
Electronic Communications of the EASST
Volume 65 (2014)

Proceedings of the
International Workshop on

Software Quality and Maintainability
(SQM 2014)

Analyzing Gerrit Code Review Parameters with Bicho

Jesus M. Gonzalez-Barahona*, Daniel Izquierdo-Cortazar†, Gregorio Robles*, Alvaro del
Castillo†

12 pages

Guest Editors: Lodewijk Bergmans, Tom Mens, Steven Raemaekers
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Analyzing Gerrit Code Review Parameters with Bicho

Jesus M. Gonzalez-Barahona*, Daniel Izquierdo-Cortazar†, Gregorio Robles*,
Alvaro del Castillo†

* GSyC/LibreSoft, Escuela Tecnica Superior de Ingenieria de Telecomunicacion, Universidad
Rey Juan Carlos (Madrid, Spain) † Bitergia (Madrid, Spain)

Abstract: Code review is becoming a common practice in large scale software de-
velopment projects. In the case of free, open source software projects, many of them
are selecting Gerrit as the system to support the code review process. Therefore, the
analysis of the information produced by Gerrit allows for the detailed tracking of
the code review process in those projects. In this paper, we present an approach to
retrieve and analyze that information based on extending Bicho, a tool designed to
retrieve information from issue tracking systems. The details of the retrieval pro-
cess, the model used to map code review abstractions to issue tracking abstractions,
and the structure of the retrieved information are described in detail. In addition,
some results of using this approach in a real world scenario, the OpenStack Gerrit
code review system, are presented.

Keywords: Code review; software maintenance; software development;

1 Introduction

Code review is an accepted practice to improve the quality of software [BB01]. It contributes to
the quality of the code, by detecting defects before they enter the production code base [ML09,
MBR13], and checks the adherence of proposed changes to the specific policies and general ar-
chitecture of the project. But it also introduces extra work for experienced developers [HKY+13],
and extra delays in time-to-deploy, which is an important metric for continuous deployment
projects. Tracking the performance, timing, people involved and other parameters of code re-
view becomes fundamental to detect bottlenecks, need of resources, or just to detect troublesome
trends.

Many large, free, open source software (FLOSS) projects are quickly adopting peer code
review as a part of their development policies [RGS08]. And many of them are using Gerrit1 as
the system to support the review process. In those projects, the Gerrit repository hosts all the
information needed to track code review. Gerrit itself provides both a web interface and an API
to select reviews according to different criteria, and interact with them.

The data handled by Gerrit can be massive. For example, for Havana, the latest stable release
of OpenStack, more than 21,000 code review processes were started over a period of 6 months,
about 115 per day. For each of them, all the changes in state until the review were accepted or
declined are recorded, usually after several iterations between several reviewers and the author.
This wealth of information can be used to track in detail the parameters that characterize the
review process, and to understand how it is performing.
1 http://code.google.com/p/gerrit/

1 / 12 Volume 65 (2014)

http://code.google.com/p/gerrit/


Analyzing Gerrit Code Review Parameters with Bicho

Code review support systems such as Gerrit can be understood as specialized issue tracking
management systems. Each code review process can be modeled as a ticket (issue), moving
through different states as one or more code patchsets are proposed, reviewed, approved, rejected,
resubmitted, etc. In the work described in this paper, we take advantage of this fact to extend
a tool designed to retrieve information from issue tracking systems to also retrieve information
from Gerrit.

The extended tool is Bicho, a part of the MetricsGrimoire toolset2. Bicho has a modular
architecture, with several backends to retrieve information from the issue tracking systems most
popular in FLOSS projects, and a common frontend that produces an SQL database with the
retrieved data, in a format which is partially common for all of those systems. A Gerrit backend
has been built, which produces the same format for code reviews, modeling them as tickets, thus
reusing a large part of the code.

To test the usefulness of the approach, we have used this extended version of Bicho to analyze
the Gerrit system of the OpenStack project, designing queries on the produced SQL data to obtain
some of the the most relevant parameters of the OpenStack review process.

The structure of the rest of this paper is as follows. The next section describes the common
workflow with Gerrit. Section 3 presents the Bicho tool and its database schema, which will
be important to understand how information in code review systems can be mapped to it. After
that, Section 4 shows the details of how code review can be modeled as an issue tracking system.
Section 5 presents how this was done in the case of Gerrit, so that Bicho could be extended
to support it. The paper ends with some examples of the use of the data retrieved from the
OpenStack Gerrit repository in Section 6, and some conclusions and further work in Section 7.

2 Code review with Gerrit

Code review typically involves a developer submitting a proposed change to the source code
of the project, and one or more developers reviewing that change. In the case of Gerrit, the
change comes in the form of a “patchset”, a set of patches to files in the source code repository.
Reviewers may accept the patchset as such, or ask for a new, enhanced patchset addressing their
comments, in an iterative process.

If the patch is accepted, it is later automatically merged with the development branch, becom-
ing a part of the code base. If it is not accepted as such, usually a new patchset is required. If no
new patchset is provided during a certain period, usually the code review is removed from the
active queue, and is no longer considered. When a new patchset is submitted in the context of
an existing code review, it is again reviewed with the same possible outcomes, until it is finally
approved or the period for submitting a new patchset ends without submission.

In some projects, there is a special kind of reviewers, core reviewers, who have the exclusive
right to accept changes to the code base. In this case, only when they signal their acceptance, the
code review is finally accepted.

There are several variations of how Gerrit can be used for code review. In our case, we will
focus on the practices of the OpenStack project, since it will be used in the examples provided
later. In this case, the review process is divided into three steps: verification of the patchset, code

2 http://metricsgrimoire.github.io

Proc. SQM 2014 2 / 12

http://metricsgrimoire.github.io


ECEASST

review and approval of the change.
The verification of the patchset is intended for automatic tools to check that it compiles, com-

plies with coding style, etc. If the verification step fails, the code review gets a -1, meaning that
the developer should submit a new patchset fixing the detected errors.

When the verification step is passed, the review step starts. During it, any developer can
comment or propose improvements to the patchset. They can also vote on the patchset with +1
(should pass as such), 0 (some concerns, but not blocking acceptance), or -1 (a new patchset
should be submitted). Core reviewers vote in a similar way, but using -2 or +2 for expressing
their status. In OpenStack, a patchset has to be accepted by a core reviewer, thus getting a +2,
to be considered for approval. Approval is the end of this step: a core developer marks the
patchset as such, and it moves to the last step. At any moment, a new patchset can be submitted,
effectively moving the process back to the verification step.

The third step starts when a core reviewer marks the patchset as approved. This triggers
another check by automatic tools, similar to the verification step, to ensure the code is ready
for merging in the code base. If this step fails, again a new patchset has to be submitted, and
the process comes back to the verification step. Otherwise, it is finally merged in the main
development branch, and the process ends.

3 The Bicho database schema

Bicho is a tool to retrieve information from issue tracking systems, and store it in an SQL
database with a structure suitable for queries oriented to analyze its main parameters [RGIH11].
It currently supports Bugzilla, Jira, and the issue tracking systems of some forges (Launchpad,
Allura, GitHub, and Redmine). It uses the API provided by these systems, or HTML scrap-
ping from the web pages they provide, or a combination of both, to obtain information about all
changes to all tickets. The code in charge of dealing with each specific issue tracking system
is the Bicho backend, and in fact there is one backend per supported system. Once Bicho has
completed its job, any analysis can be performed just by querying the database it produces.

Each of the supported issue tracking systems has a different model of what a ticket is, and how
it is changed. However, all of them share a common model. To accommodate at the same time
what is common to all of them, and what is different, Bicho has a set of core tables, used by all
the backends, and extended tables, particular to each of them.

A simplified version of the database schema for the core tables shared by all the backends is
shown in Figure 1, with the three main tables:

• Issues: For each ticket, time when it was opened, opener, summary, description, current
status, priority and assigned developer.

• Changes: All modifications to fields in tickets (priority, description, resolution status, etc).

• People: List of persons that at some point participated in the ticketing process.

In addition, there are two main extended tables, particular for each backend:

• Issues Extension: Modifications to fields that are not in the Issues table, but are relevant
for the specific backend.

3 / 12 Volume 65 (2014)



Analyzing Gerrit Code Review Parameters with Bicho

Figure 1: Simplified database schema of the Bicho tool

• Issues Log: Historic status of each ticket over time. It is obtained once the retrieval
process is finished, based on the contents of the Issues, Changes and Issues Extension
tables. This table facilitates the analysis of the history of the tickets, and the snapshots at
points in time.

4 Modeling code review as changes to tickets

The information needed to follow a code review process can be modeled as changes to annota-
tions in a ticket, similar to how tickets evolve in an issue tracking system. In fact, there are cases
where projects use a real issue tracking system to assist the review process. One prominent ex-
ample is the WebKit project which uses annotations in tickets in Bugzilla [GIMR13], or GitHub,
where a code review can be implemented using the pull request functionality, which is supported
by the issue tracking system with tickets tagged as pull requests.

In the case of Gerrit, modeling with tickets can be as follows:

• Each review code process (change) is modeled as a ticket, with its unique identifier being
the change identifier.

• All information needed to track what happens during the code review process is modeled
as changes to fields in the ticket.

• The relevant fields are:

Proc. SQM 2014 4 / 12



ECEASST

– Submitted (SUBM). Submission of a new patchset: patchset identifier. Increments
by one the patchset identifier (first patchset is 1).

– Verify (VRIF). Result of a verification step: +1 (passed) or -1 (not passed).

– Review (CRVW). Vote during the code review step: an integer between -2 and +2.

– Approve (APRV): +1 (approved for merging).

– Abandoned (ABDN): +1 (marked as abandoned).

• For each change to a field, some extra data will be collected: the current patchset, the time
of the change to the field (TIME), and who issued the change (SUBMITTED BY).

These fields are very similar to those used by, for example, Bugzilla. Some exploration shows
that they work the same way as in issue tracking systems: each time a change is produced to
a ticket, the change is recorded along with information about who issued the change and when
this was done. The only major difference is the existence of the patchset number, which can be
considered as a property of a ticket.

Therefore, this information can be retrieved from a Gerrit system, and be stored in a very
similar way to how it would be stored in a database for an issue tracking system. By querying that
database, the main parameters of the code review process could be calculated. Some examples:

• For any review and patchset pair, the period from a change from SUBM (first submission
of a patchset) to the first change to CRVW will be its time-to-attention (time until first
review is obtained).

• The number of unique people changing CRVW during a certain period will be the number
of code reviewers.

• The number of tickets opened before a certain date, but with no change to APRV or ABDN
before that date, is the backlog of review processes still open at that moment.

5 Extending Bicho to support Gerrit

To show in practice how code review abstractions can be mapped to issue tracking system ab-
stractions, a Bicho backend for Gerrit was designed and developed. Using the Gerrit API all the
needed data is retrieved. Following the model described in the previous section, that data is fed
into the Bicho database as follows:

• For each change (code review process), a new entry in the Issues table is opened, with the
change as ticket identifier.

• For each change, patchsets are identified, and recorded in the Changes table using an
identifier for each of them.

• For each patchset, the review process history is modeled as entries in the Changes table
for the intended fields (SUBM, VRIF, CRVM, APRV, ABDN), each of them tagged with
the corresponding patchset identifier.

5 / 12 Volume 65 (2014)



Analyzing Gerrit Code Review Parameters with Bicho

Files Lines of code

Bicho (included all backend) 27 6,621

Bicho backends (9 backends) 12 4,104

Gerrit backend (gerrit.py) 1 231

Table 1: Number of files and lines of code (as analyzed by the CLOC tool) for Bicho, Bicho
backends, and the Gerrit backend for it. All code is in Python.

• An Issues Log table, built from the previous ones.

• People and other tables are built with data obtained for each event in the review process.

The abstraction which was more difficult to map to the Bicho model was the patchset. Unfor-
tunately, we could not find an abstraction in an issue tracking system capable of capturing the
idea of a patchset. Fortunately, an unused field (for the case of Gerrit) in the Changes table could
be used to store this patchset identifier. In the future, probably this should be implemented as an
extension to the Changes table, specific to the Gerrit backend.

The extension of Bicho to support Gerrit represented a relatively small quantity of work, as
can be shown in Table 1. Thanks to the use of the Bicho frontend, and the already available
common facilities provided by the program, code to retrieve data from Gerrit consists of a mere
231 lines of Python code.

Once the backend was complete, we could test it by running queries similar to those for issue
tracking systems (such as time to reach certain states, or people involved in tickets/changes). The
experience has shown that the queries are similar, and a lot of the expertise in mining databases
with issue tracking information can be used to mine code reviews. In addition, queries specific to
code review systems (such as number of patchsets per change, or time waiting for review) were
devised, and tested. The next section shows some examples of all these analyses.

6 Examples of analyses of the information

To illustrate how the Bicho database with the Gerrit backend can be used to analyze code review
practices, this section shows the details of some analyses: number of people asking for reviews
and reviewing, and oldest reviews still open. They have been performed on the Gerrit data
retrieved by Bicho from the OpenStack project as of November 21st 2013.

6.1 Number of people involved in reviews

The size of the community involved in the code review process, and how many of them act as
change proposers and as reviewers are important parameters to determine how large the devel-
opment community is, and what roles developers are assuming in the review process.

The number of people proposing code changes each month can be obtained from the Issues
table, in which the submitted_by field is the identifier for the person proposing the change
mapped to the ticket. The (slightly simplified) SQL code is:

Proc. SQM 2014 6 / 12



ECEASST

0
2
0
0

5
0
0

2011−7 2012−2 2012−9 2013−4 2013−11

Figure 2: Number of change proposers (black), reviewers (red) and core reviewers (blue) per
month in the OpenStack Gerrit system. Studied period: from July 2011 to November 2013.

SELECT YEAR(changed_on),
MONTH(changed_on),
COUNT(DISTINCT(submitted_by))

AS submitters
FROM issues
GROUP BY YEAR(submitted_on),

MONTH(submitted_on);

A similar query (also slightly simplified) can be used to get the number of people reviewing
patchsets each month, using information from the Changes table. Now, changes to the CRVW
field, which corresponds to votes during the review step, are tracked:

SELECT YEAR(changed_on),
MONTH(changed_on),
COUNT(DISTINCT(changed_by))

AS reviewers
FROM changes
WHERE field=’CRVW’
GROUP BY YEAR(changed_on),

MONTH(changed_on);

Figure 2 plots the evolution of those two parameters over time, showing how the number of
people involved in the review process is increasing quickly, but still keeping balanced. This is
typical of a true peer review process where everyone ends up as change proposer and reviewer.

7 / 12 Volume 65 (2014)



Analyzing Gerrit Code Review Parameters with Bicho

We have also plotted core reviewers, which in OpenStack are those who can finally accept or
reject a patchset. This is a smaller group of people, with a different evolution. It can be seen how
their number grew proportionally to reviewers during a large part of the history of the project, but
during the last months it is no longer growing that way. This could cause an increasing workload
on those most experienced developers, signaling that probably the project should find a way of
increasing the number of these type of developers.

6.2 Top oldest reviews in Gerrit still open

To detect problems and bottlenecks, detecting which changes are staying longer in the review
process is of interest. For getting this information, data in the Issues and Changes tables can be
crossed to find the oldest changes among those still not approved or abandoned. We therefore
can use the following query:

SELECT issues.issue AS review,
issues.summary AS summary,
TIMESTAMPDIFF (HOUR, times.min_time,

times.max_time) AS opened
FROM (SUBQUERY) times,

issues
WHERE times.issue_id = issues.id
ORDER BY opened DESC
LIMIT 10;

With SUBQUERY being:

SELECT changes.issue_id AS issue_id,
MIN(changes.changed_on) AS min_time,
MAX(changes.changed_on) AS max_time

FROM changes, issues
WHERE changes.issue_id = issues.id AND

(issues.status=’NEW’ OR
issues.status=’WORKINPROGRESS’)

GROUP BY changes.issue_id

For example, on November 21st 2013 the oldest change still open has the identifier 25,8823.
Table 2 shows the ten oldest change proposals that are still open, and for how long the have been
open.

6.3 Time to close a review

The time to close a change is important from a management point of view. This time is defined
as the period since a change is opened in Gerrit, to the moment one of the patchsets proposed

3 https://review.openstack.org/#/c/25882/

Proc. SQM 2014 8 / 12

https://review.openstack.org/#/c/25882/


ECEASST

Change Summary Days open

25882 Add listing tested APIs 225

31068 Sync common db and db.sqlalchemy code from Oslo 173

33236 Run DB API tests on a given DB backend 151

33473 Add SSL certificate verification by default 148

30755 The use of the class variables 148

34291 API extension to list supported scheduler hints 146

34519 Add API schema for v3 keypairs 145

36207 Use common Oslo database session 134

36291 added Neutron incompatibility note for simple IP management 133

36197 added tab showing all servers assigned to a hypervisor 132

Table 2: Top 10 oldest changes still open on November 21st 2013 in the OpenStack Gerrit system.
Change column shows the Gerrit identifier for the change, time open is measured in complete
days.

in it is finally approved and merged in the development branch, and the change is considered to
be done. The study of the evolution of this parameter helps to understand what can be expected
when submitting a new change proposal, how reactive the project is to these proposals, and how
long it is taking to review the code, once it has been written and proposed as a new change.

In this case example, we have considered separately those changes that get merged into the
code base, and those that are abandoned. The query for obtaining the times for merged changes
is shown below. The one for abandoned changes is almost the same, with ABANDONED instead
of MERGED in the subquery.

SELECT TIMESTAMPDIFF (HOUR, times.min_time, times.max_time) AS opened
FROM (SUBQUERY) times,

issues
WHERE times.issue_id = issues.id

With SUBQUERY being:

SELECT changes.issue_id as issue_id,
MIN(changes.changed_on) AS min_time,
MAX(changes.changed_on) AS max_time

FROM changes, issues
WHERE changes.issue_id = issues.id AND

issues.status = ’MERGED’
GROUP BY changes.issue_id

To understand the query, it is important to notice that the Issues table keeps the status field,
which is initialized as NEW, and can later be WORKINPROGRESS (both stated imply that the

9 / 12 Volume 65 (2014)



Analyzing Gerrit Code Review Parameters with Bicho

Type Min 1st Qu. Median Mean 3rd Qu. Max

Merged 0 0 17 97.13 95 7,161

Abandoned 0 0 11 135.7 116.2 7,322

Table 3: Basic statistics of the distribution of the time to close (merge or abandon) changes. Time
is in integer hours (but means or medians can be fractional because divisions are implied). Mean
is not very representative due to the skewness of the distribution.

0 2 4 6 8

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Figure 3: Distribution of time to close for merged (black) and abandoned (red) changes. Time,
in X axis, is in natural logarithm scale (unit is integer hours).

review process did not finish yet), MERGED (was merged into the code base) or ABANDONED
(was marked as such).

As shown in Table 3, 25% of all the finally accepted changes were merged in less than 1 hour,
50% in less than 16 hours, and 75% in less than 95 hours (roughly 4 days). This also means,
of course, that 25% of the changes that were approved took more than 4 days to merge. It is
important to notice that in many of these cases several patchsets were submitted and reviewed
before the change was finally approved (and the last of these patchsets was merged). And that this
process takes place sequentially: for a given review if a new patchset is uploaded, the previous
one is automatically deprecated. The numbers for abandoned changes are similar: a bit shorter
for the quickest changes to be abandoned, a bit larger for those taking more time.

Figure 3 shows the distribution of time to close both types of changes. It can be graphically
shown how most of the times are between e2 (approximately 7 hours) and e6 (about 400 hours,
or 17 days). The difference between the distribution of abandoned and merged changes can also
be better understood by viewing it.

Proc. SQM 2014 10 / 12



ECEASST

7 Conclusions and further work

In this paper we have shown how systems supporting code review processes can be modeled as
a specialized kind of issue tracking systems. This theoretical model has been used to extend the
functionality of Bicho, a tool to retrieve information about tickers from issue tracking systems,
to retrieve information about code review processes from Gerrit, one of the most popular tools
to assist in code review in FLOSS projects.

Extending an existing tool instead of writing a new one for retrieving information from Gerrit
has proved to be a very efficient approach, as it could be implemented with not much more than
200 lines of Python code. The result is a completely functional Gerrit data retriever, that offers
information organized in an SQL database ready to be queried to analyze any relevant parameter.

The paper also shows how this database can in fact be mined to obtain such parameters in
a real world scenario; in this paper we have shown it with the OpenStack project, with several
tens of thousands of changes proposed and reviewed. This has allowed us to comment on the
characteristics and the quality of several aspects of the review process. These aspects included
both extensive properties, such as the time to close changes (review processes) or size of the
communities involved in code review, and intensive properties, such as the oldest reviews at a
certain point in time.

In the future, authors intend to rearchitect Bicho so that it becomes a tool for retrieving in-
formation both from issue tracking and code review systems. The work presented in this paper
shows that its architecture is already close to that goal, but we intend to redesign it so that Gerrit
and other code review systems can be better integrated as first-class citizens in the context of
Bicho structure.

Reproduceability

Bicho can be retrieved from the MetricsGrimoire project at GitHub4. The exact version used for
the work presented in this paper, along with the MySQL dump of the database retrieved by Bicho
from the OpenStack Gerrit repository and the R script used to produce the graphics and the data
in this paper can be retrieved from the reproduceability package for this paper5.

Acknowledgments

The work of Jesus M. Gonzalez-Barahona and Gregorio Robles in the study presented in this pa-
per has been funded in part the Spanish Government under project SobreSale (TIN2011-28110).
The work of Daniel Izquierdo-Cortazar has been funded in part by the Spanish Government
under the Torres Quevedo program (PTQ-12-05577).

4 http://metricsgrimoire.github.io
5 http://gsyc.es/∼jgb/repro/2014-sqm-bicho-gerrit

11 / 12 Volume 65 (2014)

http://metricsgrimoire.github.io
http://gsyc.es/~jgb/repro/2014-sqm-bicho-gerrit


Analyzing Gerrit Code Review Parameters with Bicho

Bibliography

[BB01] B. Boehm, V. R. Basili. Software Defect Reduction Top 10 List. Computer
34(1):135–137, Jan. 2001.
doi:10.1109/2.962984
http://dx.doi.org/10.1109/2.962984

[GIMR13] J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, S. Maffulli, G. Robles. Under-
standing How Companies Interact with Free Software Communities. IEEE Software
30(5):38–45, 2013.

[HKY+13] K. Hamasaki, R. G. Kula, N. Yoshida, A. E. C. Cruz, K. Fujiwara, H. Iida. Who
Does What During a Code Review? Datasets of OSS Peer Review Repositories.
In Proceedings of the 10th Working Conference on Mining Software Repositories.
MSR ’13, pp. 49–52. IEEE Press, Piscataway, NJ, USA, 2013.
http://dl.acm.org/citation.cfm?id=2487085.2487096

[MBR13] M. Mukadam, C. Bird, P. C. Rigby. Gerrit Software Code Review Data from An-
droid. In Proceedings of the 10th Working Conference on Mining Software Reposi-
tories. MSR ’13, pp. 45–48. IEEE Press, Piscataway, NJ, USA, 2013.
http://dl.acm.org/citation.cfm?id=2487085.2487095

[ML09] M. Mantyla, C. Lassenius. What Types of Defects Are Really Discovered in Code
Reviews? Software Engineering, IEEE Transactions on 35(3):430–448, 2009.
doi:10.1109/TSE.2008.71

[RGIH11] G. Robles, J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, I. Herraiz. Tools and
Datasets for Mining Libre Software Repositories. Volume 1, chapter 2, p. 24–42.
IGI Global, Hershey, PA, 2011.
doi:10.4018/978-1-60960-513-1
http://www.igi-global.com/book/multi-disciplinary-advancement-open-source/
46171

[RGS08] P. C. Rigby, D. M. German, M.-A. Storey. Open source software peer review prac-
tices: a case study of the apache server. In Proceedings of the 30th international
conference on Software engineering. Pp. 541–550. 2008.

Proc. SQM 2014 12 / 12

http://dx.doi.org/10.1109/2.962984
http://dx.doi.org/10.1109/2.962984
http://dl.acm.org/citation.cfm?id=2487085.2487096
http://dl.acm.org/citation.cfm?id=2487085.2487095
http://dx.doi.org/10.1109/TSE.2008.71
http://dx.doi.org/10.4018/978-1-60960-513-1
http://www.igi-global.com/book/multi-disciplinary-advancement-open-source/46171
http://www.igi-global.com/book/multi-disciplinary-advancement-open-source/46171

	Introduction
	Code review with Gerrit
	The Bicho database schema
	Modeling code review as changes to tickets
	Extending Bicho to support Gerrit
	Examples of analyses of the information
	Number of people involved in reviews
	Top oldest reviews in Gerrit still open
	Time to close a review

	Conclusions and further work

