Electronic Communications of the EASST

Volume 66 (2013)

Proceedings of the
Automated Verification of Critical Systems
(AVoCS 2013)

On the Satisfiability of Metric Temporal Logics over the Reals
Marcello M. Bersani, Matteo Rossi and Pierluigi San Pietro

15 pages

Guest Editors: Steve Schneider, Helen Treharne

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

On the Satisfiability of Metric Temporal Logics over the Reals

Marcello M. Bersani', Matteo Rossi' and Pierluigi San Pietro'”

! [marcellomaria.bersani,matteo.rossi,pierluigi.sanpietro] @ polimi.it
Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano
2 CNR IEIIT-MI

Abstract: We show that there is a satisfiability-preserving translation of QTL for-
mulae interpreted over finitely variable behaviors into formulae of the CLTL-over-
clocks logic. The satisfiability of CLTL-over-clocks can be determined through a
suitable encoding into the input logics of SMT solvers, so it constitutes an effective
decision procedure for QTL. Although decision procedures for determining satisfia-
bility of QTL (and for the expressively equivalent logics MITL and QMLO) already
exist, the automata-based techniques they employ appear to be very difficult to re-
alize in practice, and, to the best of our knowledge, no implementation currently
exists for them. A prototype tool for QTL based on the encoding presented here
has, instead, been implemented and is publicly available.

Keywords: Metric Temporal Logic, Satisfiability Modulo Theories, Continuous-
time systems, Formal Verification

1 Introduction

The need for continuous-time models arises naturally and often when describing the dynamics of
physical quantities, such as position, speed and acceleration of a moving body, or such as temper-
ature and pressure of a fluid. When developing computer systems that monitor and control such
quantities, then, the classic discrete-time models used in the computer science domain are no
longer enough. Many notations [FMMR12] have been developed to address these shortcomings;
the most successful ones, those that are the most used in practice and with the most developed
tools, are based on operational mechanisms, e.g., Timed Automata [AD94].

Descriptive notations, e.g., temporal logics, however, provide many benefits, such as allowing
for an abstract, concise and convenient expression of the required properties of a system. This is
mostly exploited in the verification of finite-state models, e.g., through model checking [BKOS].
Temporal logics, however, also allow designers to pursue a descriptive approach to the specifi-
cation and modeling of reactive systems (e.g., [MP94, FMMR12]), where the system is defined
by its general properties, rather than by a machine behavior (e.g., a Timed Automaton). In this
case, verification typically consists of satisfiability checking of the conjunction of the model and
of the (negation of) its desired properties.

In general, tool support for verification of continuous-time temporal logics is not as well-
developed as for discrete-time models, especially when the logic is endowed with metric opera-
tors. Decision procedures for determining the satisfiability of continuous-time metric temporal
logic mostly rely on timed automata-based techniques [AFH96, MNP06], but they appear to be
very difficult to realize in practice, and, to the best of our knowledge, no implementation exists

1/15 Volume 66 (2013)

mailto:[marcellomaria.bersani,matteo.rossi,pierluigi.sanpietro]@polimi.it

On the Satisfiability of Metric Temporal Logics over the Reals E}

for them. An alternative proof to the one in [AFH96] for the satisfiability of Metric Interval Tem-
poral Logic (MITL) formulae is provided in [SRHO2]. Though the aim of the paper was that of
proving the soundness and completeness of the axiomatization for the Event-Clock logic (therein
proved to be equivalent to MITL), they devise an ad-hoc procedure for building an automaton
corresponding to a formula, motivating it since the known one for MITL [AFH96] can not be
used directly for their purposes.

We study the satisfiability of the Quantitative Temporal Logic (QTL) [HR99, HRO5], using a
purely logic-based approach. QTL is an interesting logic: it is known to be decidable over the
real line, and its satisfiability problem is PSPACE-complete; it has a very simple syntax, with
only one metric operator; despite this, it is expressively equivalent with other very interesting
logics, and in particular with the Quantitative Monadic Logic of Order (QMLO), and with the
Metric Interval Temporal Logic (MITL). In fact, a translation has been defined that, from a QTL
formula, produces an equivalent QMLO (resp. MITL) formula, and vice-versa. Since QMLO
can be used to provide semantics to a variety of existing metric temporal logics, our approach can
be used in principle to decide the satisfiability of a wide range of logics, including for example
the popular MITL.

More precisely, in this paper we introduce a linear satisfiability-preserving translation from
QTL formulae to formulae of CLTL-over-clocks (CLTL-oc), a decidable logic [BRS] whose
satisfiability problem is also PSPACE-complete, for which it is possible to define a decision pro-
cedure based on Satisfiability Modulo Theories (SMT) solving techniques that are implemented
in a variety of tools (such as [Mic]). This is the basis for a prototype tool, available from [qtl].

Although QTL is decidable over unrestricted models, we will focus on models that are finitely
variable, i.e. such that in every bounded time interval there can only be a finite number of
changes. This is a very common requirement for continuous-time models, which only rules out
pathological behaviors (e.g., Zeno [FMMR12]) which do not have much practical interest.

The paper is organized as follows: Sect. 2 defines QTL and CLTL-oc, and Sect. 3 defines a re-
duction from the former to the latter; Sect. 4 shows that the translation is satisfiability-preserving,
and discusses its complexity. Sect. 5 presents some experimental results carried out with our
prototype tool. Sect. 6 concludes, describing also tool support. All proofs can be found in the
extended version of this paper that is available from the tool website [qtl].

2 Languages

Let AP be a finite set of atomic propositions. The syntax of (well-formed) QTL formulae over
AP is defined by the grammar (where p € AP):

d:=ploro|—0|0Uqg\d | Fo1)0|9S0,0)9 | Pon9-

The semantics of QTL may be defined with respect to a generic linear order, but in what
follows we will focus on the nonnegative real line, i.e., the linear order (R>o, <). A structure M
for QTL over alphabet AP is a pair M = (Rxq, ZM), where %" is a valuation mapping every
propositional variable p € AP to a set ™ (p) < Ro. Hence, a structure may be considered as
providing continuous-time Boolean signals over the set AP. Satisfaction of a QTL formula over

Proc. AVoCS 2013 2/15

Eg ECEASST

M,tk=p<rteB(p)
Mtl=—0 <Mt} ¢
MitEoryeMit=¢andM,t =y
Mt} ¢Ug oy < 3" >t, Mt =yand Vit <" <1’ M,1" = ¢

MitE=Fopng <3<t <t+1M1' ¢
Mtl= ¢Sy <3t <t, M/ = yandVi", 1" <t" <t, M,t" |= ¢
Mt l=Pon¢ <3t -1 <t <t, M,i' = ¢.

Table 1: Semantics of QTL.

M at a point 7 € R> is a relation |= defined inductively as in Table 1. Given a QTL formula ¢,
we indicate by sub(¢) the set of all subformulae occuring in ¢.

In this paper, we will assume signals to have finite variability, i.e., in any bounded time interval
there can only be a finite number of changes. Nevertheless, the following result holds.

Theorem 1 ([HRO5]) Satisfiability of QTL over (R>, <) is PSPACE-complete, even without
the finite variability assumption.

Constraint LTL (CLTL [DD07, BFRS11]) formulae are defined with respect to a finite set V of
variables and a structure 2 = (D, %) where D is a specific domain of interpretation for variables
and constants and % is a family of relations on D, with the set AP of atomic propositions being
the set %, of 0-ary relations. An atomic constraint is a term of the form R(xj,...,x,), where R is
an n-ary relation of Z on D and xy,...,x, € V. A valuation is a mapping v:V — D. A constraint
is satisfied by v, written v = R(x1,...,x,), if (v(x1),...,v(x,)) € R.

Temporal terms o are defined by the syntax o := ¢ | x | X, where c is a constant in D and
x € V. CLTL formulae are defined as follows:

¢:=R(au,....,00) [¢ A ¢ | = [X(¢)[Y(0)] UG | 9S¢

where ¢;’s are temporal terms, R € #, X, Y, U and S are the usual “next”, “previous”, “until” and
“since” operators of LTL, with the same meaning. Operator X is similar to X, but it only applies
to temporal terms, with the meaning that X« is the value of temporal term « in the next time
instant. Operators “globally” G and “release” R are introduced as customary as abbreviations:
»Ry = ~(=01U—¢), G(¢) = LR9.

The depth |c| of a temporal term is the total amount of temporal shift needed in evaluating a::
|x| = 0 when x is a variable, and |Xo| = |o| + 1. The semantics of CLTL formulae is defined
with respect to a strict linear order representing time (N, <). Truth values of propositions in AP
and values of variables belonging to V are defined by a pair (7, 0), where 7 : N — (AP) and
o0 : N xV — D, which define a subset of AP and the value of variables for each element of N.
The value of terms is defined with respect to o as follows:

o(i,a) = o(i+|al,xq)

3/15 Volume 66 (2013)

On the Satisfiability of Metric Temporal Logics over the Reals Eﬁ

(m,0),if=p< pen(i) for pe AP
(m,0),i=R(0y,...,0n) < (o(i+]|ou|,xq,),...,00+ ||, Xq,)) €R
7,6),i EX(9) < (m,0),i+ 1 ¢
7,0),i=Y(9)<e (1,0),i—1E¢Ai>0
(m,0),iFoUy <=3j=i:(m,0),jEy AVi<n<j,(m,0),nE=¢
(r,0),iEdSy<3I0<j<i:(m,0),jEyAVi<n<j (mo)nkE=¢

Table 2: Semantics of CLTL (propositional connectives are omitted for brevity).

assuming that x is the variable in V occurring in term «. The semantics of a CLTL formula ¢
atinstant / > 0 over a pair (7, o) is defined as in Table 2, where x, is the variable that appears in
temporal term oy, and R € Z\ % (recall that Zy = AP). A formula CLTL ¢ is satisfiable if there
exists a pair (,0) such that (7,0),0 = ¢; in this case, we say that (,0) is a model of ¢.

In this paper, we restrict the set of models where variables in V' are evaluated as clocks. A
clock “measures” the time elapsed since its last “reset” (i.e., the variable was equal to 0). Each
position i € N is associated with a “time delay” 6 (i), where 6 (i) > 0 for all i, corresponding to
the “time elapsed” between the current position i and the next one i + 1. For a clock x4,

i+ 1.xq) = {G(i,xa) +0(i), time elapsing
reset xq.

The set Z is restricted to {<,=} because CLTL-oc formulae need only to measure the time
elapsing among events, as later explained. Under these two restrictions, CLTL-oc is decidable
[BRS], and an effective decision procedure can be devised by encoding CLTL-oc formulae into
formulae in the decidable theory of Quantifier-free Uninterpreted Functions with Equality com-
bined with Linear Real Arithmetic (QF-EUF u LRA), which is solved by SMT solvers such as,
for example, Z3 [Mic]. A prototype solver for CLTL-oc formulae is available as part of the Zot
tool [ae2].

QTL is closely related to other metric temporal logics, and in particular QMLO [HRO5] and
the popular MITL [AFH96], through the following result.

Theorem 2 ([HRO05]) QOMLO, QTL and MITL are expressively equivalent.

Hence, a satisfiability-preserving translation of QTL formulae into CLTL-oc ones can be the
basis for an effective decision procedure to solve the satisfiability (over finitely-variable behav-
iors) of all above-mentioned logics.

3 Reduction of QTL to CLTL-over-clocks

Reducing QTL to CLTL-oc requires a way to represent models of QTL formulae, i.e., continuous-
time signals over a finite set of atomic propositions, by means of CLTL-oc models where time

Proc. AVoCS 2013 4/15

Eg ECEASST

QTL signal
p P[P P
>
o " b o " b b b
CLTL-oc model (E _|c5 (5 -(5 —'(5 (FT (FT "(FT
L | | | | | | | >
0 1 2 3 4 5 6 7

Figure 1: Example of QTL signal and a corresponding CLTL-oc model (clocks not shown).

is discrete. CLTL-oc variables behaving as clocks represent time progress, while discrete posi-
tions in CLTL-oc models represent, for each subformula occurring in QTL formula ¢, whether a
change of truth value (an “event”) occurs or not for the subformula at that point. Time progress
between two discrete points is measured by CLTL-oc clocks; between events, the truth value of
formulae is stable (i.e., there is no change). In every (discrete) position CLTL-oc models embed,
through suitable fresh propositional letters (7 and ©), the information defining the truth value
of all the subformulae occurring in QTL formula ¢ and, through clock variables, the informa-
tion about the time progress between two consecutive changing points. Then, every position in
a CLTL-oc model captures the configuration of one of the intervals in which the continuous-
time signal is partitioned by considering the QTL “events”. Therefore, our reduction defines, by
means of CLTL-oc formulae, the semantics of every subformula occurring in ¢. Fig. 1 shows an
example of QTL signal and a corresponding CLTL-oc model.

Consider a QTL formula ¢. For each subformula 6 of ¢ we introduce two predicates, ¢ and

5, which represent the value of 0 in, respectively, the first instant and the rest of the interval
between two events (hence, 1¢ represents the value of 6 exactly when the event occurs). We also
introduce two clocks, zg and z},, which measure the time elapsed since the last two “events”.

Let 0 € sub(¢). We say that the event “6 becomes true” ey occurs at instant # > 0 of signal M
when 0 holds right after ¢, but not before it, or ¢ is the origin:

Je >0,V € (t,t +¢€)itis M,t' |= 0 and eithert = 0 or 3¢’ > 0,V € (t — €',t) itis M, ¢’ |= —6.

The opposite event “O becomes false” e‘é is simply given by the property above with —6 instead

of 6. QTL events eg and e‘é are represented in the CLTL-oc formula through combinations of

the basic predicates ¢ and 5 that are abbreviated by I'g and Lg, respectively, whose definitions
are shown in Table 3.

We do not impose any restrictions on signals other than they be finitely variable. In particular,
subformulae 6 can have singularities, i.e., instants in which the value of 6 is different than in
their neighborhood. More precisely, we say that a formula 6 has an “up-singularity” s in instant
t if the following holds:

t>0,M,t=0and3e>0s.t. Vi' #£1e€(t—¢e,0+¢€)itis M,i' = —6.

5/15 Volume 66 (2013)

On the Satisfiability of Metric Temporal Logics over the Reals E}

le = & holds in the first instant of the current interval

o

g = & holds in the current interval (except possibly for its first instant)
G —

Te =-Y()r ¢

A _ :Y(: E)A Te Aj_g
L ==Y A—E

=Y(E)r—Teng

ILg
: £
1 =TLev g v (orighn—T¢) L =Tle vl
_éT = Te v lg v (orign Te) |§> =Tevle
g :Té/\g E =ﬁTg /\ﬁg

orig =—Y(T)

—

-

Table 3: CLTL-oc predicates and abbreviations used in the encoding. Note that Y(&) and Y(— &)
« «

are false in the origin, no matter £, and elsewhere —=Y(— &) = Y(); hence, T¢ holds in 0 if,

F
and only if, & holds there, L& does not hold in 0, and so on.

We say that 0 has a “down-singularity” s‘é if the formula above holds with —8 instead of 6. Note
that singularities do not occur in the origin. In CLTL-oc, we represent up- and down-singularities
with combinations of basic propositions abbreviated by [Lg and g, respectively, as shown in
Table 3.

¢ ¢
Table 3 summarizes the CLTL-oc predicates used here. In a nutshell, 7] (resp. _t) indicates that
formula & held (resp. did not hold) in an interval before the current one, and now it switches; the
switch can be singular (in which case & immediately takes the same value it held before now),

. . . . §
or not, in which case & stays false (resp. true) for some time after the switch. Formula = (resp.

¢
L), instead, holds if & becomes true (resp. false) in the current instant, and it holds in an interval
after now. Also, formula & (resp. &) states that & is true (resp. false) throughout the current

interval. In addition, we abbreviate by orig formula —Y (T), which holds only in 0.

In the rest of this section we define the translation from QTL to CLTL-oc formulae which is
the main contribution of this paper. First, Section 3.1 introduces a set of general formulae, which
are written for any subformula 6 of ¢, defining constraints that guarantee that clock resets occur
at suitable points. Then, in Section 3.2, we provide the operator-specific CLTL-oc formulae that
capture the semantics of QTL connectives and temporal operators.

3.1 General Constraints on Clocks and Events

This section describes the behavior of clocks and events. We introduce clocks zg and 219 for each
subformula 0 of ¢ to measure the time elapsing between two consecutive events of 0. In each
discrete position of a CLTL-oc model, the value of zg and zé is, intuitively, the time elapsed since
the last two events of 0, which is set to 0 (reset) only when an event (of 0) occurs. Resets of zg

Proc. AVoCS 2013 6/15

Eg ECEASST

and zé alternate because, when one of the two clocks is reset to start measuring the time elapsing
from the current event, the time elapsed since the previous event (which is needed in CLTL-oc
formulae to model the semantics of QTL modalities) is measured by the other clock. In other
words, one can not “read” the value of a clock and, at the same time, reset it to start measuring
the elapsed time anew.

For any 6 € sub(¢), the following CLTL-oc formula holds at position 0, simply stating that in
0 the zg clock of every subformula 6 is reset (while zé can have any value):

2=0 (1)

The other formulae of this section must hold at each discrete instant; for simplicity, the globally
operator G is inserted explicitly only at the end of the section.

Whenever subformula 0 switches its value (it becomes true or false, possibly in a singular
way), one of its associated clocks zg and Zé is reset:

6 6 0 .
AvAezp=0vzy=0. 2)

The clocks associated with a subformula 6 are reset in an alternate way: between any two resets
of clock zg there must be a reset of clock zé, and vice-versa:

A (@ =0)=X((§) "™ = 0)R(z #0)) ®

In the following, genconstrg denotes the formula (1) A G((2) A (3)).

3.2 Semantics of QTL temporal modalities

This section presents the definition of m(6), the translation of every subformula 6 of a QTL
formula into a suitable CLTL-oc formula encoding its semantics. Essentially, m(6) describes
how 6 becomes true and false depending on the value of its own subformulae.

e O =—y: The predicates related to 6 are exactly the opposite ones of y, so m(6) is the
following:

—

m(8) = (Toe — Ty) A (B — V). @)

e O =vAvy: The semantics of ¥y A Y is simply the conjunction of the basic predicates
for yand .

-
m(0) = (Te=1y A Ty) A (6T A V))
e 0=19YUq a)¥: The following lemma holds for formulae of this form.

Lemmal Let 0 = YU o) Y and M be a non-Zeno signal. For eacht € Ry there is € € R>g
such that Mt = 0 if, and only if, for allt' € (t,t + €] it is M,t' |= 6.

7/15 Volume 66 (2013)

On the Satisfiability of Metric Temporal Logics over the Reals Eﬁ

Then, U formulae can not have singularity points, as they would violate Lemma 1. In addition,
when a U formula changes its value, it must do so in a left-closed manner (i.e., the value at the
change point is the same as the one after the change point) or, again, Lemma 1 is violated. Then,
we have (6) below.

wi0) - (1) (5 (0 (70 (7 201,)))) 0

In particular, the second conjunct of Formula (6) states that 8 holds in an interval if, and only if,
either both ¥ and Y hold in it, or there is a future interval in which y holds (either throughout the
interval, or in its first instant), and 7y holds throughout all intervals (including their first instants)
in between.

e 6=F(yy Forformulae F)y we have the following result.

Lemma 2 Let 0 =F (g)y be a QTL formula. If Mt = 0 then there is € € R~ such that, for
allt' € [t,t + €] itis M,t' = 0 and, when t > 0, there is also € € R~ such that € <t and for all
t'elt—et]itisM,t' = 6.

Because of Lemma 2, an up-singularity Ly can never occur for a formula of the form Fq ;)7.
In addition, if 6 holds at the beginning of an interval (i.e., 1g holds), then it must hold also in
the rest of the interval and, if # > 0, it must also hold in the interval before. Then, the following
constraint holds in every instant:

T9=>(5 A(Y(g) v orig) (7)

Formula (8) states that, when 0 becomes true with a raising edge g, in an instant other than

the origin, a clock Zé is reset, and _YT will eventually be true after 1 instant; if 6 becomes true
in the origin, then either it does so in a left-closed manner, and y becomes true before clock zg
becomes 1, or it becomes true in a left-open manner, and y becomes true exactly at 1. Fig. 2(a)
gives a graphical depiction of one of the conditions for having a raising edge in ¢ > 0.

To A (J‘y \/X(zg >OU<_YT A0<Z) < 1)))) %
orig A
0 ol ko0
PR - 19 A1yAX<(Ze>O/\ AU (_T AZg = 1)> ®)
—orig A — g A \/ (z{,=OAX (ZQ>OU (_YTAZJG=1/\ \/ Z§,>1>>)
7€{0.1} i€{0,1}

We also add a constraint, which is captured by Formula (9), which states that, if ¥ becomes
true in an instant 7, and it was false in the interval of length 1 preceding ¢, then in ¢ one of the
clocks associated with 6 has value 1, since F (g 1)y started holding 1 time unit before 7.

_VT/\\/Z;>1 :>\/zé=1 &)

i€{0,1} Jje{0,1}

Proc. AVoCS 2013 8/15

E} ECEASST

Figure 2: Depiction of some conditions for raising and falling edges in metric operators.

When 6 becomes false with either a falling edge ("Lg) or in a singular manner (I g), ¥ becomes
false, so a clock zg, is reset. If O becomes false with a falling edge (10), then y can not become

. . A . .
true again as long as the clock that is reset with L, is < 1. If 8 becomes false in a singular manner

Y
(11), instead, ¥ must become true again exactly when the clock that is reset with L, is 1.

Y Y Y .
oo L Aa=X | AU A \/ 0<z,<1) (10)
i€{0,1}
t4 A 4 . .
Te<e L AX | AU A \/ z’yzl) A —Orig an
i€{0,1}

Then, for 6 = F g 1)y, m(0) is (7) A (8) A (10) A (11).

Case 0 = YS(0 o)V

In this case, we have a result that is similar to Lemma 1:

Lemma3 [f 6 = ¥S(o)W and M is a non-Zeno signal, then, for eacht € R there is € € R>¢
such that Mt = 0 if, and only if, for allt' € [t — €,t) it is also M,t’ = 0.

Note that in 7 = 0 ¥S(g 1)V is false, and, for any € € R~¢, [—¢,0) is not an interval of R,
so the proposition is trivially true.

Then, S formulae can not have singularity points, as they would violate Lemma 3. In addition,
when a S formula changes its value after the origin, it must do so in a left-open manner (i.e.,
the value at the changing point is the same as the one before the changing point). In the origin,
instead, O is false. Then, we have

() = (1o ¥(®)) n (0781, v 10 7)) (12)

Case 6 =P)Y

For formulae P g 1)y we have the following result.

9/15 Volume 66 (2013)

On the Satisfiability of Metric Temporal Logics over the Reals Eﬁ

Lemma 4 Let 6 = P 1)y be a QTL formula; if 0 holds for a signal M in an instant t (i.e.,
M,t |= 0), then there is € € R~ such that, for allt’ € [t — €,t + €] it is also M,t' |= 6.

Note that P)Y is false in 7 = 0, no matter }. As for F formulae, Lemma 4 implies that ¢
can never occur for 6. In addition, by Lemma 4, if 8 holds in the first instant of an interval 7 (i.e.,
T9), it must also hold in the intervals before and after ¢. Then, the following constraint holds:

To=8 AY (5) (13)

Formula (14) states that for 8 to become true with a raising edge in #, Y must also become true
(possibly in a singular manner). This is sufficient if t = 0. If t > 0, there are two cases: either ¥
was never true before ¢ (so it was false in the origin and it stayed so), or the last changepoint of
¥ before ¢ was before r — 1, so the clock associated with 7 that is not reset in ¢ is > 1.

Y Y .
Tee A 0ring<ﬁS(0rigA }’))v \/zg,>1 (14)
. i€{0,1}

Formula (15) states that 0 has a falling edge in ¢ if and only if either + = 0 and there is €
such that y is false in [0, €), or the last time y became true was at ¢ — 1. This corresponds to the
condition (depicted in Fig. 2(b)) that there is a zg, that is 1 in #, and the last time y had a change
point it was zg, = (0 and 7y became false. ¥ can not become true in ¢, or 6 would not have a falling
edge; if Y becomes true in ¢, then 6 has a down-singularity, as specified by Formula (16).

Lo = \/ (zg,z 1A (jA/‘S (IL /\z;,=0>>> v (origa Z) (15)

i€{0,1}

T @_7/?/\ \/ (zg,Zl/\Y<_?A/(S <|1 /\zg,=0/\ﬂ(orig/\ 7)>>> (16)

i€{0,1}

Finally, we introduce the analogous for the eventuality in the past of Formula (9). More
precisely, Formula (17) specifies that if ¥ becomes false and there are no events associated with
v for at least 1 time unit, the CLTL-oc model includes a position in which the clock that is reset
with the falling edge of 7 hits value 1. Formula (17) is necessary to make sure that, if ¥ becomes
false (and it does not become true again for 1 time unit, hence 6 must also become false after 1),
eventually the right hand side of Formulae (15) and (16) holds.

Y . . . Y .
AN L,Az;,=0=>(z%,<l)U<zly=1\/(_T/\0<Zly<l)> (17)
i€{0,1}

Then, for 6 = P g 1)(7), m(0) is (13) A (14) A (15) A (16) A (17).

Proc. AVoCS 2013 10/15

Eg ECEASST

Finally, QTL formula ¢ is initially satisfiable if, and only if, it holds in the first instant of the
interval starting at 0, i.e., inity =1y. Then, for a QTL formula ¢, the corresponding CLTL-oc
formula ¢CLTL is:

$crrL = inity A /\ (genconstrg A G(m(0))). (13)
Ocsub(9)

The next section shows the correctness of the translation.

4 Correctness and complexity of the reduction

To complete the results of this paper, we need to show that a QTL formula ¢ is satisfiable if, and
only if, there exists a pair (7, 0) that satisfies ¢crr, defined by (18).

First of all, we define a correspondence between QTL signals and CLTL-oc interpretations.
Let us consider a finitely variable signal M that is an interpretation for a QTL formula 0; we call
ro(M) the set of CLTL-oc interpretations (7, o) built according to the rules presented below.

Since M is finitely variable, the set of “events” in M for formula 6 is denumerable. Let
T = {ti }reny < R be a denumerable set of time instants such that , <1; < k < j, forall/’ e Ry
there is #; € T such that #; > ¢/, and if ¢ is an instant when at least one event for 8 occurs in M,
then ¢ € T. In the following we say that a clock v is reset at position k when & (k,v) = 0.

If one event among e‘é,eg,s’é or s‘é occurs at 7, € T, the event marker captured by the cor-
responding formula g, Lg, fLg, g holds in m(k); that is, if M,# |= ej, then g holds in

n(k) (hence (6_¢ w(k—1), ge n(k)), and so on. In addition, if M, = ey and M,#; |= 6 (resp.
M, 1t |~ 0), then Tg€ (k) (resp. To¢ m(k)); similarly for the falling edge. By the definition of
events given in Sect. 3, @ has an eventint =0, so o = 0. If in #; € T no events for 8 occur, then

none of { g, Lg, L, e} holds in 7(k) (so e m(k — 1) iff 19, € 7(K)).

For each t; € T where an event for 6 occurs, either zg or zé is reset at k. zg is reset in O;
after 0, clocks are reset modulo 2, i.e., if o(k,z5) = 0, and 6(k',z,) = 0, where i € {0,1} and
k' >k, then there isa k < j <k’ s.t. G(j,zgﬂ) mOdz) = 0. For each clock zj itis o(k+1,z5) =
0 (k,24) + trt1 — by unless zh is reset.

Note that for a given signal M there is more than one possible compatible set T = {t; }en,
and each one corresponds to a different CLTL-oc interpretation (for example, a signal in which
AP = {p} and p is always true is compatible with a set in which #;, = k, with one in which #;, = 2k,
and so on). However, one can show that if two signals M # M, differ for 0 in at least one instant
teR,, rog(My) nrg(M,) = . Then, given a CLTL-oc interpretation (7,0), there is at most
one singla M such that (7,6) € rg(M); hence, we define r, ' (7,)) as the function that, given
a CLTL-oc interpretation, returns the corresponding QTL signal, if any.

Consider a set .# of formulae; with an abuse of notation denote with r# (M) the set of CLTL-
oc interpretations built as above, but considering every event related to the formulae in .%. Given
a formula @, we focus on 7, (4) (M).

Not all CLTL-oc interpretations (7, 0) represent QTL signals, so there are pairs (7, 0) such
that r;l ((m,0)) =L (where L represents that the function is not defined). However, we have the
following results.

11/15 Volume 66 (2013)

On the Satisfiability of Metric Temporal Logics over the Reals Eﬁ

Lemma 5 Ler 6 be a QTL formula and M a signal. For all interpretations (7,0) such that
(m,0)erg(M)itis (r,0),0 = genconstryg.

o
Lemma 6 Let 0 be a QTL formula and (n,6) a CLTL-oc interpretation over 19,0 where time
diverges (i.e., where Y, 0(i) = o). Then, there is exactly one signal M such that (,0) €
ro(M).

From the above results we have that, given a QTL formula ¢, formula /\ 5, (4) genconstreg

captures exactly all CLTL-oc interpretations such that r;ull)(¢)((7T, o)) #1. Then, we have the
following result.

Lemma7 Let M be a signal, and ¢ a QTL formula. For any (,0) € ryp) (M) itis (7, 6),0 =
/Neoesub(¢) BERCONSLTY and for all k e NO € sub(9) it is
(m,0).k = m(6). Conversely, if (7,6),0 = /\gcup(9)genconstrg A G(m(0)) and
M= rs_ull)w)((ir, 0)), then (7,0),k =Ty if, and only if, M ,t; = eg (similarly for the other events),
and 1y€ n(k) if, and only if, Mt |= ¢.

Finally, from Lemma 7 the following theorem descends by observing that signal M is model
for ¢ if, and only if, M,0 |= ¢, which means that in 0 T4 holds.

Theorem 3 Let ¢ be a QTL formula. ¢ is satisfiable if, and only if, ¢crr1, defined by (18) is
satisfiable.

Consider a QTL formula ¢. The translation provided in Sect. 3 introduces, for each 6 €

sub(@), 2 atomic propositions 19,5 and 2 variables z9,z}. All CLTL-oc formulae m(6) have
fixed size. Hence, the size of Formula (18) linearly depends on the size of ¢. [BRS] shows that
satisfiability for a CLTL-oc formula ¢cr1r. is PSPACE in the number of subformulae of ¢cprL
and the maximum constant occurring in it (which is 1 in the case of QTL). Then our translation
preserves the PSPACE complexity of the satisfiability of QTL [HROS5].

5 Some Experimental Results

The reduction of Sect. 3 is implemented in the qtlsolver tool, available from [qtl] and de-
scribed in some further detail in [BRS]. The tool translates QTL into CLTL-oc, which can be
checked for satisfiability by ae?zot, a plugin of the Zot bounded satisfiability checking tool
available from [ae2].

The current implementation of gtlsolver supports various reductions. In particular, it im-
plements a translation from a generalized version of QTL to CLTL-oc. This translation does not
assume any special shape for signals, except that they be finitely variable; it natively supports
operators F ») and G(q) (and their past counterparts). These operators allow us to define con-
cisely MITL operators [AFH96] F, ;, and G, 5, as abbreviations, where bounds can be either
included or excluded. For instance, G(3 6)(¢) is equivalent to Gq 3 (F(073) (G(0,3) (¢)))

We used the gt1lsolver tool to perform satisfiability checks on some examples (see also the

Proc. AVoCS 2013 12/15

Eg ECEASST

tool website [qtl]). Let us briefly introduce a pair of them, the first one taken from an LTL
specification of [PMS12].

Consider a lamp controlled by two buttons, labeled ON and OFF respectively, which can not
be pressed simultaneously. The lamp itself can be either on or off. When ON is pressed the lamp
is immediately turned on, regardless of its current state, while if OFF is pushed then the lamp
is immediately turned off, also regardless of its current state. However, to save energy there is
also a timeout: after ON is pressed, the lamp will not stay on forever, but, if no more buttons are
pressed, it will automatically turn off with a delay A, a positive real constant. Notice that, from
this definition, it follows that by pressing the ON button before the timeout expiration then the
timeout is extended by a new delay A.

We built a QTL specification of the timed lamp that uses atomic propositions on,off and [
representing, respectively, events “push button ON” and “push button OFF” and the state “light
is on”. We introduced constraints that specify that predicates on and off are constrained to be
true only in isolated instants.

On this specification we have carried out three experiments: a check of the satisfiability of the
specification, to show that it is consistent (sat); the (dis)proof of property “the light never stays
on for more than A time units” (p;); the proof of property “if at some point the light stays on for
more than A time units, then there is an instant in which the on button is pressed, and then it is
pressed again before A time units” (ps).!

The behavior of the timed lamp can be captured by the following QTL formula (we write G
for Gyg,e0), and S for Spg)):

G ((I = (—off S on) APy p)(0n)) A (on = —off)) . (19)

As mentioned above, we force on to hold only in isolated instants by adding the following QTL
constraint (similarly for off):

G(ﬂ(on U(07+OO)T) A —(on S(07+OO)T)) . (20)

Properties p; and p; are captured by the following QTL formulae (where F stands for Fjg 1)):

G (Flo.a)(—1)) @1)
F(Goa)(1)) = F(on AFa)(on)). (22)

Table 4 reports the time and space required for the checks outlined above.” All bounded
satisfiability checks have been performed using a bound k& = 20. The first line of each row shows
the total processing time (i.e., parsing and solving) and the time taken by the SMT-solver (both
times in seconds). The second line reports the heap size (in Mbytes) required by Z3. The results
of the checks are the following: the specification is satisfiable, property p; does not hold (the
tool returns a counterexample), while property p, holds (“unsat” is returned).

Finally, we present a behavior that highlights some interesting features of the tool. The behav-
ior is captured by the following formulae, which state that p and g only occur in isolated instants,

!'In all experiments it is A = 5.
2 All tests have been done using the Common Lisp compiler SBCL 1.1.2 on a 2.13GHz Core2 Duo MacBook Air
with MacOS X 10.7 and 4GB of RAM. The solver was z3 4.0.

13/15 Volume 66 (2013)

On the Satisfiability of Metric Temporal Logics over the Reals E}

Problem || Satisfiable? || Time (Total/SMT only) | Memory
sat Yes 4.24/3.04 27.12
P1 Yes 17.2/14.86 63.5
P2 No 257.1/240.88 58.66

Table 4: Experimental results with the timed lamp, reporting Time (sec) and heap size (MB).

with p occurring exactly every 80 time units, and ¢ occurring within 80 time units in the past
from each p (origin excluded).

(G0,30)(—P) = Ggo,160) (—P) A
(

p=Fownp) A (= (ﬁq)UT)> AP A Gogo)(—P) A G,y (P = Pogog) (23)

In this case, the bound k = 10 is enough to prove that the formula is satisfiable and a model is pro-
duced in about 40 secs. In around the same time the solver shows that property G(p = F (g 30)(¢))
holds for model (23) (up to the considered bound), whereas property G(q = F o g)(¢)) does not.
Note that, in Formula (23), the constants involved in the temporal modalities are significantly
larger than the bound k required to obtain a model satisfying the formula. In fact, any value is
possible in principle for the increments of the clocks between two consecutive discrete instants,
controlled by the (nondeterministic) variable 8. This highlights that the length of the intervals
described by a CLTL-oc model is independent of the bound ., as long as this is big enough to
capture all changepoints that are necessary to build a periodic sequence of clock regions.

6 Conclusions

This paper presents a satisfiability-preserving translation from QTL formulae to formulae of the
CLTL-oc logic, which can be solved through SMT solvers. As formulae of other logics such as
QMLO and MITL can be in turn translated into equivalent QTL formulae, our encoding can be
the basis for an effective decision procedure for several interesting logics.

The encoding presented in this paper has been implemented in a prototype tool [qtl]. Pre-
liminary experiments are promising as we were able to solve some simple, yet conceptually
significant, temporal behaviors in a reasonable amount of time. All these examples can be re-
alized by discrete CLTL-oc models of short length, even when the time constants are quite big
(provided the ratio among them is small). The outcome of the procedure is not only sat/unsat,
but also (when applicable) a concrete model satisfying the formula.

Acknowledgements: Work supported by the Programme IDEAS-ERC, Project 227977-SMScom.

Bibliography

[AD94] R. Alur, D. L. Dill. A theory of timed automata. Theoretical Computer Science
126(2):183-235, 1994.

Proc. AVoCS 2013 14 /15

Eg ECEASST

[ae2] Zot: a Bounded Satisfiability Checker. available from zot . googlecode. com.

[AFH96] R. Alur, T. Feder, T. A. Henzinger. The Benefits of Relaxing Punctuality. Journal of
the ACM 43(1):116-146, 1996.

[BFRS11] M. M. Bersani, A. Frigeri, M. Rossi, P. San Pietro. Completeness of the Bounded
Satisfiability Problem for Constraint LTL. In Reachability Problems. LNCS 6945,
pp. 58-71. 2011.

[BKO8] C. Baier, J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[BRS] M. M. Bersani, M. Rossi, P. San Pietro. A Tool for Deciding the Satisfiability of
Continuous-time Metric Temporal Logic. To appear at TIME 2013.

[DDO7] S. Demri, D. D’Souza. An automata-theoretic approach to constraint LTL. Inf. Com-
put. 205(3):380-415, 2007.

[FMMR12] C. A. Furia, D. Mandrioli, A. Morzenti, M. Rossi. Modeling Time in Computing.
EATCS Monographs in Theoretical Computer Science. Springer, 2012.

[HR99] Y. Hirshfeld, A. Rabinovich. Quantitative Temporal Logic. In Computer Science
Logic. LNCS 1683, pp. 172-187. 1999.

[HRO5] Y. Hirshfeld, A. Rabinovich. Timer formulas and decidable metric temporal logic.
Information and Computation 198(2):148 — 178, 2005.

[Mic] Microsoft Research. Z3: An Efficient SMT Solver. http://research.microsoft.com/en-
us/um/redmond/projects/z3/.

[MNPO6] O. Maler, D. Nickovic, A. Pnueli. From MITL to Timed Automata. In Proc. of FOR-
MATS. LNCS 4202, pp. 274-289. 2006.

[MP94] A.Morzenti, P. S. Pietro. Object-Oriented Logical Specification of Time-Critical Sys-
tems. ACM TOSEM 3(1):56-98, 1994.

[PMS12] M. Pradella, A. Morzenti, P. San Pietro. Bounded Satisfiability Checking of Metric
Temporal Logic Specifications. ACM TOSEM, 2012. To appear.

[qtl] gtlsolver. available from gt 1solver.googlecode. com.

[SRHO2] P.-Y. Schobbens, J.-F. Raskin, T. A. Henzinger. Axioms for real-time logics. Theor.
Comput. Sci. 274(1-2):151-182, 2002.

15/15 Volume 66 (2013)

http://zot.googlecode.com
http://qtlsolver.googlecode.com

	Introduction
	Languages
	Reduction of QTL to CLTL-over-clocks
	General Constraints on Clocks and Events
	Semantics of QTL temporal modalities

	Correctness and complexity of the reduction
	Some Experimental Results
	Conclusions

