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Abstract:

Large public data sets on software evolution promise great value to both researchers
and practitioners, in particular for software (development) analytics. To realise this
value, the data quality of such data sets needs to be studied and improved. Despite
these data sets being of a secondary nature, i.e., they were not collected by the people
using them, data quality is often taken for granted, casting doubt on conclusions
drawn from those data. This paper reports on an intial investigation of the quality
of the software evolution data available on Ohloh, and further describes steps taken
to cleanse the data set. Our goal is that other researchers, practitioners, and parties
responsible for data sets such as Ohloh, use the outcomes of the validation and
cleansing steps to improve quality of data sets in the public domain.

Keywords: Software evolution, Data quality, Open source software

1 Introduction

In recent years, the software evolution research community has gained access to a growing num-
ber of large public data sources on (open source) software projects. These data sources are now
the subject of many research projects, as witnessed by papers at several international conferences
such as MSR, CSMR, and WCRE. Furthermore, new fields of study and application are emerging
around the study of these data sources, such as software development analytics [MZ12].

An overarching problem with software evolution data sources is the fact that many data are of
a secondary nature, that is, they were not collected by the same party that wishes to study them.
For instance, the PROMISE data set [MCH™ 12] contains data on defects observed on software
at various organisations (such as NASA), but researchers external to those organisations are
using such data sets in their studies. Instead of dealing with secondary data, one could obtain
source artifacts (e.g., source code, version control records, mailing lists) and perform one’s own
data collection and processing. An example tool to support this approach is GHTorrent [GS12],
which basically allows a researcher to obtain a mirror of projects on GitHub. Given that software
projects number in the order of millions, and given the great diversity in programming languages
and other factors [NZB13][ZMZ™" 13], such an approach will not be feasible or desirable for every
software evolution researcher. Some researchers will therefore have to deal with the secondary
nature of their data by, for instance, installing more explicit data quality controls [Shel1].

This paper reports on our study of Ohloh [Blal3b], which is best described as a large-scale on-
line index and analytics platform for open source projects. At the time of writing about 600,000
projects are indexed on Ohloh. Each indexed project on Ohloh has its own page with project

1/15 Volume 65 (2014)


mailto:M.Bruntink@uva.nl

An Initial Quality Analysis of the Ohloh Software Evolution Data Eﬁ

meta-data, coupled with numerical data on its evolution. Examples of data are monthly numbers
of lines of code, churn, number of commits, contributors, and so on. These data are the result
of analyses done by Ohloh (hence, secondary data) based on a project’s source code and version
control records. The data can be accessed on the Ohloh website through pre-defined visualisa-
tions, or by using the REST API. The latter method offers access to more fine grained data. The
data set used as the starting point in this paper was introduced in our earlier work [Brul3b].

For software evolution researchers and practitioners in software analytics, an easily accessible
data source such as Ohloh would be of great value. Other research projects are indeed making
use of Ohloh, such as Nagappan et al. [NZB13], Deshpande et al. [San], Arafat et al. [AR09], and
Sands [DROS8]. However, since from the viewpoint of external researchers, the data on Ohloh is
secondary in nature, a necessary first step is to analyse the data from the perspective of quality.
Our aim is to raise attention to this particular issue of data quality, and obtain a cleansed data set
that is useable to other researchers.

In this paper we make the following contributions:

e First, we follow the approach outlined by Shepperd et al. in [SSSM13] by analysing the
data for missing, implausible, and inconsistent values (Section 3). This approach consists
of applying internal sanity checks to identify possible quality issues. In the future this
approach needs to be complemented by external quality checks that compare to other data
sets.

e Second, we use our findings to cleanse the data set of cases that are problematic, and report
on the resulting cleansed data set (Section 4).

The paper is structured as follows. Section 2 first covers related work, Section 3 then describes
the steps taken to collect and validate the data. Section 4 reports on cleansing the data set based
on the validation results. Finally, Section 5 concludes the paper.

All data sets used in our study, and all software developed to handle the data, are available
online at our GitHub project OhlohAnalytics project [Brul3a]. Replication details can be found
in Appendix A.

2 Related work

Software evolution data sets. The (quantitative) study of (open-source) software repositories
has been going on for quite some time, leading to a rich body of literature. Surveys of the
field have been provided by Kagdi et al. in 2007 [KCMO07] and Hassan in 2008 [HasO8]. A
recent overview (2011) of the OSS ecosystem is being provided by Androutsellis-Theotokis et
al. in [ASKGI11]. Examples of large software engineering data sets that are publicly available are
GHTorrent [GS12], PROMISE [MCH™ 12], FLOSSmetrics [GRD10], FLOSSmole [HCCO06],
Qualitas Corpus [TAD " 10], and Ohloh [Bla13b], but even more are available. A recent overview
of public data sets is given by Rodriguez et al. in [RHH12].

Ohloh. Other researchers are also studying the data offered by Ohloh. Recently, Nagappan et
al. [NZB13] used the Ohloh data set for defining a method to quantify the representativeness of
empirical studies (on OSS projects). In 2008, Deshpande and Riehle reported on an investigation
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into the total size and growth of the OSS ecosystem using Ohloh [DRO8]. Also using Ohloh,
Arafat and Riehle reported on the distribution of commit sizes [AR09].

Data quality in software engineering. Recent work that concerns data quality of software
engineering data sets (the NASA software defect data in this case) has been done by Shepperd
et al. [SSSM13]. In this paper we follow the categories of quality checks (missing, implausible,
and inconsistent values) described in Shepperd’s work. He also calls to action on the topic of
data quality in software engineering in general [Shell]. Liebchen (a student of Shepperd’s)
wrote a dissertation on the topic of data quality in software engineering, in particular from the
perspective of identifying and handling noise [Liel0]. Rodriguez et al. discuss quality issues in
public software data sets, in particular from the perspective of machine learning [RHH12].

Software analytics. Software analytics is a term recently introduced by Zhang et al. [ZDL " 11]
(among others) to label research aimed at supporting decision making in software [MZ]. Our
work in this paper can be seen as supporting the field of software analytics. Work that is closely
related to ours has been done by Herraiz. He studied the statistical properties of software evolu-
tion data available on SourceForge and the FreeBSD package base [HT08]. We see our work as
a follow-up in terms of scope and diversity, since by studying Ohloh, we use a larger and more
diverse data source (which does not primarily focus on C). Zhang et al. [ZMZ" 13] recently stud-
ied the influence of context variables such as programming language, project age, and so on, on
software evolution metrics. In our exploration of the Ohloh data, we use programming language
as the main context variable to group the data. Zhang et al. identify programming language
as the context variable influencing the most metrics, supporting our choice. Nevertheless, other
context variables investigated by them are also influential and should be investigated further in
the future.

3 Data collection and quality analysis

This section describes the three steps we performed in order to investigate the quality of our
Ohloh data set: collection, validation and cleansing. For each step, we present the resulting
numbers on the data. Appendix A describes how the research results can be obtained and repli-
cated.

3.1 Data collection

The data set was collected in July 2013 from Ohloh [Blal3b], an open-source software index and
analytics platform. Generally these data consist of a monthly aggregate resulting from analysis
(done by Ohloh) of the source code and the version control system(s) of an OSS project. In
total, data were collected for 12,360 OSS projects, resulting in a grand total of 828,312 project
months. The projects have been selected according to Ohloh’s measure of project popularity in
descending order (number of users of a project as declared by users of Ohloh). The cut-off point
at 12,360 was imposed on our data collection process due to time constraints and reaching a file
count limit in our programming environment (Eclipse). Future data collection could collect more
projects given some changes in the collection tools.

The data collection was initiated by obtaining a list of project names from Ohloh’s REST API.
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Feature Description

Identification

Project name The name of the project for identification purposes.
Year The calendar year that the data belong to.

Month The calendar month that the data belong to.

Core features
Lines Of Code (LOC): Total, Added, Deleted

Blanks: Total, Added, Deleted

Comments: Total, Added, Deleted
Comment Ratio

Commits: monthly and Cumulative

Lines of code total at the end of Month, based on all
source text configured for the project in any
programming language. Added and Deleted counts
are derived from commits in Month.

As LOC, but for lines containing only blanks
(whitespace).

As LOC, but for lines containing only comments.
The proportion of comment lines from the total
non-blank lines (code + comments) in Month.

The number of commits performed in Month, and the
cumulative number of commits since the start of the
project.

Contributors The number of people that made at least 1 commit in
Month.

Man Months An estimate of the effort applied since the start of the
project. This estimate is the running total of the
monthly contributors number.

Meta data

Main programming language

Last update time

The most used programming language for the project
to which this Month belongs, as measured using LOC
in the month of data collection, i.e. July 2013. In
other words, all the months of a project are assigned
the same main programming language, being the last
main programming language Ohloh identified for that
project.

The date at which a project was last analysed by
Ohloh.

Table 1: Definition of the features of the data set collected from Ohloh, as described in Sec-

tion 3.1.
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Figure 1: Histograms of the projects in the data set before cleansing. The left-hand side his-
togram shows the usage of the 6 version control systems supported by Ohloh. The right-hand
side histogram shows the the 10 most frequent (out of 76) main programming languages.

Subsequently, per project 4 queries are done to obtain 4 separate XML files that contain data.
The XML files from Ohloh contain the following data:

e MetaData.xml: Includes a project description, site URLs, creation and update dates, user
count, user supplied tags (keywords), programming language use, among others.

e Enlistments.xml: The projects’s configuration of version control systems that should be
included in Ohloh’s code analysis. In July 2013, Ohloh supported the following version
control systems: Git, Mercurial, Bazaar, Subversion, and CVS. All types of version control
systems occur in the data set.

e SizeFacts.xml: Monthly statistics on size of the projects source code: lines of code (source
text excluding comments and white space), lines of comments, blank lines. Ohloh in-
cludes all of a project’s source code in calculating its statistics: code in all programming
languages recognised by Ohloh’s code counting tool Ohcount. This tool is available as an
open source project [Blal3a]. Normally, every month of data is available since the project
started using the enlisted version control system(s).

o ActivityFacts.xml: Monthly statistics on changes to the project’s source code: added or
removed lines of code, comments and blanks, number of commits to the version control
systems used by the project, and the number of contributors (users performing the com-
mits). Normally, every month of data is available since the project started using the enlisted
version control system.

When talking about the data set in the remainder of this paper we will use the following
(common) terminology:
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Projects

Projects collected from Ohloh API 12,360
Projects with an improper version control configuration 1,377
Projects with non-consecutive monthly data 0
Projects without any data 29
Projects remaining 10,954

Values in core features (see Table 1)

Total number of values 11,000,640
Missing values 115,078
Implausible values 2,694
Cases (project-months)

Total number of cases 785,760
Cases with missing values 20,375
Cases with implausible values 1,213
Cases with inconsistent features 452,730

Table 2: Overview of the data validation steps described in Section 3.2.

o Feature. A dimension of the data set, also typically called a variable or column. A case
(see below) either holds a value for a feature in the data set, or the special identifier ‘NA’,
which indicates a missing value.

e Case. A data tuple, or row, of the data set. In our data set each case is uniquely identified
by its combination of its project name, year and month features. A case thus represents a
calendar month of development for a project in a calendar year.

e Value. An individual number or other type of value that a case contains for a feature.

The XML files obtained from Ohloh are processed resulting in the data features defined in
Table 1. Note that the size and activity features have been joined together (on the primary
data key formed by the Project name, Year and Month). If some features are missing for a
case, special identifiers (‘NA’) are inserted instead. If all size and activity facts are missing,
the project is reported missing altogether (see the data validation process in Section 3.2. All
processing and storage of data is handled by software developed using the meta-programming
language Rascal [KSV09] and the statistics environment R [R DOS].

3.2 Data validation

Before actual validation started, the cases per project were truncated to the cases that represent
complete months. This was done by comparing the ‘Last update time’ to the ‘Year’ and ‘Month’
features of each case. When ‘Last update time’ falls within a case (or theoretically, lies before
a case), that case does not represent a completely analysed month yet, and the case is excluded
from the data set.

Several steps of data validation were performed to study the quality of the data. Table 2 gives
a numerical overview of the outcomes. Here we describe the validation steps we performed,
inspired by the data quality analysis done by Shepperd et al. in [SSSM13], and further guided
by known issues of the Ohloh data set. Instead of cleansing the data set of problematic data once
we identify them, we only mark the data as such. This allows us to first report on the data quality
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Feature Missing values  Implausible values
LOC 18,060 639
Blanks 18,060 699
Comments 18,060 942
Comment ratio 19,746 414
LOC Added 629 0
LOC Deleted 629 0
Comments Added 629 0
Comments Deleted 629 0
Blanks Added 629 0
Blanks Deleted 629 0
Commits 629 0
Cumulative commits 18,060 0
Contributors 629 0
Man months 18,060 0

Table 3: Outcomes of the missing and implausible checks described in Section 3.2. The numbers
presented here are for the 10,954 projects that have a proper version control configuration and a
non-empty set of consecutive monthly data.

Inconsistent features check (shown as logical formula) Failing cases  Uncheckable cases
LOC #0 VvV Blanks # 0 Vv Comments # 0 1,645 0
LOC = LOC (prev. month) + Added — Deleted 87,984 29,503
Blanks = Blanks (prev. month) + Added — Deleted 82,525 29,503
Comments = Comments (prev. month) + Added — Deleted 78,566 29,503
Commits = 0 A (LOC Added # 0 V LOC Deleted # 0) 0 629
Commits = 0 A (Comments Added # 0 Vv Comments Deleted # 0) 0 629
Commits = 0 A (Blanks Added # 0 V Blanks Deleted # 0) 0 629
Comment Ratio = Comments / (Comments + LOC) 0 19,746
Cum. commits = Cum. commits (prev. month)  + Commits 92,866 29,503
Man months = Man months (prev. month) + Contributors 451,304 18,689

Table 4: Outcomes of the consistency checks described in Section 3.2. The numbers presented
here are for the 10,954 projects that have a proper version control configuration and a non-empty
set of consecutive monthly data. The Comment Ratio check first rounds the numbers to 10
decimal places.
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issues of the raw data set, and then later provide a cleansed version. All versions of the data set,
i.e. the raw version, the version with marked data, and the cleansed version are available at our
GitHub project OhlohAnalytics.

Problematic SVN configurations. The first step consists of checking for a known issue with
the Ohloh data: Projects that use the SVN version control system', while instructed by Ohloh to
only configure those code directories that represent active and unique developments, sometimes
list the projects’s top-level SVN directory. The consequence is that all project branches and
tagged versions are also included in Ohloh’s analysis, in turn leading to many potential duplica-
tions and inflated metrics. We use a heuristic approach to check the SVN enlistments (Ohloh’s
term for code locations) of a project against a list of patterns that are ‘safe’ to use. This list is
provided in Appendix B.

Missing data. Second, data missing from the data set are identified. This problem can occur
at multiple levels. On the project-level, some projects can be missing all size or activity data
despite being accessible through the Ohloh API. These are easily identified by our processing
code because the XML files are missing or empty. On the case-level this issue is more subtle.
If some features are missing for a case, the processing code will have inserted ‘NA’ identifiers
instead of normal data values. More troublesome is the issue that entire cases could be missing
for a project. We utilise the following definition: a project’s data set is complete if it contains
consecutive cases in time from its earliest case up to its last case. In other words, no months are
allowed to be missing in between a project’s appearance and disappearance. The weakness of
this definition is that we do not validate if the project has been active before (or after) it appeared
in the Ohloh data. This could only be done accurately by including data from other data sources
on the same projects.

Implausible data. Third, we check whether any of the individual data values are implausible.
Since most of the values in our data set are counts (except the Comment Ratio, which is a ratio
between two counts and hence also expected to be positive), an obviously implausible value
would be a negative number. Other types of implausible values have not been checked for at this
point. Shepperd et al. [SSSM13] suggest also checking whether counts have non-integer values,
and checking whether LOC is 0. In our case non-integer values for count features would be
flagged by the type systems of both Rascal and R. There are no such occurrences to report. We
also check for 0 values for LOC, but combined with O values for both Blanks and Comments.
This check is a bit of a special case since it does not check an individual value. We choose to list
it as a cross-feature consistency check (discussed next).

Inconsistent data. Finally, a number of cross-feature consistency checks have been applied:

e Cases where the LOC, Blanks, and Comments features are all 0. These are cases where a
project may still exist on Ohloh, but no actual source text seems to be present (anymore).
Either the project has been terminated, or the data analysis done by Ohloh is erroneous.

e Cases where this month’s values for LOC, Blanks, and Comments do not equal the sum
of previous month’s values and the monthly churn as measured by the respective Added
feature minus the Deleted feature.

! Indicated by either ‘SvnRepository’ or ‘SvnSyncRepository’ in Ohloh’s data on the enlistments —or source code
locations— supplied for a project.
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e (Cases where there are no commits in a month, but still changes are visible in LOC, Com-
ments or Blanks.

e Cases where the Comment Ratio value does not equal the proportion of Comments from
the sum LOC and Comments (all numbers rounded to 10 decimal places).

e Cases where this month’s cumulative value for Commits does not equal the sum of previ-
ous month’s value and this month’s Commits value.

e Cases where this month’s Man Months value does not equal the sum of previous month’s
value and this month’s Contributors value.

The results of the data validation steps are reported in Tables 2, 3, and 4. The numbers in
the tables are for the 10,954 projects that have a proper version control configuration and a non-
empty set of consecutive monthly data. Note that cases may appear more than once among the
missing and implausible value counts and the inconsistent features counts.

In some cases inconsistent feature checks could not be performed, as reported under ‘Uncheck-
able cases.” This is due to either missing values (e.g., if LOC is missing, the consistency checks
for LOC or the Comment Ratio cannot be done), or the presence of 0 values (e.g., where the
Comment Ratio would be infinite). Where the consistency checks include a reference to a pre-
vious month’s value, another reason for uncheckable cases exists. The very first month of each
project has no previous month, by definition. Since ‘Projects with non-consecutive monthly data’
is 0, this means the number of uncheckable cases due to this reason is equal to the number of
projects (10,954).

3.3 Data quality observations

The validation outcomes in Tables 2, 3, and 4, show that the Ohloh data set is not without
flaws. Some of these problems were known to exist beforehand, however without a quantitative
estimate of their impact. First, improper SVN configuration for some projects was a problem
raised earlier on Ohloh’s user forums. From our data we learn that 11% of the projects could
have this problem, which we therefore excluded from our collected data. Since the number
of projects involved forced us to use a heuristic approach, this problem calls for a fix at the
source. Automatic verification of user submitted version control configurations, e.g., detection
of duplicated directory trees, would probably prevent many instances of this problem.

Second, the occurrence of 2,694 (0.02%) negative values for features that are counts (i.e. LOC,
Blanks, Comments and the derivative feature Comment ratio), is rather surprising. A closer look
reveals that these implausible values occur in 65 projects, in 12 different programming languages,
and ranging in time from 1999 to 2013. It thus appears that the cause of this problem has not
been repaired yet.

Looking at missing values (1%), we see that in particular values in the size features (i.e. LOC,
Blanks, Comments, and Comment ratio) are missing often, together with the features Cumulative
commits and Man months. Missing values are problematic in their own right (see [Moc08] for
an overview) due to coping strategies possibly introducing selection biases, and furthermore,
missing values result in cases where consistency checks could not be applied. Another reason
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consistency checks sometimes cannot be applied is that data is missing by definition, i.e. in the
first month of a project, there is no data on the previous month. Other missing values are likely
due to faults in automatic analyses, like failing code collection or analysis.

Moving on to consistency issues, we first observe that the Man months and Contributors fea-
tures seem particularly problematic, as more than 50% of the cases hold an inconsistent value.
We therefore decided to drop this feature entirely. Furthermore, we observe the high frequency
of cases (around 10%) that fail the consistency checks for the deltas on LOC, Comments and
Blanks (from SizeFacts.xml) compared to the difference between Added and Deleted features
(from ActivityFacts.xml). At his point we can only speculate on the cause(s) of these failed
checks. It is however clear that implementing consistency checking in the Ohloh analyses would
identify such issues earlier if they appear again in the future.

4 Data cleansing

The data validation step resulted in an annotated version of the data set, where boolean features
were added to indicate whether a quality problem exists for a each case. Given an annotated data
set like this, cleansing the data is a straightforward process. The strategy of cleansing applied
here is described by Mockus in [Moc08] casewise deletion, and as a “quick-fix technique that
may yield biased or inconclusive results” (abridged). We therefore consider this a speculative
step that requires further investigation from a statistical perspective.

The following steps are applied:

1. Removing features. Inspecting the results in Table 4 it is clear that the Man Months
feature has a problem, as for 57% of the cases the values are not consistent. We decided to
drop the Man Months feature from the data set.

2. Deleting cases. Cases that were inconsistent because of the Man Months feature have not
been deleted (for that reason), as we decided first to remove the Man Months feature from
the data set entirely. After removing features, cases that have missing values, implausible
values, or inconsistent features are deleted.

4.1 The cleansed data set

Cleansing has resulted in a data set that holds 85% of the original cases, as is shown by Table 5.
Note that due to the deletion of cases during the cleansing process, 4,393 projects now no longer
have consecutive monthly data. 143 projects disappeared completely due to the removal of all
their cases.

Figures 2 and 3 show the impact of cleansing on the number of projects per version control
system, and main programming languages, respectively. In particular projects using SVN (and
SVN sync) repository types have been removed from the data set. In the validation process we
found that for 1,377 (see Table 2) projects the SVN configuration could not be trusted to exclude
branches and tagged versions, potentially leading to double counts.

Figure 3 shows that cleansing removed projects for all of the 10 most frequent main program-
ming languages. It does not appear that a particular language is more prone to quality issues, but
more analysis would be required to confirm this.

Proc. SQM 2014 10/15
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Projects % of initial
Projects in the cleaned data set 10,811 87%
Projects with non-consecutive monthly data 4,393 -
Cases and values % of initial
Number of cases after cleansing 671,570 85%
Number of values after cleansing 8,730,410 79%

Table 5: The data set after the cleansing process, as described in Section 4. Due to the deletion
of cases during the cleansing process, 4,393 projects no longer have consecutive monthly data.
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Figure 2: Histogram of the usage of the 6 version control systems supported by Ohloh by projects
in our data set, before cleansing (left-hand side bars) and after cleansing (right-hand side bars).

Mockus [Moc08] recommends utilising other cleansing techniques (than casewise deleting)
when more than 10% of cases are suffering from missing data. In our data set, we are dealing
not only with missing data, but also data that is suspect from a consistency point of view, or
clearly wrong (e.g., negative counts). Our foremost goal is the improvement of this data set,
therefore our findings have been shared with the Ohloh development team. Most data quality
issues reported here are probably caused by flaws in automatic analyses, calling for a fix at the
source instead of more elaborate cleansing techniques. However, in future work we also aim to
study the use of other cleansing techniques on software evolution data sets in general.

5 Conclusion

To conclude, we summarise the two main contributions of the paper and give suggestions for
future work. The paper made the following contributions:
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Figure 3: Histogram of the 10 most frequent (out of 76) main programming languages in the data
set, before cleansing (left-hand side bars) and after cleansing (right-hand side bars).

e The analysis of data collected from Ohloh from the perspective of data quality (Section 3).
e The description of a cleansed version of the Ohloh data set. (Section 4).

The main goal of this research is to support a community effort to rigorously and transparently
document data quality of public data sets. The data sets and processing tools used in this research
are therefore available for replication (see Appendix A). The findings of this paper were shared
with the Ohloh development team, which resulted in a request for further clarification and an
indication that the team would review the results. At the time of camera-ready submission of this
paper, no further response from Ohloh has been received.

5.1 Future work

We suggest the following next steps for research. First, since analysing one data set in isola-
tion is limited to internal plausibility and consistency checks, further steps should be made by
triangulating, or cross-validating, findings between data sets. Examples of such data sets are
FLOSSmole [HCCO06], FLOSSmetrics [GRD10], or GHTorrent [GS12].

Second, we recommend data source providers to use our quality findings to improve their data
quality, for example by implementing automatic preventative quality checks. Examples of such
checks are verification of version control configurations, and plausibility and consistency checks
as described in this paper.

Finally, the statistical impact of cleansing data sets needs to be documented concretely to
understand the consequences of using such data sets. Different cleansing strategies could be
chosen, e.g., deletion, imputation, multiple imputation [Moc08], each with their own impact of
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the data set. Ideally, each data set that is available will be accompanied with a bill-of-materials
describing, among others, the consequences of the applied cleansing process.

Acknowledgements

Thanks to Tijs van der Storm for critical proofreading of this paper, and several reviewers for
their constructive comments.

Bibliography

[ARO09]

[ASKG11]

O. Arafat, D. Riehle. The commit size distribution of open source software. In Pro-
ceedings of the 42nd Hawaii International Conference on System Sciences. Pp. 1-8.
IEEE, 2009.

S. Androutsellis-Theotokis, D. Spinellis, M. Kechagia, G. Gousios. Open source
software: A survey from 10,000 feet. Foundations and Trends in Technology, Infor-
mation and Operations Management 4(3-4):187-347, 2011.

[Blal3a]  Black Duck Software, Inc. Ohcount. 2013.
https://github.com/blackducksw/ohcount

[Blal3b]  Black Duck Software, Inc. Ohloh. 2013.
http://www.ohloh.net

[Brul3a] M. Bruntink. OhlohAnalytics data set and analysis tools. 2013.
http://github.com/MagielBruntink/Ohloh Analytics

[Brul3b] M. Bruntink. Towards Base Rates in Software Analytics. Science of Computer Pro-
gramming, to appear, preprint available, Oct. 2013.

[DROS] A. Deshpande, D. Riehle. The total growth of open source. Open Source Develop-
ment, Communities and Quality, pp. 197-209, 2008.

[GRD10] J. M. Gonzéilez Barahona, G. Robles, S. Dueiias. Collecting data about FLOSS de-
velopment. In Proceedings of the 3rd International Workshop on Emerging Trends
in FLOSS Research and Development. Pp. 29-34. ACM Press, 2010.

[GS12] G. Gousios, D. Spinellis. GHTorrent: Github’s data from a firehose. In Proceed-
ings of the 9th Working Conference on Mining Software Repositories (MSR 2012).
Pp. 12-21. 2012.

[Has08] A. E. Hassan. The road ahead for mining software repositories. In Proceedings of
the 24th IEEE International Conference on Software Maintenance, Frontiers track.
Pp. 48-57. 2008.

13/15 Volume 65 (2014)


https://github.com/blackducksw/ohcount
http://www.ohloh.net
http://github.com/MagielBruntink/OhlohAnalytics

An Initial Quality Analysis of the Ohloh Software Evolution Data Eﬁ

[HCCO06]

[HTO8]

[KCMO7]

[KSV09]

[Liel0]

[MCH*12]

[Moc08]

[MZ]

[MZ12]

[NZB13]

[R DO8]

[RHH12]

J. Howison, M. Conklin, K. Crowston. FLOSSmole: A collaborative repository for
FLOSS research data and analyses. International Journal of Information Technology
and Web Engineering 1:17-26, 07 2006.

I. Herraiz Tabernero. A statistical examination of the properties and evolution of
libre software. PhD thesis, Madrid, Oct. 2008.

H. Kagdi, M. L. Collard, J. I. Maletic. A survey and taxonomy of approaches for
mining software repositories in the context of software evolution. Journal of Soft-
ware Maintenance and Evolution: Research and Practice 19(2):77-131, 2007.

P. Klint, T. van der Storm, J. Vinju. RASCAL: A Domain Specific Language for
Source Code Analysis and Manipulation. In Proceedings of the 9th IEEE Interna-

tional Working Conference on Source Code Analysis and Manipulation. Pp. 168—
177.20009.

G. A. Liebchen. Data cleaning techniques for software engineering data sets. PhD
thesis, Brunel University, School of Information Systems, Computing and Mathe-
matics, 2010.

http://dspace.brunel.ac.uk/handle/2438/5951

T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, B. Turhan. The
PROMISE Repository of empirical software engineering data. June 2012.
http://promisedata.googlecode.com

A. Mockus. Missing Data in Software Engineering. In Shull et al. (eds.), Guide to
advanced empirical software engineering. Pp. 1-16. Springer, 2008.

T. Menzies, T. Zimmermann. Software Analytics: So What? [EEE Software
30(4):0031-37.

T. Menzies, T. Zimmermann. Goldfish bowl panel: software development analyt-
ics. In ICSE 2012: Proceedings of the 2012 International Conference on Software
Engineering. IEEE Press, June 2012.

M. Nagappan, T. Zimmermann, C. Bird. Diversity in Software Engineering Re-
search. In Proceedings of the 9th joint meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering. ACM, Aug. 2013.

R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2008.
http://www.R-project.org

D. Rodriguez, I. Herraiz, R. Harrison. On software engineering repositories and
their open problems. In Proceedings of the First International Workshop on Real-
izing Artificial Intelligence Synergies in Software Engineering. Pp. 52-56. IEEE,
2012.

Proc. SQM 2014 14 /15


http://dspace.brunel.ac.uk/handle/2438/5951
http://promisedata.googlecode.com
http://www.R-project.org

Eg ECEASST

[San] R. Sands. Measuring Project Activity.
http://meta.ohloh.net/2012/04/measuring-project-activity/

[Shell] M. Shepperd. Data Quality: Cinderella at the Software Metrics Ball? In Proceedings
of the 2nd International Workshop on Emerging Trends in Software Metrics. ACM,
2011.

[SSSM13] M. Shepperd, Q. Song, Z. Sun, C. Mair. Data Quality: Some Comments on
the NASA Software Defect Datasets. IEEE Transactions on Software Engineering
39(9):1208-1215, 2013.

[TAD*10] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, J. Noble.
Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies. In 2010
Asia Pacific Software Engineering Conference (APSEC2010). Pp. 336-345. 2010.

[ZDL"11] D. Zhang, Y. Dang, J.-G. Lou, S. Han, H. Zhang, T. Xie. Software analytics as
a learning case in practice: Approaches and experiences. In International Work-

shop on Machine Learning Technologies in Software Engineering. Pp. 55-58. ACM,
2011.

[ZMZ*13] F.Zhang, A. Mockus, Y. Zou, F. Khomh, A. E. Hassan. How does Context affect the
Distribution of Software Maintainability Metrics? In Proceedings of the 29th IEEE
International Conference on Software Maintainability. 2013.

A Replication

For replication of the research in this paper, the GitHub repository OhlohAnalytics [Brul3a]
should be cloned using the tag ‘SQM2014-REVIEW’. All data and developed tools are included.
Detailed instructions for replication are provided on the repository’s Wiki page.

B Details on validating SVN configurations

The following (case insensitive) regular expressions were used to identify properly configured
SVN code directories. If none of the expressions can be matched on the SVN URL enlisted for
the project, it is likely all project branches and tags are included in Ohloh’s analysis:

e .x/trunk/?

e .x/head/?

e .x/sandbox/?

o .x/site/?

e .x/branches/\w+

e .x/tags/\w+
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