable one. Both, strong and weak bisimilarity are used in
practice, with weaker relations leading to greater reduction. However, this approach has thus
far not been explored in the context of MDPs or probabilistic automata. A striking reason is
that until recently no effective decision algorithm was at hand for weak bisimilarity on PA; a
polynomial time decision algorithm has been proposed only recently [HT12], based on linear
programming problems. That algorithm can be embedded into a procedure to compress a given
PA to its canonical minimal representative [EHS+13]. Since weak bisimilarity is a congruence
for parallel composition, hiding, and other operators on PA, this paves the way for composi-
tional strategies to associate a small PA model to a large system without intermediate state space
explosion.

The weak bisimilarity decision algorithm follows the usual partition-refinement approach, and
thereby induces a polynomial number of linear programming problems that can be solved in

Proc. AVoCS 2013 2 / 15

ECEASST

polynomial time [Kar84, Kha79]. The algorithm is hence polynomial, but is not guaranteed
to be strongly polynomial. In other words, it is as yet unclear if there are hidden factors in
the complexity, such as data dependencies that lead to a non-polynomial worst case if properly
considered. In this paper, we discuss the efficiency of solving the specific LP problems from
both theoretical and practical viewpoints. This establishes an interesting connection between the
concurrency theory world and combinatorial optimisation world.

We first consider the theoretical efficiency of solving the problem. By restricting the class of
considered models to rational probabilistic automata where probabilities are polynomially repre-
sentable, we show that the feasibility of the LP problem can be checked in strongly polynomial
time. We are not aware of any non-polynomially representable probabilistic automata appearing
in any application study. So, this is indeed a prominent result.

We then consider the general rational case, and study the complexity of the decision problem
together with several optimisations. We reformulate the original LP problem [HT12] in order
to simplify the construction of the dual LP [BT97] which is smaller in size than the original.
By using a state-of-the-art preconditioned conjugate gradient (PCG) algorithm combined with
a partial updating procedure [Ans99] we show that the dual LP can be solved efficiently. On
the other hand, taking advantage of the small-sized dual LP, we give an upper bound on the
complexity of checking the feasibility of the original LP problem. As a matter of fact, to the best
of our knowledge, this provides the tightest available worst case complexity for the verification
problem at hand.

We furthermore discuss the practical efficiency of solving the decision problem. In practice
one would usually opt for the notoriously efficient simplex method [Sha87] to solve the LP
problems. But a small modification of the underlying network [HT12] enables us to adapt the
corresponding LP problem into a variant of a minimum cost flow problem [AMO93] with flow
proportional sets. This is a special class of linear programming problems where the underlying
network structure can be exploited, in particular if it is sparse. Sparsity is indeed frequently
observed in practical applications of probabilistic automata. We therefore compare the simplex
method with a very efficient state-of-the-art network simplex algorithm [BF12] specialised for
the minimum cost flow problem with additional side constraints. This is known to outperform
the simplex method [MSJ11, HK95, Cal02] when the number of nodes is an order of magnitude
larger than the number of side constraints.
Organisation of the paper. After the preliminaries in Section 2, we recall the LP problem
construction in Section 3 and in Section 4 we focus on the efficiency of solving the LP problem
from both a theoretical and a practical point of view. Section 5 concludes the paper. An appendix
includes detailed proofs.

2 Mathematical Preliminaries and Probabilistic Automata

A s -field over a set W is a subset F ✓ 2W that contains the empty set /0 and it is closed under
complement and countable union. We say that (W,F) is a measurable space and we call the
s -field 2W the discrete s -field over W. Given C ✓ 2W, we denote by s(C) the smallest s -field
containing C and we call it the s -field generated by C.

A measure over a measurable space (W,F) is a function µ : F !R�0 such that µ(/0) = 0 and,

3 / 15 Volume 66 (2013)

On the Efficiency of Deciding Probabilistic Automata Weak Bisimulation

for each countable family {Wi}i2I of pairwise disjoint elements of F , µ([i2IWi) = Âi2I µ(Wi).
If µ(W) 1, then we call µ a sub-probability measure and, if µ(W) = 1, then we call µ a
probability measure. We say that µ is discrete measure over W if F is discrete. In this case, for
each X ✓ W, µ(X) = Âx2X µ({x}) and we drop brackets whenever possible. For a set W, denote
by Disc(W) the set of discrete probability measures over W, and by SubDisc(W) the set of discrete
sub-probability measures over W. We call X ✓ W the support of a measure µ if µ(W\X) = 0; in
particular, if µ is discrete, we denote by Supp(µ) the minimum support set {x 2 W | µ(x)> 0}.
Moreover, we denote by µ(?) the value 1�µ(W) where ? /2 W, and by dx, for x 2 W[{?}, the
Dirac measure such that for each X ✓ W, µ(X) = 1 if x 2 X , 0 otherwise. For a sub-probability
measure µ , we also write µ = {(x, px) | x 2 W, px = µ(x)> 0}.

A function f : W1 ! W2 is called a measurable function from (W1,F1) to (W2,F2) if the
inverse image of f of any element of F2 is an element of F1. In this case, for a measure µ on
(W1,F1), we define the image measure of µ under f on (W2,F2), denoted by f (µ), by: for each
X 2 F2, f (µ)(X) = µ(f�1(X)), that is, the measure of X in F2 is the measure of the elements
in F1 whose f -image is in X . Since f is measurable, then f (µ) is a well defined measure.

The lifting L (R) [JL91] of a relation R ✓ X ⇥Y is defined as follows: for rX 2 Disc(X) and
rY 2 Disc(Y), rX L (R) rY holds if there exists a weighting function w : X ⇥Y ! [0,1] such
that (1) w(x,y) > 0 implies x R y, (2) Ây2Y w(x,y) = rX(x), and (3) Âx2X w(x,y) = rY (y). When
R is an equivalence relation on X , r1 L (R) r2 holds if for each C 2 X/R, r1(C) = r2(C).

A Probabilistic Automaton (PA) A is a tuple A = (S, s̄,S,D), where S is a countable set of
states, s̄ 2 S is the start state, S is a countable set of actions, and D ✓ S ⇥ S⇥Disc(S) is a
probabilistic transition relation. The set S is divided in two sets H and E of internal (hidden)
and external actions, respectively; we let s,t,u,v, and their variants with indices range over S, a,
b range over actions, and t range over hidden actions. We refer to the elements of A by S, s̄, S,
and D and we propagate indices and primes as expected: S0i is the state set of the automaton A 0

i .
In this work we consider only finite PAs, i.e., PAs such that sets S and D are finite.

A transition tr = (s,a,µ) 2 D, also denoted by s a�! µ , is said to leave from state s, to be
labelled by a, and to lead to the target probability measure µ , also denoted by µtr. We denote
by src(tr) the source state s and by act(tr) the action a. We also say that s enables action a, that
action a is enabled from s, and that (s,a,µ) is enabled from s. Finally, we denote by D(a) the
set of transitions with action a, i.e., D(a) = { tr 2 D | act(tr) = a}.

An execution fragment of a PA A is a finite or infinite sequence of alternating states and ac-
tions a = s0a1s1a2s2 . . . starting from a state s0, also denoted by first(a), and, if the sequence
is finite, ending with a state denoted by last(a), such that for each i > 0 there exists a transition
(si�1,ai,µi) 2 D such that µi(si) > 0. The length of a , denoted by |a|, is the number of occur-
rences of actions in a . If a is infinite, then |a| = •. Denote by frags(A) the set of execution
fragments of A and by frags⇤(A) the set of finite execution fragments of A . An execution
fragment a is a prefix of an execution fragment a 0, denoted by a 6 a 0, if the sequence a is a
prefix of the sequence a 0. The trace of a , denoted by trace(a), is the sub-sequence of external
actions of a; we denote by e the empty trace. Similarly, we define trace(a) = a for a 2 E and
trace(t) = e .

A scheduler for a PA A is a function s : frags⇤(A)! SubDisc(D) such that for each finite
execution fragment a , Supp(s(a)) ✓ { tr 2 D | src(tr) = last(a)}. Given a scheduler s and a
finite execution fragment a , the probability measure s(a) describes how transitions are chosen

Proc. AVoCS 2013 4 / 15

ECEASST

to move on from last(a); with probability s(a)(?) the computation terminates after a . A
scheduler s and a state s induce a probability measure µs ,s over execution fragments as follows.
The basic measurable events are the cones of finite execution fragments, where the cone of a ,
denoted by Ca , is the set {a 0 2 frags(A) | a 6 a 0 }. The probability µs ,s of a cone Ca is
recursively defined as:

µs ,s(Ca) =

8
><

>:

0 if a = t for a state t 6= s,
1 if a = s,
µs ,s(Ca 0) ·Âtr2D(a) s(a 0)(tr) ·µtr(t) if a = a 0at.

Standard measure theoretical arguments ensure that µs ,s extends uniquely to the s -field gen-
erated by cones. We call the resulting measure µs ,s a probabilistic execution fragment of A
and we say that it is generated by s from s. Given a finite execution fragment a , we define
µs ,s(a) as µs ,s(a) = µs ,s(Ca) ·s(a)(?), where s(a)(?) is the probability of terminating the
computation after a has occurred.

We say that there is a weak combined transition from s 2 S to µ 2 Disc(S) labelled by a 2 S,
denoted by s a

=)c µ , if there exists a scheduler s such that the following holds for the induced
probabilistic execution fragment µs ,s: (1) µs ,s(frags⇤(A)) = 1; (2) trace(µs ,s) = dtrace(a); and
(3) last(µs ,s) = µ . In this case, we say that the weak combined transition s a

=)c µ is induced by
s . Note that we are using the fact that trace(·) and last(·) are measurable functions.

Albeit the definition of weak combined transitions is somewhat intricate, this definition is
just the obvious extension of weak transitions on labelled transition systems to the setting with
probabilities. See [Seg06] for more details on weak combined transitions.

Weak probabilistic bisimilarity [Seg95, Seg06] is of central importance for our considerations.

Definition 1 Let A1, A2 be two PAs. An equivalence relation R on the disjoint union S1]S2 is
a weak probabilistic bisimulation if, for each pair of states s, t 2 S1]S2 such that s R t, if s a�! µs
for some probability measure µs, then there exists µt such that t a

=)c µt and µs L (R) µt .
We say that A1 and A2 are weak probabilistic bisimilar if there exists a weak probabilistic

bisimulation R on S1]S2 such that s̄1 R s̄2. We denote the coarsest weak probabilistic bisimu-
lation, called weak probabilistic bisimilarity, by ⇡.

3 Weak Transition Construction as a Linear Programming Prob-
lem: An Overview

The main source of the worst case theoretical complexity of the decision algorithms [HT12,
CS02] for PA weak probabilistic bisimulation is the recurring need to check for the existence
of the weak combined transition. This is solved with an exponential algorithm in [CS02] and a
polynomial algorithm in [HT12]. The latter approach takes inspiration from network flow prob-
lems: a weak combined transition t a

=)c µt of a PA A is described as an enriched flow problem
in which the initial probability mass dt splits along internal transitions, and precisely one external
transition with label a 6= t for every stream, in order to reach µt . The enriched flow problem is
then translated into a linear programming problem extended with balancing constraints that en-
code the need to respect transition probability measure. To describe the structure of the enriched

5 / 15 Volume 66 (2013)

On the Efficiency of Deciding Probabilistic Automata Weak Bisimulation

t

u

v

x

y

z
t

1/2
1/2

1a

1a 1/4
t

3/4

1t

Figure 1: The Probabilistic Automaton E

M

t ttrt

u

v

utru
a

vtrv
a

xa xtrx
a

ya ytry
a

za [z]R H [t]R ta ttrt
a

ua

va

x xtrx yytryz

Figure 2: The network graph G(t,a,dz,R) for the automaton E

linear programming problem, we first recall the definition of the network graph corresponding to
a weak combined transition.

Definition 2 (cf. [HT12, Sect. 3.2]) Given a PA A , a state t, an action a, a probability measure
µ , and an equivalence relation R on S, the network graph G(t,a,µ,R) = (V,E) relative to the
weak combined transition t a

=)c µt is defined as follows: for a 6= t , the set of vertices is V =

{M,H}[S[Str[Sa[Str
a [(S/R) where Str = {vtr | tr = v b�! r 2D,b2 {a,t}}, Sa = {va | v2

S}, and Str
a = {vtr

a | vtr 2 Str } and the set of arcs is E = {(M, t)}[{(va,C),(C ,H) |C 2 S/R,v2
C }[{(v,vtr),(vtr,v0),(va,vtr

a),(vtr
a ,v0a) | tr = v t�! r 2 D,v0 2 Supp(r)}[{(v,vtr

a),(vtr
a ,v0a) |

tr = v a�! r 2 D,v0 2 Supp(r)}.

We refer to the elements of S[Sa as state nodes, of T = Str [Str
a as transition nodes, and

of S/R as class nodes. We denote by V the set V \ {M,H}. When a = t the definition of
G(t,t,µ,R)= (V,E) is similar: V = {M,H}[S[Str[(S/R) and E = {(M, t)}[{(v,C),(C ,H) |
C 2 S/R,v 2 C }[{(v,vtr),(vtr,v0) | tr = v t�! r 2 D,v0 2 Supp(r)}.

As an example of the construction of the network, consider the probabilistic automaton E
given in Fig. 1 and the network graph G(t,a,dz,R) depicted in Fig. 2, where R is the equivalence
relation inducing classes {t,u,v} and {x,y,z}.

As pointed out in [HT12], the fact that the network admits a flow that respects the probability
measure µt does not imply the existence of a corresponding weak combined transition, because
the flow may not respect probability ratios. Therefore, the network is converted into a linear
programming problem for which the feasibility is shown to be equivalent to the existence of the
desired weak combined transition. The idea is to convert the flow network into the canonical
LP problem and then add the balancing constraints that force the “flow” to split according to
transition probability measures.

Definition 3 (cf. [HT12, Def. 6]) For a 6= t , the LP(t,a,µ,R) Linear Programming problem

Proc. AVoCS 2013 6 / 15

ECEASST

associated to the network graph (V,E) = G(t,a,µ,R) is defined as follows:

maxÂ(x,y)2E � fx,y
subject to
fu,v � 0 for each (u,v) 2 E
fM,t = 1
fC ,H = µ(C) for each C 2 S/R
Âu2{x|(x,v)2E } fu,v �Âu2{y|(v,y)2E } fv,u = 0 for each v 2V \{M,H}
fvtr,v0 �r(v0) · fv,vtr = 0 for each tr = v t�! r 2 D and v0 2 Supp(r)
fvtr

a ,v0a �r(v0) · fva,vtr
a
= 0 for each tr = v t�! r 2 D and v0 2 Supp(r)

fvtr
a ,v0a �r(v0) · fv,vtr

a
= 0 for each tr = v a�! r 2 D and v0 2 Supp(r)

In the LP problem described in Def. 3, the objective function maximises the total sum of
negated flow routed along the arcs of the network. In fact, the total flow is described as the
sum of negated flow variables which are positive themselves and this prevents sending a large
amount of flow over disconnected components of the network or over cycles that can be ignored.
Furthermore, in the LP, there are two different sets of constraints. The first set is the ordinary
set of flow conservation constraints which require the total flow incoming and outgoing a node
of the network to be equal. The second set is the set of balancing constraints that require the
entering amount of flow to a transition node to be distributed based on probabilities assigned to
the outgoing arcs.

It is easy to observe that the LP(t,a,µ,R) LP problem has size that is quadratic in the size
N = max{|S|, |D|} of A : the number of variables is at most 3N2 +5N +1 while the number of
constraints is at most 6N2+11N+2. It is worthwhile to spell out the amount of transition, state,
and class nodes of the network G(t,a,µ,R): there are at most 2|D| transition nodes, at most 2|S|
state nodes, and at most |S| class nodes.

The equivalence of LP problem and weak transition is formalised by Theorem 8 and Corol-
lary 9(1) of [HT12]:

Proposition 1 A weak combined transition t a
=)c µt such that µ L (R) µt exists if and only if

the LP problem LP(t,a,µ,R) has a feasible solution.

4 Efficiency of Solving the LP Problem

The analysis of the LP(t,a,µ,R) LP problem formalised in [HT12, Thm. 7] considers only the
theoretical complexity class the problem belongs to while it does not address how efficiently the
LP problem can indeed be solved. In order to arrive at a precise characterisation of the problem
efficiency, we establish a connection between the probabilistic verification community and the
combinatorial optimisation community. We first intend to make precise the theoretical worst
case running time needed to solve the LP problem. Then we focus on the practical aspects and,
by modifying the LP problem as a flow network problem, we show that the underlying network
structure can be exploited to solve the LP efficiently via an algorithm in the network optimisation
setting.

7 / 15 Volume 66 (2013)

On the Efficiency of Deciding Probabilistic Automata Weak Bisimulation

4.1 Efficiency of Solving the LP Problem: Theory

Deciding the existence of a weak combined transition in a probabilistic automaton can be done
in polynomial time [HT12, Thm. 7 and 8]. With the aim to refine this result, for instance finding
the sufficient conditions to have strong polynomiality, we discuss the problem in the context of
some restricted classes of probabilistic automata.

Definition 4 An algorithm runs in strongly polynomial time if the number of operations in the
arithmetic model of computation is not dependent on the size of the input instances and it can be
bounded by a polynomial of the number of input instances.

The linear programming problem is a prominent problem for which it is not known if it admits
a strongly polynomial time algorithm. Using polynomial algorithms for solving linear program-
ming problems, e.g., ellipsoid method [Kha79] or interior point method [Kar84] as a subroutine,
Tardos [Tar86] showed that combinatorial LPs can be solved strongly polynomially. Further,
Adler et al. [AC91] generalized this class of LPs and showed that for the LPs whose constraint
set is a pre-Leontief substitution system, the optimal solution can be computed in strongly poly-
nomial time.

We consider these two sub-classes of probabilistic automata:

Definition 5 Given a family of PAs {Ak}k2N, we say that {Ak}k2N is

• rational if for each k 2 N it holds that for each (s,a,µ) 2 Dk and v 2 Supp(µ), µ(v) 2Q,

• polynomially representable if {Ak}k2N is rational and there exists a polynomial P such that
for each k 2N and each transition s a�! µ 2Dk, it holds that lcm{dv | v2 Supp(µ),µ(v) =
nv
dv
2Q, nv

dv
is irreducible} P(Nk) where Nk = max{|Sk|, |Dk|}.

We extend the above notions to each A 2 {Ak}k2N in the obvious way; for instance, we say
that A is polynomially representable if A is part of a family that is polynomially representable.

Rational automata We start our analysis with the class of rational PAs and we look for the best
achievable worst case complexity of solving the LP problem LP(t,a,µ,R) via a reformulation
that reduces the size of LP(t,a,µ,R). This is important because the worst case complexity of any
LP solver depends on the number of variables and constraints. Therefore, having a smaller LP
assists us to reach a better worst case complexity in particular for the LP problems corresponding
to large scale probabilistic automata. To reach our goal, we modify the network provided in
Def. 2 and we reformulate the original LP problem on the basis of these changes.

Consider the network G(t,a,µ,R) and let G (t,a,µ,R) be a directed network which is gen-
erated from the network G(t,a,µ,R) by removing the source node M and the sink node H; let
V = V \ {M,H} and E = E \ ({(M, t)}[{(C ,H) | C 2 S/R }) be the set of vertices and di-
rected arcs of G (t,a,µ,R), respectively. Moreover, let Ē ✓ E be the set Ē = {(vtr,v0),(vtr

a ,v0a) |
tr = v t�! r 2 D,v0 2 Supp(r)}[{(vtr

a ,v0a) | tr = v a�! r 2 D,v0 2 Supp(r)}. Then, we de-
fine ri j = µtr(v0) as the proportionality coefficient corresponding to the arc (i, j) 2 Ē where
(i, j) = (vtr,v0) or (i, j) = (vtr

a ,v0a). Since in both original and modified networks each arc in Ē
belongs to a single transition, the corresponding proportional coefficient is uniquely determined.

Proc. AVoCS 2013 8 / 15

ECEASST

For each node u 2 V , let bu be a supply/demand value, that is, if bu > 0 the node u is a supply
node and if bu < 0 the node u is a demand node. For the network G (t,a,µ,R), we define bu for
each node u 2 V so as to take value 1 if u = t, value �µ(C) if u = C 2 S/R and 0 otherwise.
It is immediate to see that Âu2V bu = 0. This fact can be seen as a feasibility condition in the
corresponding flow network [AMO93]. For s 2 T , assume As to be the set of all arcs in the
node-arc incidence matrix A that should have proportional flow. We define Ã to be the subset of
arcs in A that do not belong to any set As for s 2 T . More precisely, Ã = A\

S
s2T As. Based on

the definitions, the LP(t,a,µ,R) LP problem can be reformulated as follows:

LP1: min Â(i, j)2E fi j
s.t. Â(i, j)2E fi j �Â(j,i)2E f ji = bi for each i 2 V

fi j
ri j

are all equal (i, j) 2 As,s 2 T

fi j � 0 for each (i, j) 2 E

Lemma 1 The LP(t,a,µ,R) LP problem and LP1 are equivalent.

By assuming the unit flow cost ci j = 1 for each arc (i, j) 2 E , the objective of this problem is
to minimise the total cost of routing the flow on network arcs subject to the ordinary flow conser-
vation constraints, the proportional flow constraints corresponding to the balancing constraints
of the original LP problem, and the arc flow lower bounds.

It is worthwhile to note that there exists a proportional flow set for each transition node in
the network and that each arc may belong to at most one proportional flow set. The flow on the
arcs in each of these flow proportional sets can be regarded as a single decision variable. Using
this intuition, let ai j denotes the column corresponding to the arc (i, j) in the node-arc incidence
matrix of the network G (t,a,µ,R) and let as = Â(i, j)2As ri jai j for each s 2 T . We denote by ak

i j
and ak

s the k-th component of the vectors ai j and as, respectively. By using the new notations,
LP1 can be reformulated as the following LP problem which can be seen as an adaption of the
LP in [BF12].

LP2: min Â(i, j)2Ã fi j +Âs2T fs

s.t. Â(i, j)2Ã fi j �Â(j,i)2Ã f ji +Âs2T ai
s fs = bi for each i 2 V

fi j � 0 for each (i, j) 2 Ã
fs � 0 for each s 2 T

Lemma 2 LP1 and LP2 are equivalent.

Since both LP1 and LP2 are equivalent to the LP(t,a,µ,R) LP problem, we exploit the struc-
ture of LP2 to improve the efficiency of checking for a solution of LP(t,a,µ,R), so we improve
as well the complexity of deciding probabilistic weak bisimulation since, similarly to the other
combinatorial optimisation problems, it is very important to have a clear intuition about the best
worst case complexity of the problem under consideration. Amongst all available versions of
polynomial algorithms for solving a linear programming problem, we use a state-of-the-art poly-
nomial interior point method [Ans99] which does perform well in practice and also, to the best
of the knowledge of the authors, it has the best worst case complexity. Implementing the men-
tioned interior point method directly on the original LP problem would not give us the best worst

9 / 15 Volume 66 (2013)

On the Efficiency of Deciding Probabilistic Automata Weak Bisimulation

case complexity since the running time of this method depends on the number of variables as
well as on the bit size of the problem: the number of variables in LP(t,a,µ,R) is O(N2) while
the number of variables in LP2 is instead a linear order of the number of nodes in the network
which is O(N), where N is the size of the automaton A . This is an outstanding reduction in the
worst case complexity especially for large probabilistic automata which is achieved by taking
advantage of the LP2 formulation of the original LP(t,a,µ,R) LP problem.

Theorem 1 Consider a rational PA A , the action a, the probability measure µ 2 Disc(S),
the equivalence relation R on S and a state t 2 S. Let N = max{|S|, |D|}. Then, checking the
feasibility of the LP(t,a,µ,R) LP problem can be done in O(N3

lnN L) where L is the bit size of the
problem.

Since the best worst case running time essentially depends on the type of the polynomial
algorithm used to solve the LP, any improvement in the LP solution leads to a better worst case
complexity of the weak bisimulation decision problem.

It is worthwhile to note that, when the rational PA A is polynomially representable, then each
probability value can be represented with a polynomial number of bits, thus the complexity stated
in Theorem 1 reduces to O(N3

lnN P(N)) for some polynomial P in N, i.e., it is strongly polynomial.

Non-rational automata The class of rational probabilistic automata, as far as the authors
know, encompasses all PAs that have appeared in practical applications. One may nevertheless
consider relevant also the analysis of PAs with real valued probabilities.

One possible way to represent LP problems with real data is to use a model of computation
that can perform any elementary arithmetic operation in constant time, regardless of the type of
the operand. Another option is to encode reals as finite precision rationals. For a survey on the
theory of computation over real numbers we refer the reader to [BSS89, Bel01].

When using finite precision rationals, the representation of the PA must become approximate,
and still the size needed for this can no longer be guaranteed to be bounded by a polynomial.
If assuming the rational approximation scheme being employed by the user, we are back to the
rational setting for the LP solution process, and it is left to the user to interpret the outcome
on the real valued PA. If instead the algorithm performs the approximation prior to solving the
induced LP problem, the user may in general be lacking knowledge on how to extend the result
back to the original real valued PA.

4.2 Efficiency of Solving the LP Problem: Practice

We now consider the practical efficiency of deciding probabilistic automata weak bisimulation.
To this aim, we first concentrate on the available algorithms that can be employed to solve the
problem and we show that, by using the underlying structure of the problem, checking the fea-
sibility of the LP problem can be done more efficiently than just hiring a general purpose LP
solver. Afterwards we discuss other methods that are more efficient but that are not suitable for
solving the LP(t,a,µ,R) LP problem.

Modelling the described decision problem as a linear programming problem allows practi-
tioners to use the omnipresent simplex method as an extremely efficient computational tool. It

Proc. AVoCS 2013 10 / 15

ECEASST

is worthwhile to note that the efficiency of the simplex method is measured as the number of
pivots needed to solve the LP problem. Moreover, practical experiments show that although
this method is highly efficient, there exist problems that require an exponential number of piv-
ots. This means that the worst case theoretical complexity of the simplex method is exponential
time [KM72]. However, computational experience on thousands of real-world problems reveals
that the number of pivots is usually polynomial in the number of variables and of constraints. For
a comprehensive survey on the efficiency of the simplex method, we refer the interested reader
to [Sha87].

Since the LP1 problem is a minimum cost flow problem on the network G (t,a,µ,R) extended
with an additional set of proportional flow constraints, we consider the usage of efficient algo-
rithms that solve the problem directly on the flow network itself. One such algorithm is the
network simplex algorithm [BF12] for the minimum cost proportional flow problem that im-
proves the per iteration running time considerably with respect to the simplex method, as long
as the number of nodes in the network is at least an order of magnitude larger than the number
of side constraints in the LP [Cal02, MSJ11, BF12, MSJ13]. So, the network simplex algorithm
is a candidate for improving the running time required to solve LP1. However, the number of
side constraints coincides with the number of transition nodes in the LP1 problem. Since the
number of transitions in the automaton is usually larger than the number of states, we have that
the number of side constraints is linear in the number of nodes, and thus the above assumption
is not satisfied. Still, a more accurate analysis tells us that the per iteration running time of both
methods is in the same complexity class, as shown in Table 1. Since it is known that the net-
work simplex algorithm without side constraints is better than the simplex method [AMO93], it
is worthwhile to consider its usage in an implementation.

Up to now, we have shown that the simplex method and the network simplex algorithm [BF12]
are quite competitive in solving the LP1. However, the embedded flow network structure in the
LP1 is the source of our motivation to emphasis on the practical efficiency of the network simplex
algorithm in solving the LP1. On the other hand, taking the dual of the equivalent LP2, allows
us to deal with a small sized LP which is still similar to a well known combinatorial problem by
itself. To clarify the point, consider the dual DLP2 of the LP2 problem:

DLP2: max Â
s2V

bsps

s.t. pi �p j 1 for each (i, j) 2 Ã (1)

Â
t2V

at
spt 1 for each s 2 T (2)

The number of variables and constraints in DLP2 is O(N) as well as the number of constraints in
LP1 whose number of variables is instead in O(N2), so DLP2 is smaller than the original LP1.
This property has a deep impact when the number of transitions is remarkably more than the
number of states in the network. The dual LP can be solved very efficiently using a state-of-the-
art variant of the interior point method [Ans99]. This algorithm is a preconditioned conjugate
gradient (PCG) method combined with a partial updating procedure which works excellently in
practice as well. The algorithm is available in the famous software tools CPLEX and LOQO.
Furthermore, DLP2 has itself a combinatorial structure, that is, it is the dual of the well known
shortest path problem although with additional side constraints. Taking the advantage of this

11 / 15 Volume 66 (2013)

On the Efficiency of Deciding Probabilistic Automata Weak Bisimulation

Table 1: Complexity comparison
LP(t,a,µ,R) LP1 LP2 DLP2

Variables/Arcs n O(N2) O(N2) O(N) O(N)
Constraints m O(N2) O(N) O(N) O(N)

Proportional Flow Sets p not applicable O(N) not applicable not applicable
Free Arcs n0 O(N2) O(N) O(N) O(N)

Simplex Method O(nm) O(N4) O(N3) O(N2) O(N2)
Network Simplex Algorithm [MSJ13] O(n0+mp+ p3) not applicable O(N3) not applicable not applicable

combinatorial property may help in the design of a more efficient algorithm to solve the problem.
Table 1 summarises the size of the proposed LP problems and the per-iteration complexity of

the simplex method and of the network simplex algorithm.
Since each variable in the LP problem corresponds to an arc in the network, we identify by n

both variables and arcs; on networks, each arc either belongs to a proportional flow set or is a
free arc. The computational comparison of three LPs is based on N, the size of the automaton
A , and the smaller problem is DLP2 that is at least one degree smaller than other LPs, making it
the convenient input for the LP solver. Now, consider the LP1 problem where both the simplex
method and the networks simplex algorithm can be used where the latter is faster than the former
provided that p 2 O(

p
m) [MSJ11]. Although, different variants of the simplex method can

terminate using the anti-cycling rules [BT97]; however, they may run in an exponential number
of iterations. In spite of that, in practice, the simplex algorithm can terminate in a polynomial
number of iterations [KM72]. Therefore, it makes it very important to try to reduce the per-
iteration time complexity of the simplex method. Now, consider the LP1 problem where both
the simplex method and the networks simplex algorithm can be used where the latter is faster
than the former provided that p 2 O(

p
m) [MSJ13]. Despite the fact that this requirement is not

satisfied by LP1, both algorithms are worthwhile to be considered for an implementation since
the per-iteration complexity is in the same complexity class for both methods.

5 Conclusion

This paper considers deciding PA weak bisimulation which is known to be polynomial [HT12].
We showed that the decision problem can be solved strongly polynomially for polynomially
representable PAs. After a survey of available polynomial algorithms to solve an LP problem,
we established an upper bound on the worst case complexity of the decision problem for general
PA. For the practical efficiency, we demonstrated that a small modification of the LP discussed
in [HT12] enables taking advantage of the underlying network structure to improve the practical
efficiency of solving the problem. As such, the results of this paper allow a number of directions
for further research: the first and foremost next step is a comprehensive empirical evaluation
and comparison of the methods discussed in this paper on real world PAs. Furthermore, the
network simplex algorithm specialised for the minimum cost flow problem with additional side
constraints can be seen itself as another research direction. In fact, designing a new data structure
to be able to deal with a large number of additional side constraints has not only a very important
contribution in the theoretical setting but also it improves the practical efficiency of the decision

Proc. AVoCS 2013 12 / 15

ECEASST

problem under our consideration. Finally, we intend to work on the dual LP itself. The latter has
similarity to the combinatorial shortest path problem [AMO93]. This may lead to a very efficient
combinatorial algorithm to solve the decision problem.
Acknowledgements. The authors would like to appreciate professor James B. Orlin (Mas-
sachusetts Institute of Technology) and Dr. Khaled Elbassioni (Masdar Institute of Science and
Technology) for their invaluable assistance to improve the results of the paper. This work has
been supported by the DFG as part of the SFB/TR 14 “Automatic Verification and Analysis
of Complex Systems” (AVACS), by the DFG/NWO Bilateral Research Programme ROCKS,
and by the European Union Seventh Framework Programme under grant agreement no. 295261
(MEALS) and 318490 (SENSATION). Part of this work has been done when Andrea Turrini
was at Saarland University supported by the Cluster of Excellence “Multimodal Computing and
Interaction” (MMCI), part of the German Excellence Initiative.

Bibliography

[AC91] I. Adler, S. T. Cosares. A Strongly Polynomial Algorithm for a Special Class of
Linear Programs. Operations Research 39(6):955–960, 1991.

[AMO93] R. K. Ahuja, T. J. Magnanti, J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, 1993.

[Ans99] K. M. Anstreicher. Linear Programming in O(n3

lnn L) Operations. SIAM J. on Opti-
mization 9(4):803–812, 1999.

[Bel01] P. A. Beling. Exact Algorithms for Linear Programming over Algebraic Extensions.
Algorithmica 31(4):459–478, 2001.

[BF12] U. Bahçeci, O. Feyziog̃lu. A network simplex based algorithm for the minimum
cost proportional flow problem with disconnected subnetworks. Optimization Let-
ters 6:1173–1184, 2012.

[BHH+09] E. Böde, M. Herbstritt, H. Hermanns, S. Johr, T. Peikenkamp, R. Pulungan,
J. Rakow, R. Wimmer, B. Becker. Compositional Dependability Evaluation for
STATEMATE. ITSE 35(2):274–292, 2009.

[BSS89] L. Blum, M. Shub, S. Smale. On a theory of computation and complexity over
the real numbers; NP-completeness, recursive functions and universal machines.
Bullettin of the American Mathematical Society 21(1), 1989.

[BT97] D. Bertsimas, J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scien-
tific, 1997.

[Cal02] H. I. Calvete. Network simplex algorithm for the general equal flow problem. Euro-
pean J. Operational Research, pp. 585–600, 2002.

13 / 15 Volume 66 (2013)

On the Efficiency of Deciding Probabilistic Automata Weak Bisimulation

[CGM+96] G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, F. Zulian. Specification and Ver-
ification of the PowerScale R� Bus Arbitration Protocol: An Industrial Experiment
with LOTOS. In FORTE. Pp. 435–450. 1996.

[CHLS09] N. Coste, H. Hermanns, E. Lantreibecq, W. Serwe. Towards Performance Prediction
of Compositional Models in Industrial GALS Designs. In CAV. Pp. 204–218. 2009.

[CS02] S. Cattani, R. Segala. Decision Algorithms for Probabilistic Bisimulation. In CON-
CUR. LNCS 2421, pp. 371–385. 2002.

[Der70] C. Derman. Finite State Markovian Decision Processes. Academic Press, Inc., 1970.

[EHS+13] C. Eisentraut, H. Hermanns, J. Schuster, A. Turrini, L. Zhang. The Quest for Mini-
mal Quotients for Probabilistic Automata. In TACAS. LNCS 7795, pp. 16–31. 2013.

[EHZ10a] C. Eisentraut, H. Hermanns, L. Zhang. Concurrency and Composition in a Stochas-
tic World. In CONCUR. LNCS 6269, pp. 21–39. 2010.

[EHZ10b] C. Eisentraut, H. Hermanns, L. Zhang. On Probabilistic Automata in Continuous
Time. In LICS. Pp. 342–351. 2010.

[Han91] H. A. Hansson. Time and Probability in Formal Design of Distributed Systems. PhD
thesis, Department of Computer Systems, Uppsala University, 1991.

[HK95] R. V. Helgason, J. L. Kennington. Primal simplex algorithms for minimum cost
network flows. In Network Models. Handbooks in Operations Research and Man-
agement Science 7, chapter 2, pp. 85–113. Elsevier, 1995.

[HK00] H. Hermanns, J.-P. Katoen. Automated Compositional Markov Chain Generation
for a Plain-old Telephone System. Science of Computer Programming 36(1):97–
127, 2000.

[HKNP06] A. Hinton, M. Kwiatkowska, G. Norman, D. Parker. PRISM: A Tool for Automatic
Verification of Probabilistic Systems. In TACAS. LNCS 3920, pp. 441–444. 2006.

[HT12] H. Hermanns, A. Turrini. Deciding Probabilistic Automata Weak Bisimulation in
Polynomial Time. In FSTTCS. Pp. 435–447. 2012.

[JL91] B. Jonsson, K. G. Larsen. Specification and Refinement of Probabilistic Processes.
In LICS. Pp. 266–277. 1991.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for Linear Programming. Combi-
natorica 4(4):373–395, 1984.

[Kha79] L. G. Khachyan. A polynomial algorithm in linear programming. Soviet Mathemat-
ics Doklady 20(1):191–194, 1979.

[KKZJ07] J.-P. Katoen, T. Kemna, I. S. Zapreev, D. N. Jansen. Bisimulation minimisation
mostly speeds up probabilistic model checking. In TACAS. LNCS 4424, pp. 76–92.
2007.

Proc. AVoCS 2013 14 / 15

ECEASST

[KM72] V. Klee, G. J. Minty. How good is the simplex algorithm? In Inequalities. Vol-
ume III, pp. 159–175. Defense Technical Information Center, 1972.

[MSJ11] D. R. Morrison, J. J. Sauppe, S. H. Jacobson. A Network Simplex Algorithm for
the Equal Flow Problem on a Generalized Network. INFORMS J. on Computing,
pp. 1–11, 2011.

[MSJ13] D. R. Morrison, J. J. Sauppe, S. H. Jacobson. An algorithm to solve the proportional
network flow problem. Optimization Letters, 2013.

[PLS00] A. Philippou, I. Lee, O. Sokolsky. Weak Bisimulation for Probabilistic Systems. In
CONCUR. LNCS 1877, pp. 334–349. 2000.

[Seg95] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, MIT, 1995.

[Seg06] R. Segala. Probability and Nondeterminism in Operational Models of Concurrency.
In CONCUR. LNCS 4137, pp. 64–78. 2006.

[Sha87] R. Shamir. The Efficiency of the Simplex Method: A Survey. Management Science
33(3):301–334, 1987.

[Tar86] E. Tardos. A Strongly Polynomial Algorithm to Solve Combinatorial Linear Pro-
grams. Operations Research 34(2):250–256, 1986.

[Var85] M. Y. Vardi. Automatic Verification of Probabilistic Concurrent Finite-State Pro-
grams. In FOCS. Pp. 327–338. 1985.

15 / 15 Volume 66 (2013)

	Introduction
	Mathematical Preliminaries and Probabilistic Automata
	Weak Transition Construction as a Linear Programming Problem: An Overview
	Efficiency of Solving the LP Problem
	Efficiency of Solving the LP Problem: Theory
	Efficiency of Solving the LP Problem: Practice

	Conclusion

