
Electronic Communications of the EASST
Volume 66 (2013)

Proceedings of the
Automated Verification of Critical Systems

(AVoCS 2013)

Simplifying proofs of linearisability using layers of abstraction

Brijesh Dongol and John Derrick

15 pages

Guest Editors: Steve Schneider, Helen Treharne
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Simplifying proofs of linearisability using layers of abstraction

Brijesh Dongol and John Derrick

Department of Computer Science
The University of Sheffield, S1 4DP, UK

B.Dongol@sheffield.ac.uk, J.Derrick@dcs.shef.ac.uk

Abstract: Linearisability has become the standard correctness criterion for con-
current data structures, ensuring that every history of invocations and responses of
concurrent operations has a matching sequential history. Existing proofs of linearis-
ability require one to identify so-called linearisation points within the operations
under consideration, which are atomic statements whose execution causes the effect
of an operation to be felt. However, identification of linearisation points is a non-
trivial task, requiring a high degree of expertise. For sophisticated algorithms such
as Heller et al’s lazy set, it even is possible for an operation to be linearised by the
concurrent execution of a statement outside the operation being verified. This paper
proposes a method for verifying linearisability that does not require identification
of linearisation points. Instead, using an interval-based logic, we show that every
behaviour of each concrete operation over any interval is a possible behaviour of
a corresponding abstraction that executes with coarse-grained atomicity. This ap-
proach is applied to Heller et al’s lazy set to show that verification of linearisability
is possible without having to consider linearisation points within the program code.

Keywords: Linearisability, Interval-based verification, Fine-grained atomicity

1 Introduction

Development of correct fine-grained concurrent data structures has received an increasing amount
of attention over the past few years as the popularity of multi/many-core architectures has in-
creased. An important correctness criterion for such data structures is linearisability [HW90],
which guarantees that every history of invocations and responses of the concurrent operations on
the data structure can be rearranged without violating the ordering within a process such that the
rearranged history is a valid sequential history. A number of proof techniques developed over the
years match concurrent and sequential histories by identifying an atomic linearising statement
within the concrete code of each operation, whose execution corresponds to the effect of the op-
eration taking place. However, due to the subtlety and complexity of concurrent data structures,
identification of linearising statements within the concrete code is a non-trivial task, and it is
even possible for an operation to be linearised by the execution of other concurrent operations.
An example of such behaviour occurs in Heller et al’s lazy set algorithm, which implements a set
as a sorted linked list [HHL+07] (see Fig. 1). In particular, its contains operation may be lin-
earised by the execution of a concurrent add or remove operation and the precise location of the
linearisation point is dependent on how much of the list has been traversed by the contains op-
eration. In this paper, we present a method for simplifying proofs of linearisability using Heller

1

et al’s lazy set as an example.
An early attempt at verifying linearisability of Heller et al’s lazy set is that of Vafeiadis et al,

who extend each linearising statement with code corresponding to the execution of the abstract
operation so that execution of a linearising statement causes the corresponding abstract operation
to be executed [VHHS06]. However, this technique is incomplete and cannot be used to verify
the contains operation, and hence, its correctness is only treated informally [VHHS06]. These
difficulties reappear in more recent techniques: “In [Heller et al’s lazy set] algorithm, the correct
abstraction map lies outside of the abstract domain of our implementation and, hence, was not
found.” [Vaf10]. The first complete linearisability proof of the lazy set was given by Colvin et
al [CGLM06], who map the concrete program to an abstract set representation using simulation
to prove data refinement. To verify the contains operation, a combination of forwards and
backwards simulation is used, which involves the development of an intermediate program IP
such that there is a backwards simulation from the abstract representation to IP, and a forwards
simulation from IP to the concrete program. More recently, O’Hearn et al use a so-called hind-
sight lemma (related to backwards simulation) to verify a variant of Heller’s lazy set algorithm
[ORV+10]. Derrick et al use a method based on non-atomic refinement, which allows a single
atomic step of the concrete program to be mapped to several steps of the abstract [DSW11].

Application of the proof methods in [VHHS06, CGLM06, ORV+10, DSW11] remains diffi-
cult because one must acquire a high degree of expertise of the program being verified to cor-
rectly identify its linearising statements. For complicated proofs, it is difficult to determine
whether the implementation is erroneous or the linearising statements have been incorrectly cho-
sen. Hence, we propose an approach that eliminates the need for identification of linearising
statements in the concrete code by establishing a refinement between the fine-grained imple-
mentation and an abstraction that executes with coarse-grained atomicity [DD12]. The idea of
mapping fine-grained programs to a coarse-grained abstraction has been proposed by Groves
[Gro08] and separately Elmas et al [EQS+10], where the refinements are justified using reduc-
tion [Lip75]. However, unlike our approach, their methods must consider each pair of interleav-
ings, and hence, are not compositional. Turon and Wand present a method of abstraction in a
compositional rely/guarantee framework with separation logic [TW11], but only verify a stack
algorithm that does not require backwards reasoning.

Capturing the behaviour of a program over its interval of execution is crucial to proving lin-
earisability of concurrent data structures. In fact, as Colvin et al point out: “The key to proving
that [Heller et al’s] lazy set is linearisable is to show that, for any failed contains(x) operation,
x is absent from the set at some point during its execution.” [CGLM06]. Hence, it seems counter-
intuitive to use logics that are only able to refer to the pre and post states of each statement (as
done in [VHHS06, CGLM06, DSW11, Vaf10]). Instead, we use a framework based on [DDH12]
that allows reasoning about the fine-grained atomicity of pointer-based programs over their in-
tervals of execution. By considering complete intervals, i.e., those that cover both the invocation
and response of an operation, one is able to determine the future behaviour of a program, and
hence, backwards reasoning can often be avoided. For example, Bäumler et al [BSTR11] use an
interval-based approach to verify a lock-free queue without resorting to backwards reasoning, as
is required by frameworks that only consider the pre/post states of a statement [DGLM04]. How-
ever, unlike our approach, Bäumler et al must identify the linearising statements in the concrete
program, which is a non-trivial step.

2

add(x):
A1: (n1, n3) :=

locate(x);
A2: if n3.val != x
A3: n2:=

new Node(x);
A4: n2.nxt := n3;
A5: n1.nxt := n2;
A6: res := true
A7: else res := false

endif;
A8: n1.unlock();
A9: n3.unlock();
A10: return res

remove(x):
R1: (n1, n2) :=

locate(x);
R2: if n2.val = x
R3: n2.mrk := true;
R4: n3 := n2.nxt;
R5: n1.nxt := n3;
R6: res := true
R7: else res := false

endif;
R8: n1.unlock();
R9: n2.unlock();
R10: return res

contains(x):
C1: n1 := Head;
C2: while (n1.val < x)
C3: n1 := n1.nxt

enddo;
C4: res := (n1.val = x)

and !n1.mrk
C5: return res

locate(x):
while (true) do

L1: pred := Head;
L2: curr := pred.nxt;
L3: while (curr.val < x) do
L4: pred := curr;
L5: curr := pred.nxt enddo;
L6: pred.lock();

L7: curr.lock();
L8: if !pred.mrk and !curr.mrk

and pred.nxt = curr
L9: return (pred, curr)
L10: else pred.unlock();
L11: curr.unlock() endif enddo

Figure 1: A lazy set algorithm [HHL+07]

An important difference between our framework and those mentioned above is that we as-
sume a truly concurrent execution model and only require interleaving for conflicting memory
accesses [DD12, DDH12]. Each of the other frameworks mentioned above assume a strict inter-
leaving between program statements. Thus, our approach captures the behaviour of program in
a multicore/multiprocesor architecture more faithfully.

The main contribution of this paper is the use of the techniques in [DD12] to simplify verifica-
tion of a complex set algorithm [HHL+07]. This algorithm presents a challenge for linearisability
because the linearisation point of the contains operation is potentially outside the operation it-
self [DSW11]. We propose a method in which the proof is split into several layers of abstraction
so that linearisation points of the fine-grained implementation need not be identified. As sum-
marised in Fig. 3, one must additionally prove that the coarse-grained abstraction is linearisable,
however, due to the coarse granularity of atomicity, the linearising statements are straightforward
to identify and the linearisability proof itself is simpler [DD12]. Other contributions of this paper
include a method for reasoning about truly concurrent program executions and an extension of
the framework in [DDH12] to enable reasoning about pointer-based programs, which includes
methods for reasoning about expressions non-deterministically [HBDJ13].

2 A list-based concurrent set

Heller et al [HHL+07] implement a set as a concurrent algorithm operating on a shared data
structure (see Fig. 1) with operations add and remove to insert and delete elements from the
set, and an operation contains to check whether an element is in the set. The concurrent

3

∆u
add(x)

∆′q
add(y)remove(x)

∆q

LazySet
∆

s

∆p
contains(x)

v
C1 (C2 ; C3)ω C4 return true

return true〈x ∈ absSet〉

Figure 2: contains(x) execution over ∆p returning true

Abstract sequential program

Behaviour refinement

Fine-grained implementation

Coarse-grained abstraction

Linearisability proof

Figure 3: Proof steps

implementation uses a shared linked list of node objects with fields val,nxt,mrk, and lck, where
val stores the value of the node, nxt is a pointer to the next node in the list, mrk denotes the
marked bit and lck stores the identifier of the process that currently holds the lock to the node (if
any) [HHL+07]. The list is sorted in strictly ascending values order (including marked nodes).

Operation locate(x) is used to obtain pointers to two nodes whose values may be used to
determine whether or not x is in the list — the value of the predecessor node pred must always
be less than x, and the value of the current node curr may either be greater than x (if x is not
in the list) or equal to x (if x is in the list). Operation add(x) calls locate(x), then if x is not
already in the list (i.e., value of the current node n3 is strictly greater than x), a new node n2 with
value field x is inserted into the list between n1 and n3 and true is returned. If x is already in the
list, the add(x) operation does nothing and returns false. Operation remove(x) also starts by
calling locate(x), then if x is in the list the current node n2 is removed and true is returned to
indicate that x was found and removed. If x is not in the list, the remove operation does nothing
and returns false. Note that operation remove(x) distinguishes between a logical removal,
which sets the marked field of n2 (the node corresponding to x), and a physical removal, which
updates the nxt field of n1 so that n2 is no longer reachable. Operation contains(x) iterates
through the list and if a node with value greater or equal to x is found, it returns true if the node
is unmarked and its value is equal to x, otherwise returns false.

The complete specification consists of a number of processes, each of which may execute
its operation on the shared data structure. For the concrete implementation, therefore, the set
operations can be executed concurrently by a number of processes, and hence, the intervals in
which the different operations execute may overlap. Our basic semantic model uses interval
predicates (see Section 3), which allows formalisation of a program’s behaviour with respect to
an interval (which is a contiguous set of times), and an infinite stream (that maps each time to
a state). For example, consider Fig. 2, which depicts an execution of the lazy set over interval
∆ in stream s, a process p that executes a contains(x) that returns true over ∆p, a process q
that executes remove(x) and add(y) over intervals ∆q and ∆′q, respectively, and a process u that
executes add(x) over interval ∆u. Hence, the shared data structure may be changing over ∆p

while process p is checking to see whether x is in the set.
Correctness of such concurrent executions is judged with respect to linearisability, the crux

of which requires the existence of an atomic linearisation point within each interval of an op-
eration’s execution, corresponding to the point at which the effect of the operation takes place

4

[HW90]. The ordering of linearisation points defines a sequential ordering of the concurrent
operations and linearisability requires that this sequential ordering is valid with respect to the
data structure being implemented. For the execution in Fig. 2, assuming that the set is initially
empty, because contains(x) returns true, a valid linearisation corresponds to a sequential ex-
ecution Seq1 “= add(x); contains(x); remove(x); add(y) obtained by picking linearisa-
tion points within ∆u, ∆p, ∆q and ∆′q in order. Note that a single concurrent history may be lin-
earised by more than one valid sequential history, e.g., the execution in Fig. 2 can correspond to
the sequential execution Seq2 “= remove(x); add(x); contains(x); add(y). The abstract
sets after completion of Seq1 and Seq2 are {y} and {x,y}, respectively. Unlike Seq1, operation
remove(x) in Seq2 returns false. Note that a linearisation of ∆′q cannot occur before ∆q because
remove(x) responds before the invocation of add(y).

Herlihy and Wing formalise linearisability in terms of histories of invocation and response
events of the operations on the data structure in question [HW90]. Reasoning about such histories
directly is infeasible, and hence, existing methods (e.g., [CGLM06, DSW11, VHHS06]) prove
linearisability by identifying an atomic linearising statement within the operation being verified
and showing that this statement can be mapped to the execution of a corresponding abstract
operation. However, due to the fine granularity of the atomicity and inherent non-determinism
of concurrent algorithms, identification of such a statement is difficult. The linearising statement
for some operations may actually be outside the operation, e.g., none of the statements C1-C5
are valid linearising statements of contains(x); instead contains(x) is linearised by the
execution of a statement within add(x) or remove(x) [DSW11].

As summarised in Fig. 3, we decompose proofs of linearisability into two steps, the first
of which proves that a fine-grained implementation refines a program that executes the same
operations but with coarse-grained atomicity. The second step of the proof is to show that the
abstraction is linearisable. The atomicity of a coarse-grained abstraction cannot be guaranteed
in hardware (without the use of contention inducing locks), however, its linearisability proof is
much simpler [DDH12]. Because we prove behaviour refinement, any behaviour of the fine-
grained implementation is a possible behaviour of the coarse-grained abstraction, and hence, an
implementation is linearisable whenever the abstraction is linearisable. Our technique does not
require identification of the linearising statements in the implementation.

A possible coarse-grained abstraction of contains(x) is an operation that is able to test
whether x is in the set in a single atomic step (see Fig. 6), unlike the implementation in Fig. 1,
which uses a sequence of atomic steps to iterate through the list to search for a node with value x.
Therefore, as depicted in Fig. 2, an execution of contains that returns true, i.e., C1 ; (C2 ; C3)ω ;
C4 ; return true, is required to refine a coarse-grained abstraction 〈x ∈ absSet〉 ; return true,
where C1 - C4 are the labels of contains in Fig. 1 and 〈x ∈ absSet〉 is a guard that is atomically
able to test whether x is in the abstract set. In particular, 〈x ∈ absSet〉 holds in an interval Ω and
stream s iff there is a time t in Ω such that x ∈ absSet.(s.t). Streams are formalised in Section 3.
Note that both 〈x ∈ absSet〉 and 〈x 6∈ absSet〉 may hold within ∆p; the refinement in Fig. 2 would
only be invalid if for all t ∈ ∆p, x 6∈ absSet.(s.t) holds.

Proving refinement between a coarse-grained abstraction and an implementation is non-trivial
due to the execution of other (interfering) concurrent processes. Furthermore, our execution
model allows non-conflicting statements (e.g., concurrent writes to different locations) to be
executed in a truly concurrent manner. We use compositional rely/guarantee-style reasoning

5

CLoop(p,x) =̂ ([(n1p 7→ val)< x] ; n1p := (n1p 7→ nxt))ω ; [(n1p 7→ val)≥ x]
Contains(p,x) =̂ cl1:n1p := Head ; cl2:CLoop(p,x) ;

cl3:resp := (¬(n1p 7→ mrk) ∧ (n1p 7→ val) = x)

HTInit =̂ (Head 7−→ (−∞,Tail, false,null)) ∧ (Tail 7−→ (∞,null, false,null))

S(p) =̂ Jn1p,n2p,n3p,resp (
d

x:Z Add(p,x)uRemove(p,x)uContains(p,x))ωK

Set(P) =̂ JHead,Tail RELY
←−−−−
HTInit • ‖p:P S(p)K

Figure 4: Formal model of the lazy set operations

[Jon83] to formalise the behaviour of the environment of a process and allow the execution of an
arbitrary number of processes in the environment. Note that unlike Jones [Jon83], who assumes
rely conditions are two-state relations, rely conditions in our framework are interval predicates
that are able to refer to an arbitrary number of states because the size of the interval is not fixed.

3 Interval-based framework

To simplify reasoning about the linked list structure of the lazy list, the domain of each state dis-
tinguishes between variables and addresses. We use a language with an abstract syntax that
closely resembles program code, and use interval predicates to formalise interval-based be-
haviour. Fractional permissions are used to control conflicting accesses to shared locations.

Commands. We assume variable names are taken from the set Var, values have type Val, ad-
dresses have type Addr “=N, Var∩Addr =∅ and Addr ⊆ Val. A state over VA⊆ Var∪Addr has
type StateVA “= VA→ Val and a state predicate has type StateVA→ B.

The objects of a data structure may contain fields, which we assume are of type Field. We
assume that every object with m fields is assigned m contiguous blocks of memory and use
offset:Field→ N to obtain the offset of f ∈ Field within this block [Vaf07], e.g., for the fields of
a node object, we assume that offset.val = 0, offset.nxt = 1, offset.mrk = 2 and offset.lck = 3.

We assume the existence of a function eval that evaluates a given expression in a given state.
The full details of expression evaluation are elided. To simplify modelling of pointer-based
programs, for an address-valued expression ae, we introduce expressions ∗ae, which returns
the value at address ae, ae·f , which returns the address of f with respect to ae. For a state σ ,
we define eval.(∗ae).σ “= σ .(eval.ae.σ) and (ae·f).σ “= eval.ae.σ + offset.f . We also define
shorthand ae 7→ f “= ∗(ae·f), which returns the value at ae·f in state σ .

Assuming that Proc denotes the set of process ids, for a set of variables Z, state predicate c,
variable or address-valued expression vae, expression e, label l, and set of processes P ⊆ Proc,
the abstract syntax of a command is given by Cmd below, where C,C1,C2,Cp ∈ Cmd.

Cmd ::= Idle | [c] | 〈c〉 | vae := e | C1 ; C2 | C1uC2 | Cω | ‖p:P Cp | JZ CK | l:C

Hence a command is either Idle, a guard [c], an atomically evaluated guard 〈c〉, an assignment
vae := e, a sequential composition C1 ; C2, a non-deterministic choice C1uC2, a possibly infinite
iteration Cω , a parallel composition ‖p:P Cp, a command C within a context Z (denotedJZ CK),
or a labelled command l:C. In JZ CK, the context Z is the set of variables that C may modify.

6

A formalisation of part of the lazy set [HHL+07] using the syntax above is given in Fig. 4,
where P⊆ Proc. Operations add(x), remove(x) and contains(x) executed by process p are
modelled by commands Add(p,x), Remove(p,x) and Contains(p,x), respectively. We assume
that n 7−→ (vv,nn,mm, ll) denotes (n 7→ val = vv) ∧ (n 7→ nxt = nn) ∧ (n 7→ mrk = mm) ∧ (n 7→
lck = ll). Details of Add(p,x) and Remove(p,x) are elided and the RELY construct is formalised
in Section 5. Note that unlike the methods in [CGLM06, DSW11], where labels identify the
atomicity, we use labels to simplify formalisation of the rely conditions of each process, and
may correspond to a number of atomic steps. Furthermore, guard evaluation is formalised with
respect to the set of states apparent to a process (see Section 4), and hence, unlike [VHHS06,
CGLM06, DSW11], we need not split complex expressions into their atomic components. For
example, in [VHHS06, CGLM06, DSW11], the expression at C4 (Fig. 1) must be split into two
expressions curr.val = x and !curr.mrk to explicitly model the fact that interference may
occur between accesses to curr.val and curr.mrk.
Interval predicates. A (discrete) interval (of type Intv) is a contiguous set of time (of type
Time “=Z), i.e., Intv “= {∆⊆ Time | ∀t, t′:∆ •∀u:Time • t≤ u≤ t′⇒ u∈ ∆}. Using ‘.’ for function
application, we let lub.∆ and glb.∆ denote the least upper and greatest lower bounds of an interval
∆, respectively, where lub.∅ “=−∞ and glb.∅ “= ∞. We define inf.∆ “= (lub.∆ = ∞), fin.∆ “=¬inf.∆
and empty.∆ “= (∆ = ∅). For a set K and i, j ∈ K, we let [i, j]K “= {k:K | i ≤ k ≤ j} denote
the closed interval from i to j containing elements from K. One must often reason about two
adjoining intervals, i.e., intervals that immediately precede or follow a given interval. We say ∆

adjoins ∆′ iff ∆∝∆′, where
∆∝∆′ “= (∀t:∆, t′:∆′ • t < t′) ∧ (∆∪∆′ ∈ Intv)

Note that adjoining intervals ∆ and ∆′ must be disjoint, and by conjunct ∆∪∆′ ∈ Intv, the union
of ∆ and ∆′ must be contiguous. Note that both ∆∝∅ and ∅∝∆ hold trivially for any interval ∆.

A stream of behaviours over VA⊆ Var∪Addr is given by a total function of type StreamVA “=
Time→ StateVA, which maps each time to a state over VA. To reason about specific portions
of a stream, we use interval predicates, which have type IntvPredVA “= Intv→ StreamVA → B.
Note that because a stream encodes the behaviour over all time, interval predicates may be
used to refer to the states outside a given interval. We assume pointwise lifting of operators
on stream and interval predicates in the normal manner, define universal implication g1 V g2 “=
∀∆: Intv,s:Stream • g1.∆.s⇒ g2.∆.s for interval predicates g1 and g2, and say g1 ≡ g2 holds iff
both g1 V g2 and g2 V g1 hold. Like Interval Temporal Logic [Mos00], we may define a number
of operators on interval predicates, e.g., if g ∈ IntvPredVA, ∆ ∈ Intv and s ∈ StreamVA:

(2g).∆.s “= ∀∆′: Intv •∆′ ⊆ ∆⇒ g.∆′.s (�g).∆.s “= ∃∆′ •∆′∝∆ ∧ g.∆′.s
We define two operators on interval predicates: chop, which is used to formalise sequential
composition, and ω-iteration, which is used to formalise a possibly infinite iteration (e.g., a
while loop). The chop operator ‘;’ is a basic operator on two interval predicates [Mos00, DDH12,
DH12], where (g1 ; g2).∆ holds iff either interval ∆ may be split into two parts so that g1 holds
in the first and g2 holds in the second, or the least upper bound of ∆ is ∞ and g1 holds in ∆. The
latter disjunct allows g1 to formalise an execution that does not terminate. Using chop, we define
the possibly infinite iteration (denoted gω) of an interval predicate g as the greatest fixed point
of z = (g ; z) ∨ empty, where the interval predicates are ordered using ‘V’ (see [DHMS12] for
details). Thus, we have:

7

(g1 ; g2).∆.s “= Ç
∃∆1,∆2: Intv • (∆ = ∆1∪∆2) ∧

(∆1 ∝∆2) ∧ g1.∆1.s ∧ g2.∆2.s

å
∨ (inf ∧ g1).∆.s

gω “= νz • (g ; z) ∨ empty

In the definition of g1 ; g2, interval ∆1 may be empty, in which case ∆2 = ∆, and similarly ∆2 may
empty, in which case ∆1 = ∆. Hence, both (empty ; g) ≡ g and g ≡ (g ; empty) trivially hold.
An iteration gω of g may iterate g a finite (including zero) number of times, but also allows an
infinite number of iterations [DHMS12].

Permissions and interference. To model true concurrency, the behaviour of the parallel compo-
sition between two processes in an interval ∆ is modelled by the conjunction of the behaviours of
both processes executing within ∆. Because this potentially allows conflicting accesses to shared
variables, we incorporate fractional permissions into our framework [Boy03, DDH12]. We as-
sume the existence of a permission variable in every state σ ∈ StateVA of type VA→ Proc→
[0,1]Q, where VA⊆ Var∪Addr and Q denotes the set of rationals. A process p ∈ Proc has write-
permission to location va ∈ VA in σ ∈ StateVA iff σ .Π.va.p = 1; has read-permission to va in σ

iff 0 < σ .Π.va.p < 1; and has no-permission to access va in σ iff σ .Π.va.p = 0.
We define R.va.p.σ “= (0 < σ .Π.va.p < 1) and W .va.p.σ “= (σ .Π.va.p = 1) and D .va.p.σ “=

(σ .Π.va.p = 0) to be state predicates on permissions. In the context of a stream s, for any time
t ∈ Z, process p may only write to and read from va in the transition step from s.(t−1) to s.t if
W .va.p.(s.t) and R.va.p.(s.t) hold, respectively. Thus, W .va.p.(s.t) does not give p permission
to write to va in the transition from s.t to s.(t+1) (and similarly R.va.p). For example, to state
that process p updates variable v to value k at time t of stream s, the effect of the update should
imply ((v = k) ∧W .v.p).(s.t).

One may introduce healthiness conditions on streams that formalise our assumptions on the
underlying hardware. We assume that at most one process has write permission to a location va
at any time, which is guaranteed by ensuring the sum of the permissions of the processes on va at
all times is at most 1, i.e., ∀s:Stream, t:Time • ((Σp∈ProcΠ.va.p)≤ 1).(s.t). Other conditions may
be introduced to model further restrictions as required [DDH12].

4 Evaluating state predicates over intervals

The set of times within an interval corresponds to a set of states with respect to a given stream.
Hence, if one assumes that expression evaluation is non-atomic (i.e., takes time), one must con-
sider evaluation with respect to a set of states, as opposed to a single state. It turns out that
there are a number of possible ways in which such an evaluation can take place, with varying de-
grees of non-determinism [HBDJ13]. In this paper, we consider actual states evaluation, which
evaluates an expression with respect to the set of actual states that occur within an interval and
apparent states evaluation, which considers the set of states apparent to a given process.

Actual states evaluation allow one to reason about the true state of a system, and evaluates
an expression instantaneously at a single point in time. However, a process executing with fine-
grained atomicity can only read a single variable at a time, and hence, will seldom be able to
view an actual state because interference may occur between two successive reads. For example,
a process p evaluating ecl3 (the expression at cl3) cannot read both n1p 7→mrk and n1p 7→ val in a
single atomic step, and hence, may obtain a value for ecl3 that is different from any actual value of

8

ecl3 because interference may occur between reads to n1p 7→ mrk and n1p 7→ val. Therefore, we
define an apparent states evaluator that models fine-grained expression evaluation over intervals.
Our definition of apparent states evaluation does not fix the order in which n1p 7→ mrk and
n1p 7→ val are read. We see this as advantageous over frameworks that must make the atomicity
explicit (e.g., [VHHS06, CGLM06, DSW11]), which require an ordering to be chosen, even if
an evaluation order is not specified by the corresponding implementation (e.g., [HHL+07]). In
[VHHS06, CGLM06, DSW11], if the order of evaluation is modified, the linearisability proof
must be redone, whereas our proof is more general because it shows that any order of evaluation
is valid.
Evaluation over actual states. To formalise evaluators over actual states, for an interval ∆ and
stream s ∈ StreamVA, we define states.∆.s “= {σ :StateVA | ∃t:∆ •σ = s.t}. Two useful operators
for a sets of actual states of a state predicate c are �c and �c, which specify that c holds in some
and all actual state of the given stream within the given interval, respectively.

(�c).∆.s “= ∃σ :states.∆.s • c.σ (�c).∆.s “= ∀σ :states.∆.s • c.σ
Example 1. Suppose v is a variable, fa and fb are fields, and s is a stream such that the expression
(v 7→ fa,v 7→ fb) always evaluates to (0,0), (1,0) and (1,1) within intervals [1,4]N, [5,10]N
and [11,16]N, respectively, i.e., for example �((v 7→ fa,v 7→ fb) = (0,0)).[1,4]N.s. Thus, both
�((v 7→ fa)≥ (v 7→ fb)).[1,16]N.s and �((v 7→ fa)> (v 7→ fb)).[1,16]N.s may be deduced.

Using �, we define ←−c and −→c , which hold iff c holds at the beginning and end of the given
interval, respectively.

←−c “= (�c ∧ ¬empty) ; true −→c “= true ; (�c ∧ ¬empty)

Operators � and � cannot accurately model fine-grained interleaving in which processes are
able to access at most one location in a single atomic step. However, both � and � are useful
for modelling the actual behaviour of the system as well as the behaviour of the coarse-grained
abstractions that we develop. We may use � to define stability of a variable v, and invariance of
a state predicate c as follows:

stable.v “= ∃k • � (
−−−→
va = k) ∧�(va = k) inv.c “=�−→c ⇒�c

Such definitions of stability and invariance are necessary because adjoining intervals are assumed
to be disjoint, i.e., do not share a point of overlap. Therefore, one must refer to the values at the
end of some immediately preceding interval.
Evaluation over states apparent to a process. Assuming the same setup as Example 1, if p is
only able to access at most one location at a time, evaluating (v 7→ fa)< (v 7→ fb) using the states
apparent to process p over the interval [1,16]N may result in true, e.g., if the value at v·fa is read
within interval [1,4]N and the value at v·fb read within [11,16]N.

Reasoning about the apparent states with respect to a process p using function apparent is not
always adequate because it is not enough for an apparent state to exist; process p must also be able
to read the relevant variables in this apparent state. Typically, it is not necessary for a process to
be able to read all of the state variables to determine the apparent value of a given state predicate.
In fact, in the presence of local variables (of other processes), it will be impossible for p to read
the value of each variable. Hence, we define a function apparentp,W , where W ⊆Var∪Addr is the
set of locations whose values process p needs to determine to evaluate the given state predicate.

apparentp,W .∆.s “= {σ :StateW | ∀va:W •∃t:∆ • (σ .va = s.t.va) ∧R.va.p.(s.t)}

9

Using this function, we are able to determine whether state predicates definitely and possibly
hold with respect to the apparent states of a process. For a state predicate c, interval ∆, stream s
and state σ , we let accessed.c.σ denote the smallest set of locations (variables and addresses) that
must be accessed in order to evaluate c in state σ and define locs.c.∆.s “= ⋃t∈∆ accessed.c.(s.t).
For a process p, this is used to define (�p c).∆.s, which states that c holds in all states apparent
to p in s within ∆. (Similarly (�p c).∆.s.)

(�p c).∆.s “= letW = locs.c.∆.s in∀σ :apparentp,W .∆.s • c.σ
(�p c).∆.s “= letW = locs.c.∆.s in∃σ :apparentp,W .∆.s • c.σ

Continuing Example 1, if c “= ((v 7→ fa) ≥ (v 7→ fb)), we have (¬�p c).[1,16]N.s holds, i.e.,
(�p¬c).[1,16]N.s even though (�c).[1,16]N.s holds (cf. [DDH12, HBDJ13]). One may estab-
lish a number of properties on�, �,� and � [HBDJ13], for example �p(c∧ d)V �pc∧ �pd
holds. Furthermore, for any process p, variable v, field f and constant k,

stable.v ∧ �p((v 7→ f) = k)⇒ �((v 7→ f) = k) (1)

5 Behaviours and refinement

The behaviour of a command C executed by a non-empty set of processes P in a context Z ⊆ Var
is given by interval predicate behP,Z.C, which is defined inductively in Fig. 5. We use behp,Z

to denote beh{p},Z and assume the existence of a program counter variable pcp for each process
p. We define shorthand fin Idle “= ENF fin • Idle and inf Idle “= ENF inf • Idle to denote finite and
infinite idling, respectively and use the interval predicates below to formalise the semantics of
the commands in Fig. 5.

evalp,Z.c “= �p c ∧ behp,Z.Idle

updatep,Z(va,k) “= ®
behp,Z\{va}.Idle ∧ ¬empty ∧�(va = k ∧Wp.va) if va ∈ Var
behp,Z\{va}.Idle ∧ ¬empty ∧�((∗va) = k ∧Wp.va) if va ∈ Addr

To enable compositional reasoning, for interval predicates r and g, and command C, we intro-
duce two additional constructs RELY r •C and ENF g •C, which denote a command C with a rely
condition r and an enforced condition g, respectively [DDH12].

We say that a concrete command C is a refinement of an abstract command A iff every possible
behaviour of C is a possible behaviour of A. Command C may use additional variables to those
in A, hence, we define refinement in terms of sets of variables corresponding to the contexts of
A and C. In particular, we say A with context Y is refined by C with context Z with respect to
a set of processes P (denoted A vY,Z

P C) iff behP,Z.C V behP,Y .A holds. Thus, any behaviour
of the concrete command C is a possible behaviour of the abstract command A. This is akin to
operation refinement [RE96], however, our definition is with respect to the intervals over which
the commands execute, as opposed to their pre/post states. We write AvZ

P C for AvZ,Z
P C, write

AvP C for Av∅
P C, and write AvY,Z

p C for AvY,Z
{p} C.

The next lemma states that an assignment of state predicate c to a variable v may be decom-
posed to a guard [c] followed by an assignment of true to v and a guard [¬c] followed by an
assignment of false to v. Furthermore, one may move the frame of a command into the refine-
ment relation.

10

behp,Z .Idle =̂ ∀va:Z •�¬W .va.p
behp,Z .[c] =̂ �p c ∧ behp,Z .Idle
behp,Z .〈c〉 =̂ �c ∧ behp,Z .Idle
behP,Z .Cω =̂ (behP,Z .C)ω

behp,Z .(l:C) =̂ �(pcp = l) ∧ behp,Z .C

behP,Z .(C1 ; C2) =̂ behP,Z .C1 ; behP,Z .C2
behP,Z .(C1uC2) =̂ behP,Z .C1 ∨ behP,Z .C2

behP,Z .(RELY r •C) =̂ r⇒ behP,Z .C
behP,Z .(ENF g •C) =̂ g ∧ behP,Z .C

behp,Z .(vae := e) =̂

ß
∃k • evalp,Z .(e = k) ; updatep,Z(v,k) if vae ∈ Var
∃k,a • evalp,Z .(vae = a ∧ e = k) ; updatep,Z(a,k) otherwise

behP,Z .(‖p:P Cp) =̂

true if P =∅
behp,Z .Cp if P = {p}
∃P1,P2,S1,S2 • (P1∪P2 = P) ∧ (P1∩P2 =∅) ∧ P1 6=∅ ∧ P2 6=∅ ∧

S1 ∈ {fin Idle, inf Idle} ∧ S2 ∈ {fin Idle, inf Idle} ∧
(S1 = inf Idle⇒ S2 6= inf Idle) ∧
behP1,Z .((‖p:P1

Cp) ; S1) ∧ behP2,Z .((‖p:P2
Cp) ; S2)

otherwise

behP,Z .JY CK =̂ (Z∩Y =∅) ∧ behP,Z∪Y .C

Figure 5: Formalisation of behaviour function

Lemma 1 Suppose c is a state predicate, v ∈ Var, W,X ⊆ Var, Y,Z ⊆ Var∪Addr, p ∈ Proc,
P⊆ Proc and A and C are commands. Then
1. v := c vZ

p ([c] ; v := true)u ([¬c] ; v := false), and
2. JW AK vY,Z

P JX CK provided AvW∪Y,X∪Z
P C and W ⊆ (X∪Z) and W ∩Y =∅= X∩Z.

The next theorem establishes a Galois connection between rely and enforced conditions [DDH12].

Theorem 1 (RELY r •A)vY,Z
P C ⇔ AvY,Z

P (ENF r •C)

When modelling a lock-free algorithm [CGLM06, DSW11, VHHS06], one assumes that each
process repeatedly executes operations of the data structure, and hence the processes of the sys-
tem only differ in terms of the process ids. For such programs, a proof of the parallel composition
may be decomposed using the following theorem [DD12].

Theorem 2 If p ∈ Proc, Y,Z ⊆ Var∪Addr, and A(p) and C(p) are commands parameterised
by p, then (RELY g • ‖p:P A(p)) vY,Z

P (‖p:P C(p)) holds if for some interval predicate r and some
p ∈ P and Q “= P\{p} both of the following hold.

RELY g ∧ r •A(p) vY,Z
p C(p) (2)

g ∧ behQ,Z.(‖q:Q C(q)) V r (3)

6 Verification of the lazy set

Details of the proof are presented in [DD13]. Here, we only present a high-level overview of
the proof and its decomposition (see Section 7). Furthermore, because (as already mentioned)
verification of linearisability of contains is known to be difficult using frameworks that only

11

ϕk+1.ua.σ =̂ if(k = 0) then ua else eval.((ϕk.ua.σ) 7→ nxt).σ
RE.ua.vb.σ =̂ ∃k:N •ϕk.ua.σ = vb

setAddr.σ =̂
{

a:Addr RE.Head.a.σ ∧ ¬eval.(a 7→ mrk).σ
}

absSet.σ =̂
{

v:Val ∃a:setAddr.σ • v = eval.(a 7→ val).σ
}

CGCon(p,x) =̂ (〈x ∈ absSet〉 ; resp := true)u (〈x 6∈ absSet〉 ; resp := false)

CGS(p) =̂ Jresp (
d

x:Z (CGAdd(p,x)uCGRem(p,x)uCGCon(p,x)))ωK

CGSet(P) =̂ JHead,Tail RELY
←−−−−
HTInit • ‖p:P CGS(p)K

Figure 6: A coarse-grained abstraction of contains

RELY r •CGCon(p,x)
vL,M

p
Contains(p,x)

vL,M
p

RELY r •CGRem(p,x)

Remove(p,x)

vL,M
p

RELY r •CGAdd(p,x)

Add(p,x)

RELY r •CGS(p)
vHT

p
S(p)

Lemma 1Theorem 2
Lemma 1

Set(P)
vP

CGSet(P)

behQ,HT .(‖q:Q S(q))V r

Figure 7: Proof decomposition for the lazy set verification

consider the pre/post states [CGLM06, DSW11, Vaf10, VHHS06], we focus on its proof. A
coarse-grained abstraction of Set(P) in Fig. 4 is given by CGSet(P) in Fig. 6, where for example,
Contains is replaced by CGCon, which tests to see if x is in the set using an atomic (coarse-
grained) guard, then updates the return value to true or false depending on the outcome of the
test. Details of CGAdd and CGRem are elided; we ask the interested reader to consult [DD13].

To prove refinement for Contains(p,x) in Fig. 7, we use Lemma 1 to replace Contains(p,x) by
CL ; ((clt3:([IN] ; resp := true))u (clf3:([¬IN] ; resp := false)))

where label cl3 has been split into clt3 and clf3 for the true and false cases, respectively, and
IN “= ¬(n1p 7→ mrk) ∧ ((n1p 7→ val) = x) CL “= cl1:(n1p := Head) ; cl2:CLoop(p,x)

We then distribute CL within the ‘u’, use monotonicity to match the abstract and concrete true
and false branches, then use monotonicity again to remove the assignments to resp from both
sides of the refinement. Thus, we are required to prove the following properties.

RELY r • 〈x ∈ absSet〉 vL,M
P CL ; clt3: [IN] (4)

RELY r • 〈x 6∈ absSet〉 vL,M
P CL ; clf3: [¬IN] (5)

Proof of (4). This condition states that there must be an actual state σ within the interval in
which CL ; clt3: [IN] executes, such that x ∈ absSet.σ holds, i.e., there is a point at which the
abstract set contains x. It may be the case that a process q 6= p has removed x from the set by
the time process p returns from the contains operation. In fact, x may be added and removed
several times by concurrent add and remove operations before process p completes execution
of Contains(p,x). However, this does not affect linearisability of Contains(p,x) because a state

12

for which x ∈ absSet holds has been found. An execution of Contains(p,x) that returns true
would only be incorrect (not linearisable) if true is returned and �(x 6∈ absSet) holds for the
interval in which CL ; clt3: [IN] executes. Similarly, we prove correctness of (5) by showing that
is impossible for there to be an execution that returns false if �(x ∈ absSet) holds in the interval
of execution.

Proof of (5). Using Theorem 1, we transfer the rely condition r to the right hand side as an
enforced property, define INV “= RE.Head.n1p ∨ (n1p 7→mrk), and require that r implies:

inv.INV ∧ 2(�(pcp = cl3)⇒ inv.(n1p 7→ mrk) ∧ ∀k:Val • inv.((n1p 7→ val) = k)) (6)

The behaviour of the right hand side of (4) simplifies to the following interval predicate using
assumption (6) and that r is assumed to split.

(r ∧ behp,L.Idle) ; (r ∧ (�INV ; (�¬(n1p 7→ mrk) ∧ �((n1p 7→ val) = x))))

Using assumption (6), it is possible to show that the second part of the chop implies the following,
where inSet(ua,x) “= RE.Head.ua ∧ ¬(ua 7→ mrk) ∧ (ua 7→ val = x) holds iff ua with value x is
in the abstract set.

∃a:Addr •
−−−−−−−−−−−→
inSet(Head,a,x) ; (�(n1p = a) ∧ �¬(a 7→ mrk) ∧ �((a 7→ val) = x))

This trivially implies the required result, i.e., that �(x ∈ absSet).
To prove (5), as with (4), we use Theorem 1 to transfer the rely condition r to the right hand

side as an enforced property. By logic, the right hand side of (5) is equivalent to command
ENF r ∧ (�(x ∈ absSet) ∨ �(x 6∈ absSet)) •CL ; clf3: [¬IN]. The �(x 6∈ absSet) case is trivially
true. For case �(x ∈ absSet), we require that r satisfies:

2(�(x ∈ absSet)⇒∃a:Addr •�inSet(Head,a,x)) (7)

2(∀k:N •ϕk.Head 6= Tail⇒ (ϕk.Head 7→ val)< (ϕk+1.Head 7→ val)) (8)

�(RE.n1p.Tail) (9)

By (7), in any interval, if the value x is in the set throughout the interval, there is an address
that can be reached from Head, the marked bit corresponding to the node at this address is
unmarked and the value field contains x. By (8) the reachable nodes of the list (including marked
nodes) must be sorted in strictly ascending order and by (9) the Tail node must be reachable from
n1p. Conditions (7), (8) and (9) together imply that there cannot be a terminating execution of
CLoop(p,x) such that clf3: [¬IN] holds, i.e., the behaviour is equivalent to false.

The rely condition r for the proof of contains must imply each of (6), (7), (8) and (9). We
choose to take the weakest possible instantiation and let r be the conjunction (6) ∧ (7) ∧ (8) ∧
(9), which, as shown in Fig. 7, must be satisfied by the rest of the program. This proof is
straightforward by expanding the definitions of the behaviours and its details are elided.

7 Conclusions

We have developed a framework, based on [DDH12], for reasoning about the behaviour of a
command over an interval that enables reasoning about pointer-based programs where processes

13

may refer to states that are apparent to a process [HBDJ13]. Parallel composition is defined us-
ing conjunction and conflicting access to shared state is disallowed using fractional permissions,
which models truly concurrent behaviour. We formalise behaviour refinement in our frame-
work, which can be used to show that a fine-grained implementation is a refinement of a coarse-
grained abstraction. One is only required to identify linearising statements of the abstraction
(as opposed to the implementation) and the proof of linearisability itself is simplified due to the
coarse-granularity of commands. For the coarse-grained contains operation in Fig. 6, the guard
〈x ∈ absSet〉 is the linearising statement for an execution that returns true and 〈x 6∈ absSet〉 the
linearising statement of an execution that returns false.

Our proof method is compositional (in the sense of rely/guarantee) and in addition, we develop
the rely conditions necessary to prove correctness incrementally. As an example, we have shown
refinement between the contains operation of the lazy set [HHL+07] and an abstraction of the
contains operation that executes with coarse-grained atomicity.
Acknowledgements. This work is supported by EPSRC Grant EP/J003727/1. We thank Gerhard Schell-
horn and Bogdan Tofan for useful discussions, and anonymous reviewers for their insightful comments.

Bibliography

[Boy03] J. Boyland. Checking Interference with Fractional Permissions. In Cousot (ed.),
SAS. LNCS 2694, pp. 55–72. Springer, 2003.

[BSTR11] S. Bäumler, G. Schellhorn, B. Tofan, W. Reif. Proving linearizability with temporal
logic. Formal Asp. Comput. 23(1):91–112, 2011.

[CGLM06] R. Colvin, L. Groves, V. Luchangco, M. Moir. Formal Verification of a Lazy Con-
current List-Based Set Algorithm. In Ball and Jones (eds.), CAV. LNCS 4144,
pp. 475–488. Springer, 2006.

[DD12] B. Dongol, J. Derrick. Proving linearisability via coarse-grained abstraction. CoRR
abs/1212.5116, 2012.

[DD13] B. Dongol, J. Derrick. Simplifying proofs of linearisability using layers of abstrac-
tion. CoRR abs/1307.6958, 2013.

[DDH12] B. Dongol, J. Derrick, I. J. Hayes. Fractional Permissions and Non-Deterministic
Evaluators in Interval Temporal Logic. ECEASST 53, 2012.

[DGLM04] S. Doherty, L. Groves, V. Luchangco, M. Moir. Formal Verification of a Prac-
tical Lock-Free Queue Algorithm. In Frutos-Escrig and Núñez (eds.), FORTE.
LNCS 3235, pp. 97–114. Springer, 2004.

[DH12] B. Dongol, I. J. Hayes. Deriving Real-Time Action Systems Controllers from Mul-
tiscale System Specifications. In Gibbons and Nogueira (eds.), MPC. LNCS 7342,
pp. 102–131. Springer, 2012.

[DHMS12] B. Dongol, I. J. Hayes, L. Meinicke, K. Solin. Towards an Algebra for Real-Time
Programs. In Kahl and Griffin (eds.), RAMiCS. LNCS 7560, pp. 50–65. 2012.

14

[DSW11] J. Derrick, G. Schellhorn, H. Wehrheim. Verifying Linearisability with Potential
Linearisation Points. In Butler and Schulte (eds.), FM. LNCS 6664, pp. 323–337.
Springer, 2011.

[EQS+10] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, S. Tasiran. Simplifying Linearizability
Proofs with Reduction and Abstraction. In Esparza and Majumdar (eds.), TACAS.
LNCS 6015, pp. 296–311. Springer, 2010.

[Gro08] L. Groves. Verifying Michael and Scott’s Lock-Free Queue Algorithm using Trace
Reduction. In Harland and Manyem (eds.), CATS. CRPIT 77, pp. 133–142. 2008.

[HBDJ13] I. J. Hayes, A. Burns, B. Dongol, C. B. Jones. Comparing Degrees of Non-
Determinism in Expression Evaluation. Comput. J. 56(6):741–755, 2013.

[HHL+07] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. S. III, N. Shavit. A Lazy
Concurrent List-Based Set Algorithm. Parallel Processing Letters 17(4):411–424,
2007.

[HW90] M. P. Herlihy, J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3):463–492, 1990.

[Jon83] C. B. Jones. Tentative steps toward a development method for interfering programs.
ACM Trans. Prog. Lang. and Syst. 5(4):596–619, 1983.

[Lip75] R. J. Lipton. Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12):717–721, 1975.

[Mos00] B. C. Moszkowski. A Complete Axiomatization of Interval Temporal Logic with
Infinite Time. In LICS. Pp. 241–252. 2000.

[ORV+10] P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, G. Yorsh. Verifying lineariz-
ability with hindsight. In Richa and Guerraoui (eds.), PODC. Pp. 85–94. ACM,
2010.

[RE96] W. P. de Roever, K. Engelhardt. Data Refinement: Model-oriented proof methods
and their comparison. Cambridge Tracts in Theor. Comp. Sci. 47. Cambridge Uni-
versity Press, 1996.

[TW11] A. J. Turon, M. Wand. A separation logic for refining concurrent objects. In Ball
and Sagiv (eds.), POPL. Pp. 247–258. ACM, 2011.

[Vaf07] V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University
of Cambridge, 2007.

[Vaf10] V. Vafeiadis. Automatically Proving Linearizability. In Touili et al. (eds.), CAV.
LNCS 6174, pp. 450–464. Springer, 2010.

[VHHS06] V. Vafeiadis, M. Herlihy, T. Hoare, M. Shapiro. Proving correctness of highly-
concurrent linearisable objects. In Torrellas and Chatterjee (eds.), PPOPP. Pp. 129–
136. 2006.

15

	Introduction
	A list-based concurrent set
	Interval-based framework
	Evaluating state predicates over intervals
	Behaviours and refinement
	Verification of the lazy set
	Conclusions

