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Abstract: Token-based clone detection techniques are known for their scalability,
high recall, and robustness against syntax errors and incomplete code. They, how-
ever, may yield clones that are syntactically incomplete and they know very little
about the syntactic structure of their reported clones. Hence, their results cannot
immediately be used for automated refactorings or syntactic filters for relevance.

This paper explores techniques of robust parsing to parse code fragments reported
by token-based clone detectors to determine whether the clones are syntactically
complete and what kind of syntactic elements they contain.

This knowledge can be used to improve the precision of token-based clone detection.

Keywords: software clones, lexical analysis, syntactic analysis, token-based clone
detection, syntax-based clone detection

1 Introduction

Token-based clone detection techniques are often based on suffix trees (or a variant thereof,
namely, suffix arrays) [Bak92, KKI02, GK09, Kos12] or hashing of token sequences [LHMI07,
HJHC10, KRC11]. The underlying algorithms require linear time and linear space to locate
clones and scale very well to large programs. They are also known for high recall [BKA+07].
Because their input requires only lexical analysis, they are robust against syntax errors and in-
complete code. Their disadvantage, however, is that they may yield clones that are syntactically
incomplete. As a consequence, they have lower precision than syntax-based clone detectors
[BKA+07] and their results cannot immediately be used to trigger automated refactorings. Fil-
ters used to improve precision of token-based techniques cannot leverage syntactic information
because that information is not provided by lexical analysis. Sometimes token-based clone de-
tectors use simple heuristics instead, such as counting balanced brackets, but these heuristics
may not always work. Determining whether a token sequence forms a complete syntactic unit
and what syntactic unit it is, requires a syntax analysis. For this reason, several techniques are
based on syntax trees instead. For instance, Baxter et al.’s technique hashes syntax subtrees to
detect clones [BYM+98]. Koschke et al. use suffix trees to determine equal sequences in the
serialized syntax trees [KFF06, FKF08]. These techniques yield only syntactic clones and they
provide a detector with richer syntactic information to filter or rank clones for relevance (for
instance, one can rank nested while loops as more relevant than consecutive while loops).
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Syntax analysis, however, requires parsing and may not always work when code is incomplete
or syntactically incorrect. In particular, for languages with a preprocessor such as C or C++
detecting clones based on the non-preprocessed code is difficult for syntax-based detectors.

In this paper, we explore ways to enrich token-based clone detectors with syntax information.
We do that by parsing the output of a token-based clone detector, that is, after the clones were
detected, while traditional syntax-based techniques run the syntax analysis before the clones
are detected. All token-based detectors can benefit from this strategy, that is, this strategy is
independent of the actual clone detector and can be implemented once for all.

Because we parse only fragments, a full syntax analysis that attempts to derive the root non-
terminal of the underlying grammar will hardly ever work. Also, because we do not assume
that the fragment is syntactically complete, that is, is derived from any of the syntax rules of the
underlying grammar, normal parsing approaches will fail in most cases. We need parsing that
is robust against syntactically incomplete code. We also need a way to deal with preprocessor
statements in the code to be able to handle C and C++.

Contributions. To this end, this paper explores different strategies of robust parsing to parse
code fragments reported by token-based clone detectors to determine whether the clones are
syntactically complete and what kind of syntactic elements they contain.

Overview. The remainder of this paper is organized as follows. Section 2 introduces Earley
parsing, a very flexible technique that handles all types of grammars including ambiguous ones.
Section 3 describes alternative extensions to the classical Earley parser for robustness against
syntax errors. Section 4 describes our idea to handle preprocessor statements based on island
grammars. Section 5 evaluates the different alternatives for robust Earley parsing. Section 6,
finally, concludes.

2 Earley Parsing

Our goal is to parse isolated cloned code fragments written in complex languages such as C
and C++ without their context and without semantic analysis. The grammar of C is ambiguous.
Hence, we need a parsing technique that copes with ambiguous grammars. Earley’s parsing
technique is a very flexible technique that handles all types of grammars including ambiguous
ones [Ear70]. For this reason, our parsing technique is based on a simplified version of Earley’s
general parsing technique. We implemented a simpler variant, with the aid of the remarks by
Aycock and Horspool [AH02] instead of Earley’s original look-ahead mechanism. This section
describes the details of this approach.

2.1 Recognizing a Sentence

As most parsing techniques, an Earley parser is based on a context-free grammar defined as
G = 〈N,T,P,φ〉 where N denotes the set of non-terminal symbols, T the set of terminal symbols
(or tokens), and P the set of productions. Adopting the notation of Earley, each production of P
has the form Dp→Cp1 . . .Cpp with 1≤ p≤ P∧Dp ∈N∧Cp j ∈ (N∪T ) where P is the number of
productions and p the number of symbols on the right-hand side of production p. φ ∈ N denotes
an artificial start symbol that is used to mark the starting point of the grammar. The language
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defined by the grammar G is denoted by L(G). The sequence of input symbols is represented by
X1 . . .Xn+1 with n as the number of actual input symbols. The artificial last symbol Xn+1 is used
to mark the end of input denoted by a.

Given an input in this form, for each input symbol Xi an associated item set Si is created. Each
set contains unique items represented by a triple of a production, a position on the right-hand
side of the production indicating how many symbols of that production have been read, and a
reference to an earlier item set. Hereafter, this reference shall be known as start index and is
described shortly. In favor of better readability, an item is written as 〈u→ α • vβ ,c〉 with u ∈ N,
v ∈ (N∪T ), α,β ∈ (N∪T )∗ and 1 ≤ c ≤ n+ 1, where c denotes the start index. They are
classified in final items, that is, items with the dot (•) at the end of the production, and active
items, that is, items with symbols of the production left to be read.

Initially all sets are empty except the first set S1, which is initialized with the so-called start
item 〈φ →•Cφ1 . . .Cφφ

,1〉. After that, the items of a set are processed successively in order of
their creation. After all items of a set are handled, the algorithm advances to the items of the
successive set.

Given the current item set Si. For each item in Si, one of the three operations Predictor,
Scanner, or Completer is executed.

The Predictor operation applies to active items of the form 〈u→ α • vβ ,c〉 whose next sym-
bol is a non-terminal v ∈ N. For each production p ∈ P such that v = Dp, this operation adds the
item 〈Dp→•Cp1 . . .Cpp, i〉 to Si. Because Si is uniquely associated with the input symbol Xi, the
start index captures the token that triggered the attempt to derive production Dp→ •Cp1 . . .Cpp.
This information will later be used by the Completer operation.

The Scanner operation is used if the next symbol of an active item 〈u→ α • vβ ,c〉 is a termi-
nal symbol v ∈ T . It adds the item 〈u→ αv•β ,c〉 to the next set Si+1, but only if v = Xi.

The Completer operation is executed for final items 〈u→ α•,c〉. That means a production
was successfully applied. The step adds an item 〈u′→ α ′v′ •β ′,c′〉 to the current set Si for each
item 〈u′→ α ′ • v′β ′,c′〉 ∈ Sc such that v′ = u. While a scanner operation moves the dot • past a
terminal, the completer moves it past a non-terminal.

After there are no further unprocessed items the algorithm can decide whether the input se-
quence X1 . . .Xn is a sentence of the language L(G) or not. The input sequence is a sentence of
the language iff ∃I ∈ Sn+1 : I = 〈φ → α•,1〉. Such final items shall be called accept items here-
after. In case of a syntax error, it is possible that some of the sets remain empty. The location of
the first unexpected input symbol can be determined by the index of the first empty set. If none
of the sets are empty but the last one does not contain an accept item, the input sequence is an
incomplete sentence of the language.

Figure 1 shows a complete run of the algorithm for a simple example1. The first column
denotes the id of each item. It is followed by the production and the start index. Each item has
attached a letter that indicates, which one of the operations Predictor, Scanner or Completer it
has triggered. S in parentheses indicates that the Scanner operation was conducted but the next
symbol of the item did not match the corresponding input symbol, so that no additional item was
created.

1 At first sight, it resembles the example given by Earley. Actually it yields slightly different sets, since the presented
version of the algorithm uses no look-ahead.
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N = {E,T,F,φ} T = {’+’, ’*’, ’(’, ’)’,v} φ = E

P = {E→ E ’+’ T, E→ T, T → T ’*’ F, T → F, F → ’(’ E ’)’, F → v}

S1: v
1 φ → • E 1 P
2 E → • E ’+’ T 1 P
3 E → • T 1 P
4 T → • T ’*’ F 1 P
5 T → • F 1 P
6 F → • ’(’ E ’)’ 1 (S)
7 F → • v 1 S

S2: ’+’
8 F → v • 1 C
9 T → F • 1 C

10 E → T • 1 C
11 T → T • ’*’ F 1 (S)
12 φ → E • 1
13 E → E • ’+’ T 1 S

S3: v
14 E → E ’+’ • T 1 P
15 T → • T ’*’ F 3 P
16 T → • F 3 P
17 F → • ’(’ E ’)’ 3 (S)
18 F → • v 3 S

S4: ’*’
19 F → v • 3 C
20 T → F • 3 C
21 E → E ’+’ T • 1 C
22 T → T • ’*’ F 3 S
23 φ → E • 1
24 E → E • ’+’ T 1 (S)

S5: v
25 T → T ’*’ • F 3 P
26 F → • ’(’ E ’) 5 (S)
27 F → • v 5 S

S6: a
28 F → v • 5 C
29 T → T ’*’ F • 3 C
30 E → E ’+’ T • 1 C
31 T → T • ’*’ F 3 (S)
32 φ → E • 1
33 E → E • ’+’ T 1 (S)

Figure 1: Simple example grammar and the sets of items created for the input 1 + 2 * 3. The
symbol v for value denotes the token type of a literal.

2.2 Constructing Syntax Trees

The described algorithm is only a recognizer, that is, it decides only whether an input sequence is
a sentence of the language. To gain syntactic information, however, a syntax tree is required. It
is impossible to construct a syntax tree with only the items given. The parser has to know which
item participated in the creation of which other item. We follow the proposal of Aycock and
Horspool [AH02] and store two different types of links during the recognizing step. If an item
I is created by a Scanner operation triggered by item Ip, a predecessor link I Λ−−→ Ip is recorded.

Items created by a Completer operation trigger the creation of a predecessor link I Ic−−→ Ip and
a causal link I → Ic, where I is the item created by the operation and Ip is the item depending
on the completion of Ic. The Predictor operation records no links because this relation between
items is not required for the syntax tree.

After all these links are recorded during the recognition step, they can be used to get the
predecessor of a specific item. Starting with a complete item, that is, an item that represents the
parsing of a complete production inclusive all its subproductions, the symbol on the left of the
dot (•) is checked. If it is a terminal symbol, the associated token can be determined with the
help of the set of the item. Items with a non-terminal symbol in front of • require the creation of
an entire subtree for this symbol. Which item is used is specified by the causal link. The original
algorithm as described by Aycock and Horspool can handle only one unique predecessor link
and one causal link, respectively, for an item, so that, in case of ambiguities, only one of all
possible syntax trees is created. Because we want a syntax tree containing all valid derivations,
we augmented the algorithm with backtracking that follows all links if there are more than one.
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3 Robust Earley Parsing

Earley’s algorithm described in Section 2 handles ambiguity of identifiers and type names in C
successfully. Yet, in its original form, it cannot handle syntax errors and incomplete code.

3.1 Partial Syntax Trees

We first address code fragments containing syntactic structures cut off at the back, that is, code
fragments that are a prefix of a sentence of the language. Originally, the algorithm requires at
least one accept item in the last set to construct a complete syntax tree. Obviously we can search
for such an item in prior sets if it is not already present in the last set. This approach is also
applicable in the case of an empty set caused by a syntax error. Traversing the sets in reverse
order to find an accept item, the algorithm can use the first found accept item to construct the
maximally large partial syntax tree of a particular code fragment.

3.2 Multiple Start Symbols

Another issue are code fragments with syntactic structures cut off at the beginning, that is, code
fragments that are a suffix of a sentence of the language. In this case, it is very likely that
the fragment is no sentence that can be derived from the start symbol of the grammar. Due
to its predictive nature of the algorithm, inherent by the Predictor operation, it is not straight-
forward to let it consider sentences that are derived from other non-terminal symbols of the
grammar. As an ad-hoc approach, the parser can be modified easily to allow multiple start sym-
bols. It requires to define additional suitable start symbols explicitly. For the used grammar
of C, block-item-list was chosen as sole additional start symbol beyond the default root
production of translation-unit. We selected block-item-list because it subsumes
all structures contained in a function definition, more precisely, any list of statements and decla-
rations, while translation-unit can be used to construct an arbitrary sequence of external
declarations, that is, global variables, constants and function declarations and definitions.

3.3 Panic Mode

Both approaches mentioned above could be combined in order to try to recover from syntax
errors. Yet, it would require to restart the parser at each occurrence of a syntax error and it is
unlikely that this restarted parser succeeds to parse the remaining code after the error without
further restarts. A more systematic attempt that tries to correct errors is more reasonable.

Aho and Peterson introduced the concept of covering grammar [AP72] to cover expected
errors in the grammar. Our own initial tests with short input showed that this heavy-weight
approach is too slow for large grammars such as C. The so-called panic mode, on the other
hand, is described by Grune and Jacobs as “probably the simplest error recovery method that is
still somewhat effective” [GJ08]. So, we decided to adopt this simple panic mode strategy as a
promising alternative.

A parser with integrated panic mode behaves like a normal parser if no syntax error occurs.
Only in case of a syntax error, the panic mode becomes active. In this mode, it skips input
symbols until one of a predefined set of synchronizing symbols or the end of input is reached.

5 / 20 Volume 63 (2014)



Robust Parsing of Cloned Token Sequences

Synchronizing symbols are chosen from the set of terminal symbols. If such a symbol was found
within the sequence of input symbols, the panic mode puts the parser into a state in which it can
process the symbol.

Applied to the Earley Parser, the panic mode becomes active as soon as the parser advances
to an empty item set. The index of the item set before this set is marked as panic index ip. The
following sets are skipped until the first set with a synchronizing input symbol is found. This
item set is referred to as recovery set in the following. Since the parsing algorithm can trace
multiple alternative derivations in parallel, it is somewhat more complex to restore a valid state
than, for instance, in a recursive descent parser. For that type of parser it would suffice to ascend
the prediction stack until a production with a matching symbol on the right-hand side is found.
The panic mode for Earley’s algorithm copies all items of the set Sip to the recovery set. To
reduce the amount of uselessly copied items, FIRST and FOLLOW sets (see [AU77]) can be
used to determine if at least the input symbol of the recovery set can be read with a specific item.
This strategy cannot guarantee that the entire production of the item can be read. Furthermore,
the panic mode can distinguish between different types of syntax errors. If the next symbol of an
item copied into the recovery set equals the input symbol of this set, it indicates the correction of
an insertion error and the • will not be moved. In contrast, the • is advanced if the symbols do
not match, which means that a deletion or a replacement error is corrected. It is possible that the
panic mode cannot find suitable items for the recovery set. In this case, the parser has to report
an error and terminate. However, it could still be possible to create a partial syntax tree from a
potential accept item of one of the non-empty sets as described before. When the parser with
panic mode fails at some input symbol not at the end, it is restarted from this point. Combined
with multiple start symbols it still has the chance to parse some symbols of the remainder.

We chose ;, (, ), {, }, and all keywords as the synchronizing symbols for C.

3.4 Suffix Parsing

The described panic mode seems to be an acceptable solution for code fragments with simple
syntax errors anywhere in the middle of the sequence of symbols. However, it shows weaknesses
when it ought to process fragments which are cut off at the beginning. This drawback can be re-
duced with additional start symbols but only for a limited selection. Since it is likely that cloned
fragments are cut off at the beginning, it would be useful to have a parser that deals with this
problem specifically. Nederhof and Bertsch [NB96] present a so-called suffix parser based on
Earley’s algorithm. The general version of this parser is primarily used as a tool for the develop-
ment of a linear suffix parsing technique for LL(1) languages but it can also be used to parse a
suffix of a sentence of a general context-free language, as shown by Grune and Jacobs [GJ08].

To convert a “normal” Earley Parser into a Suffix Earley Parser, it is necessary to let the parser
consider not only the productions with the same prefix as the input stream but also those whose
suffix is a prefix of the input. The set of productions that have possibly the same prefix as the
input is created implicitly by the Predictor operation when it processes the items of the first set
(S1). So, to extend this set of predicted productions, we have to change the predictor operation or
create the set explicitly. Then the question is raised which items should be contained in this set
to represent the beginning of all possible suffixes of all possible sentences of a given language?
The answer is simple. It has to contain all possible items with the same start index. As another
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modification, the start index of these items is not allowed to be set to 1 as done before. Because
these items represent suffixes of sentences, at this point it is not known how many symbols of the
input sequence are cut off, that is, the start position of a later found suffix is unknown and lies
somewhere in front of the beginning of the parsed code fragment. This fact is represented by a
special placeholder start index Λ for suffix items.

After the first set has been initialized with suffix items, Earley’s algorithm is applied. The
operations Predictor and Scanner remain unchanged, since they ignore the start index. Solely
the Completer operation uses the start index and requires an adaptation. For suffix items it has
to deal with an undefined start index Λ. The Completer operation identifies items depending on
the completion of the currently processed item. The start index of the currently processed item
is used to determine the set which contains these items. Because all suffix items are created in
the first set, the Completer operation can assume a start index of 1 for suffix items. However, the
operation may only consider suffix items of the first set if the currently processed item is a suffix
item, too. Otherwise, a suffix would contribute to the completion of a prefix of a sentence.

Beyond the modification of the Completer operation, it is required to change the condition
that is used to determine if an input is a sentence of a given language. If there is an accept item
in Sn+1, it still means that the input is a sentence of the language. But there is no such item, if
the input is no sentence of the language, but only a suffix of a sentence of the language. In this
case, the algorithm looks for final suffix items. Since suffix items are created only in the first set,
a final suffix item in the last set implies that the input is a complete suffix of a sentence.

The Suffix Parser can be seen as an implicit modification of the given grammar. Would this
modification be explicit, it would make all symbols of the right-hand side of all productions
optional. This can lead easily to an infinitely ambiguous grammar. Such ambiguities cause
cycles in the data structures used to create syntax trees after the recognition process. Applied to
the Suffix Parser, the problematic situation is outlined in Figure 2.

S1: X1
...

...
...

(1) Y→ . . . • Z Λ P
...

...
...

(2) Z→ . . . • Y Λ P
...

...
...

(3) Z→ • . . . 1 C
...

...
...

...
...

...

...
...

...
Si: Xi

...
...

...
(4) Z→ . . .• 1 C
...

...
...

(5) Y→ . . . Z • Λ C
...

...
...

(6) Z→ . . . Y • Λ C ⇐=
...

...
...

Figure 2: Suffix items causing cycles during the creation of syntax trees

The example assumes that the grammar contains the productions Y → . . .Z and Z→ . . .Y . The
dots (. . . ) represent a non-empty sequence of further symbols. At the beginning of the algorithm,
the items (1) and (2) are created. Both items trigger the Predictor operation. It is sufficient to
focus on the operation of item (1). It has to create at least the item (3), which causes eventually
the creation of the final item (4) as element of some later set Si. Item (4) triggers a Completer
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operation, which searches for active items whose next symbol is Z. In S1 it finds item (1) and
copies it as item (5) to Si. Item (5) is again final and causes a Completer operation which creates
item (6). At this point the cycle occurs. The Completer operation required by item (6) would
create an item which would be exactly the same as item (5). The set properties of the set prevent
the reinsertion of that item, but for the later creation of syntax trees, a link between item (5) and
item (6) is added, which forms a cycle together with the link from item (6) to item (5) created by
the Completer operation of item (5). The algorithm used to create syntax trees (see Section 2.2)
cannot detect such cycles and would not terminate in this case.

In order to still be able to gather results with the given syntax tree creation, a simplified version
of the suffix parsing algorithm was implemented. Instead of modifying the Completer operation,
final suffix items are just skipped. This leads to the disadvantage that only suffixes of a production
of the grammar are recognized and not general suffixes of the language. An exemplary run of
the simplified suffix parsing algorithm is given in Figure 3. It uses the same notation as Figure 1
except for the additional dashed line that separates the initially created suffix items from the
regular items of the first set. Furthermore Λ is used to mark suffix items.

N = {E,φ} T = {’+’, ’*’,v} φ = E P = {E→ E ’+’ E, E→ E ’*’ E, E→ v}

S1: ’+’
1 φ → • E Λ P
2 E → • E ’+’ E Λ P
3 E → E • ’+’ E Λ S
4 E → E ’+’ • E Λ P
5 E → • E ’*’ E Λ P
6 E → E • ’*’ E Λ (S)
7 E → E ’*’ • E Λ P
8 E → • v Λ (S)
9 φ → • E 1 P

10 E → • E ’+’ E 1 P
11 E → • E ’*’ E 1 P
12 E → • v 1 P

S2: v
13 E → E ’+’ • E Λ P
14 E → • E ’+’ E 2 P
15 E → • E ’*’ E 2 P
16 E → • v 2 S

S4: v
21 E → E ’*’ • E 2 P
22 E → • E ’+’ E 4 P
23 E → • E ’*’ E 4 P
24 E → • v 4 S

S3: ’*’
17 E → v • 2 C
18 E → E ’+’ E • Λ

19 E → E • ’+’ E 2 (S)
20 E → E • ’*’ E 2 S

S5: a
25 E → v • 4 C
26 E → E ’*’ E • 2 C
27 E → E • ’+’ E 4 (S)
28 E → E • ’*’ E 4 (S)
29 E → E ’*’ E • Λ

30 E → E • ’+’ E 2 (S)
31 E → E • ’*’ E 2 (S)

Figure 3: Simple example grammar and the sets of items created for input + 2 * 3

3.5 Error Correcting Suffix Parsing

With the suffix parsing algorithm, syntax errors cannot be handled as selectively as with the panic
mode. However, if a syntax error occurs, the parser can be restarted at the point of its occurrence
in the hope that the remaining part of the input is a suffix of a sentence of the language. In
the following an implementation of a streamlined variant of the error correcting suffix parser
presented by Nederhof and Bertsch [NB96] is described. First it tries to detect a sentence of a
suffix of the language as explained above. When the end of input or an empty set is reached,
that is, a syntax error is detected, the recognizing step stops and searches for an accept item or a
final suffix item in order to create a complete or partial syntax tree tree as depicted in Figure 4.
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The index of the set after the set of the item picked for the syntax tree construction (S j and S j+1)
is stored as starting point for the restarted suffix parser. This assures that the algorithm tries to
reparse the already read part of the input that cannot be covered with a complete syntax tree.
Before the parser is restarted, all sets have to be reset, that is, all their items have to be deleted.
Additionally, the new starting set S j+1 has to be initialized with the initial suffix items. Since the
computation of these items is independent of the current input symbol, a template set is prepared
before the first parse and copied when needed. It is expected that this restarting strategy works
quite well with some syntax errors, while it has to restart several times with other syntax errors.
This seems not to be a big drawback, because in this case probably only a few input symbols
are skipped until another suffix is found for which a syntax tree can be created. As mentioned,
the selection of accept items for the syntax tree construction is very similar to the procedure
described in Section 3.1, but now we are interested in suffixes as well. So we have to choose
between regular accept items and final suffix items. Since the syntax tree of a complete sentence,
represented by an accept item, appear more valuable than one of a suffix of a sentence of the
same length, regular accept items are preferred over final suffix items within the same set. Only
if none of those items are found, a prior set is considered.

input of next pass︷ ︸︸ ︷
S1 : X1 . . . S j : X j S j+1 : X j+1 . . . Si−1 : Xi−1 Si : Xi . . .

︸ ︷︷ ︸ ↑ ↑
covered by tree unexpected empty

symbol

Figure 4: Restart of error-correcting suffix parser

4 Preprocessor

As already mentioned, one objective is to preserve the robustness of token-based clone detec-
tors, in particular also with regard to unprocessed preprocessor statements. Usually, token-based
clone detectors operate on non-preprocessed source code in order to report clones in the original
code as viewed by the developer. So the parser for the clone fragments has to deal with prepro-
cessor statements. The problem is that the preprocessor in C is not part of the actual grammar of
C. As Baxter and Mehlich [BM01] state: “. . . C preprocessor directives can occur between any
pair of tokens.” Baxter and Mehlich, hence, modify the basic grammar of C to allow prepro-
cessor statements at places where they occur frequently in software systems. This solution may
work well for systems with an orderly used preprocessor but will probably fail to process code
fragments without those restrictions. Furthermore, it requires informed manual modifications of
the grammar.

Two other approaches by Gazzillo and Grimm [GG12] and Kästner et al. [KGR+11, KGO11]
respectively try to consider almost every possible evaluation of the preprocessor statements and
the resulting variants of generated C code. Although these exhaustive strategies do not require
a modification of the grammar based on an heuristic, they still require complete source code.
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Because only the code fragments yielded by a clone detector are given without their embedding
syntactic context in our case, this requirement cannot be satisfied.

The output of the preprocessor depends upon macro definitions within the code and passed to
the preprocessor by way of command-line arguments. The latter are not known without knowl-
edge about the build process. The former are neither known if they are set in header files not
accessible to the parser. Only for macro definitions within the code visible to the parser, there
would be a possibility of evaluation. It would require us to integrate a preprocessor to han-
dle these visible directives. The benefit of that would be marginal, however, as we parse only
fragments without further context and chances are very high that these do not contain sufficient
preprocessor information to leverage an integrated preprocessor. That is why we decided to
follow a different path.

For this worst-case scenario we instead use an island parser to identify the pieces of source
code to be passed to the C parser. A so-called island grammar distinguishes between islands,
that is, the part that is covered by the grammar, and water, that is, parts of the input the grammar
for which no detailed productions exist [Moo01].

In order to apply island grammars on code fragments with preprocessor directives, it is re-
quired to decide which language is treated as island and which is treated as water. The first
thought is to skip the problematic preprocessor part and define it as water but this would dis-
card a lot of information we could gather. If a preprocessor statement is contained completely
in a fragment, it is straightforward to construct a syntax tree that represents the structure of the
fragment from the perspective of the preprocessor. Following this strategy, the parts between the
preprocessor tokens are water and that way not examined by the island parser. Actually, they
have not to be processed by the island parser because, we have an error correcting parser that is
able to parse fragments of C code and each skipped fragment can be passed to an instance of this
C parser. In fact, this makes the job of the C parser a little easier, because, with the exception
of macro calls, the smaller fragments contain no preprocessor code. The similarity of macro and
function calls makes it impossible for the island parser to distinguish between them. Therefore,
they are treated as function calls.

For each of these subfragments, the error correcting parser constructs one complete or multiple
partial suffix trees, if possible. These trees are inserted into the syntax tree created by the island
parser afterwards. To get the right positions for those insertions, the island parser uses sentinel
nodes which are replaced by the syntax trees of the subfragments, as depicted in Figure 5.

5 Evaluation

This section evaluates the different strategies for robust parsing of cloned token sequences,
namely, suffix, panic, rpanic, and a baseline approach none. The baseline none stops at the
first syntax error but still tries to create a syntax tree for the part it understood so far. Strategy
panic skips tokens until a synchronizing token is found and restarts if the panic mode fails to
restore a valid parser state and creates syntax trees afterwards (cf. Section 3.3). Strategy suffix
implements the lightweight suffix parser described in Section 3.4 equipped with the error recov-
ery described in Section 3.5. Strategy rpanic is a variant panic mode similar to panic. Both
modes try to reach a state where parsing can be continued. If they fail, panic just restarts at the
point of the failure while rpanic adopts the restart strategy of suffix, that is, depending on the
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Figure 5: Syntax tree of preprocessor code with sentinel nodes

coverage of the syntax trees as described in Section 3.5. Thus, rpanic restarts at the first token
that is not part of the partial syntax tree. All parsers are called by the island preprocessor parser.

The research questions addressed are:

RQ1 How much syntactic information can be gathered from the cloned token sequences using
the alternative approaches for robust parsing?

RQ2 What are the recall and precision of the alternative approaches?

RQ3 What are the runtime costs of the alternative approaches?

5.1 Clone Detector

Our approach parses the token sequences gathered by any type of token-based clone detector.
That is, the approach is technically independent of a particular detector. In this study, we used our
own token-based clone detector iClones2 [GK09] because we are familiar with it. We speculate
that it is representative for token-based clone detectors in general, at least, for those based on
suffix trees because they all share the same detection algorithm and differ only in their pre- and
postprocessors. Whether the results obtained are actually comparable to those we would obtain
with a different token-based clone detector is future work.

From the point of view of parsing, type-1 and type-2 clones are not different because the parser
does not depend upon token values (e.g., foo) but only its token type (e.g., identifier). Further-
more we wanted to make sure that the same fragment is not entered twice in the evaluation. One
simple solution to achieve this is to detect only type-1 clone classes and to select only one rep-
resentative from each class as input for the robust parser. By definition, type-1 clone classes are
true partitions of clone sequences. If we had mixed type-1 and type-2 clone classes, we could
have had a fragment that is both in a type-1 and a different type-2 clone class. We excluded
type-3 clones because the fragments in a type-3 clone class are all different and the results would
have depended upon the choice of one of the fragments, which is arbitrary.

2 http://www.softwareclones.org
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system version SLOC # clone classes /0 fragment size
Handbrake 0.9.9 70.617 67 158.22
Apache HTTPD 2.4.4 146.715 80 152.68
GNU Wget 1.14 68.059 149 798.52

Table 1: Subject Systems; # denotes the number and /0 the average size of fragments

Consequently, we used iClones with the following settings. Tokens were not transformed in
any way; we gathered only type-1 clones, the input language was C; and clones had to have at
least 100 tokens to be reported.

5.2 Subject Systems

We gathered our results for the systems listed in Table 1. The table gives their size in terms of
source lines of code (SLOC) – counting only those lines that have at least one token as measured
by David A. Wheeler’s tool SLOCCount –, their number of type-1 clone classes, and their aver-
age number of tokens of cloned fragments. Handbrake3 is a tool to convert video formats with a
graphical user interface. Apache HTTPD4 is a web server. GNU Wget5 is a command-line tool to
download files from the Internet. All systems are written in C and were used in previous studies
by other authors, too.

5.3 Research Question RQ1

To assess RQ1, we gather the following measures for a token sequence S:

• coverage Cmax of the maximally large syntax tree that can be derived from S

• coverage Call of all syntax trees that can be derived from S

The sequence of tokens st covered by a syntax tree t is the sequence of leaves of t read from
left to right. The coverage of a syntax tree t derived from a token sequence s is defined as
Cmax(s) = |st |/|s|. If Cmax(s) = 1, the token sequence c was fully parsed. The coverage sT of
a set of syntax trees, T , derived from a token sequence s is as follows: |

⋃
t ∈ T :st |/|s|. This

measure captures cases where the token sequence is not a complete syntactic structure but rather
contains many smaller complete syntactic structures. It tells how well the combination of these
smaller syntactic units explains the token sequence.

To ignore tiny, usually meaningless and ambiguous syntax trees, we used a threshold of 10
tokens for Call . For instance, the relatively trivial token sequence 10,20 could be an initializer
or parameter list. The threshold of 10 tokens was determined by manual inspection.

The results are shown in Figure 6. The x axis in the charts on the left show Cmax and on the
right they show Call . The y axis in all charts show the relative cumulative number of fragments
of the respective coverage measure.

3 http://handbrake.fr/downloads.php
4 http://archive.apache.org/dist/httpd
5 http://ftp.gnu.org/gnu/wget
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(a) Cmax for Handbrake
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(b) Call for Handbrake
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(c) Cmax for Httpd
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(d) Call for Httpd
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(e) Cmax for Wget
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Figure 6: Coverage of the alternative approaches
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We can observe that the strategies none and panic are always worse than the other two strate-
gies, where panic is able to gather about 10 % larger trees than none. Strategy rpanic implements
a more sophisticated restart and as the charts show is capable to cover more tokens than the sim-
pler panic mode as a consequence.

The strategies suffix and rpanic are close to each other. Sometimes rpanic is slightly better
than suffix in terms of Cmax, sometimes it is slightly worse. Strategy rpanic skips tokens in
case of syntax errors and is still able to construct a tree, while suffix will always restart. As a
consequence, the largest trees of suffix tend to be smaller. The best results are obtained for Httpd
where both strategies are able to fully parse a fragment in more than 20 % of the cloned token
sequences.

The values for Call capture not only the largest tree but also smaller trees after a restart of
the parser. Consequently, one should expect that the curve of Call should always be above the
corresponding curve for Cmax for each strategy and system. Yet, that is not the case for none and
panic for Handbrake and for none for Httpd as well as for all strategies for Wget (generally in
the range of 0–10 % on the x axis). The reason for that is that we ignore trees smaller than the
threshold of 10 tokens only for Call and not Cmax and these strategies created many such small
trees.

Wget is different from the other systems also for the strategies rpanic and suffix. It contains an
automatically generated parser, which consists of many repetitive comma-separated literals used
to initialize parser tables and also several lists of case labels. All of them were reported by the
clone detector as syntactically incomplete sequences. The following code snippet illustrates the
problem: S = ,10,20,1,20,15,0,0,0. The panic modes will skip all tokens in S until it
reaches a synchronizing symbol (see Sections 3.3 and 3.4). Because there is no synchronizing
symbol in S, both panic modes will skip the complete sequence and fail to parse it. Interestingly,
the suffix strategy fails as well. The simplified C grammar rule for such initializer lists is as
follows: L→ L′,′E|E. With respect to this rule, S is syntactically incomplete from the left.
Suffix parsers are designed for such situations (see Section 3.4). Hence, a full suffix parser
should be able to pick up these cases successfully. The suffix parser we used, however, is a
lightweight variant and fails in such situations, too (see Section 3.4). As a result, the suffix
strategy yields syntax trees that consist of only two tokens, which are then ignored. About 75 %
of the 118,979 cloned tokens of Wget parsed in our study stem from this generated parser code.
These reasons explain why the coverage for Wget is worse. We did not exclude this type of
automatically generated code because the code could have been written manually, too, (lists of
literals are not uncommon in handwritten C code). This case hints at a general problem with
incomplete repetitive structures.

5.4 Research Question RQ2

If a cloned token sequences is syntactically correct, all strategies should behave alike as there is
no syntax error they would have to cope with. If the token sequence does not form a complete
syntactic unit, the strategies deal with syntax error in different ways and may produce different
syntax trees. We want a strategy to capture as much syntactic information as possible from a
syntactically incorrect token sequence. RQ1 addressed this question from a more quantitative
perspective in terms of the fraction of tokens derived from the syntax tree, but did not assess
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whether the syntax tree itself is a correct derivation from the given sequence. One may argue
that every such syntax tree derived from an Earley parser is correct by construction as the Ear-
ley parser will correctly apply the syntax rules. Yet, this tree might not be the tree expected by
a human. A strategy may skip tokens after syntax errors (panic modes) or even at the begin-
ning (suffix mode). They are heuristics to find a recovery point after which normal parsing is
restarted. The starting point, however, decides what kind of tree will be recovered from then on.
A suboptimal starting point may trigger suboptimal syntax analysis.

RQ2 addresses the issue of correctness and completeness of the strategies in terms of precision
and recall. Precision and recall are measured against an Oracle O of expected syntax trees for
given token sequences. Let E be the set of syntax trees extracted by applying a certain strategy
S. Then precision of S is defined as the fraction of derived syntax trees derived by applying S
that are correct: |O∩E|/|E|. Recall is the fraction of expected syntax trees actually extracted:
|O∩E|/|O|.

Recall and precision require an oracle. In case the compilation unit is syntactically correct, we
could create a syntax tree for the whole unit and compare the results of the partial syntax analysis
to subtrees of the whole-unit syntax tree. That will not work in many cases, however, if the code
contains preprocessor statements or is syntactically wrong. If there were an algorithm to create
an oracle for syntactically incorrect code or code with preprocessor directives, that is, compute
correct syntax trees for arbitrary token sequences, we would not need our strategies in the first
place. Furthermore, we do not even know an operational definition of correct syntax trees for
such arbitrary token sequences. For this reason, we use a human oracle. One of the authors,
namely, Riemann determined the syntactic categories for a sample of the cloned token sequences
manually. The syntactic category of a subsequence of tokens is the grammar non-terminal from
which the subsequence is derived. In terms of syntax trees, it is the root node of a subtree.
Specifically, we considered struct, union, and enum specifiers as well as labeled, compound,
selection, iteration, and jump statements plus function definitions from the C grammar as relevant
and meaningful syntactic constructs for such roots.

An extracted syntax tree is considered matched with a syntax tree from the oracle when both
have the same syntactic category and the positions of their respective left-most and right-most
tokens do not differ by more than 5 characters. The positions are not required to be identical
but only close enough to mitigate possible errors the human oracle has made in deciding the
positions manually. These types of errors may have been caused by imprecisely picking source
positions with the mouse cursor.

Riemann validated all 67 cloned fragments of Handbrake and all 80 fragments of Httpd, but
only 65 out of 149 for Wget. Sampling was required for Wget because we were unable to look
at all the many cloned token sequences. If the population from which samples are to be drawn
consists of subpopulations with varying characteristics, it is advantageous to sample each sub-
population (stratum) independently. Because our clones differ in size, we used proportional
stratified sampling to draw the clones to be validated. Stratified sampling divides members of
the population into homogeneous subgroups before sampling. That is, we sort all fragments by
their size and partition this sequence in steps of 10 %, resulting in ten partitions. Per partition
we randomly draw a number of fragments proportional to the relative number of fragments of
that partition. That is, if there is a partition P that has double the number of fragments than a
different partition P′, the number of fragments drawn from P is double the number of fragments
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drawn from P′.
Recall and precision gathered for the sample are shown in Figure 7 and Table 2. As we can

see, precision is fairly high for all strategies, but the more elaborate strategies suffix and rpanic
provide much better recall than panic and none, where panic is only slightly better than none.
When we compare suffix and rpanic, we find that both are almost equally good for Httpd, while
suffix has better precision than rpanic for the other two system but also worse recall.

H
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ke
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T
T
P
D

W
g
e
t

suffix

none

panic

rpanic

Figure 7: Recall and precision

Handbrake Apache HTTPD GNU Wget
recall precision recall precision recall precision

suffix 0.99 0.95 0.97 0.91 0.69 0.89
none 0.28 0.93 0.34 0.95 0.31 0.93

panic 0.50 0.91 0.43 0.94 0.41 0.71
rpanic 0.99 0.73 0.96 0.90 0.79 0.70

Table 2: Recall and precision

5.5 Research Question RQ3

Research question RQ3 investigates the costs for each strategy in terms of CPU time and memory
consumption. We measure memory consumption by the number of Earley items built for each
token sequence. The numbers were gathered on a Thinkpad X201 with an Intel Core i5 M560 at
2.67 GHz, 4 GB 1333 MHz DDR3 RAM, and an OCZ VERTEX2 SSD running Linux Mint 13.

Table 3 shows the results. As we can see for the relative numbers (normalized by the sequence
length) all strategies require less time for Wget than for the other two systems. We need to point
out that the numbers are relative to the total length of the cloned token sequence and not only to
those actually processed by the strategies. In particular, strategy none skips many tokens in case
of early errors in the input. This characteristics hit Wget particularly for the mentioned reason of
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repetitive initializer lists.
It is remarkable that the actual parsing step requires more time than the creation of the syntax

tree for Handbrake and HTTPD. In case of Wget it is opposite, except for panic and rpanic. The
larger fragments in Wget can be made responsible for this behavior as the worst-case of syntax
tree construction is exponential. This argument is backed up by the fact that this behavior cannot
be observed for panic and rpanic, which both failed to parse the three largest fragments. Those
three largest fragments had so many syntax errors that the program ran out of memory for the
two panic modes. The size of these fragments were about 77,000, 1,750, and 1,000 tokens,
respectively. All of them were found in a file that was automatically generated and, hence, they
may be considered atypical. Nevertheless they hint at deficiencies for the two panic modes.
Strategies suffix and none did not have any problem with these large clones.

Overall we find that the more elaborate strategies suffix and rpanic require generally also more
time.

Ørec Øcst Øitems
suffix 44.76 21.86 12341.87

none 14.24 4.45 4608.51
panic 16.30 5.07 6075.52
rpanic 69.25 9.44 12852.40

rec cst items
suffix 0.28 0.14 77.32

none 0.09 0.03 28.87
panic 0.10 0.03 38.06
rpanic 0.43 0.06 80.52

(a) Handbrake

Ørec Øcst Øitems
44.42 29.74 12335.57
10.26 3.92 3681.13
12.53 4.13 5083.95
61.53 5.99 10025.54

rec cst items
0.34 0.23 95.45
0.08 0.03 28.48
0.10 0.03 39.34
0.48 0.05 77.57

(b) Apache HTTPD

Ørec Øcst Øitems
40.30 42.01 13821.46
30.71 143.15 8651.69
4.99 4.24 1774.17

32.74 4.59 2670.64
rec cst items

0.009 0.011 3.231
0.007 0.020 2.023
0.001 0.001 0.414
0.008 0.002 0.623

(c) GNU Wget

Table 3: Resource consumption
Ørec is the average time for parsing a token sequence and Øcst the average time for constructing
the syntax tree in milliseconds; Øitems is the average number of Earley items. The numbers for
these in the lower part of the tables are the same characteristics normalized by the respective
length of a fragment in terms of number of tokens.

6 Conclusion

In this paper, we have explored ways to gather syntactic information from cloned token se-
quences. We used an Earley parser because it can cope with all context free grammars, even
with ambiguous ones, which is a useful feature for parsing code snippets without their context.
Because the fragments to be parsed stem from a token-based clone detector, we needed to equip
the Earley parser with a robust fault-tolerance strategy. We compared three such strategies to a
baseline that does not attempt to recover from a syntax error. The study shows that the more
elaborate strategies of fault tolerance are capable to cover more tokens and to gather richer syn-
tactic information than a simpler strategy and the baseline. The better information comes also
at higher costs, but the costs for the more elaborate strategies are still low enough for practical
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applications in general. Yet, we also experienced a few cases where the exponential worst-case
nature of the algorithm hit the limits of available memory. These were cases of automatically
generated sequences of repetitive code structures (e.g., lists of case labels or literals) that were
syntactically incomplete. Such cases should already be filtered by a clone detector able to rec-
ognize repetitions [Kos12].

Given these promising results of principal feasibility, we want to use robust parsing in future
research as an aide for syntactic filters to improve the precision of token-based detectors or
to rank their results. It is also worthwhile to extend our study to larger code bases in order
to encounter other language constructs that make C/C++ a difficult language to parse. Other
researchers analyzing C/C++ code may benefit from this approach. For instance, Merlo et al.
[MLPB13] had to preprocess a large telecommunication software to remove all preprocessor
directives and then run an island parser to gather their metrics for clone detection.

Bibliography

[AH02] J. Aycock, N. R. Horspool. Practical Earley Parsing. The Computer Journal
45(6):620–630, Nov. 2002.

[AP72] A. Aho, T. Peterson. Minimum Distance Error-Correcting Parser for Context-Free
Languages. SIAM Journal on Computing 1(4):305–312, 1972.

[AU77] A. V. Aho, J. D. Ullman. Principles of Compiler Design. Addison-Wesley Pub. Co.,
Reading, Massachusetts, 1977.

[Bak92] B. S. Baker. A program for identifying duplicated code. In Computer Science and
Statistics 24: Proceedings of the 24th Symposium on the Interface. Pp. 49–57. Mar.
1992.

[BKA+07] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo. Comparison and Evalu-
ation of Clone Detection Tools. IEEE Computer Society Transactions on Software
Engineering 33(9):577–591, Sept. 2007.

[BM01] I. D. Baxter, M. Mehlich. Preprocessor Conditional Removal by Simple Partial Eval-
uation. In Reverse Engineering, 2001. Proceedings. Eighth Working Conference on.
Pp. 281–290. 2001.

[BYM+98] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier. Clone Detection Using
Abstract Syntax Trees. In Koshgoftaar and Bennett (eds.), International Conference
on Software Maintenance. Pp. 368–378. IEEE Computer Society Press, 1998.

[Ear70] J. Earley. An efficient context-free parsing algorithm. Communications of the ACM
13(2):94–102, Feb. 1970.

[FKF08] R. Falke, R. Koschke, P. Frenzel. Empirical Evaluation of Clone Detection Using
Syntax Suffix Trees. Empirical Software Engineering 13(6):601–643, 2008.

Proc. IWSC 2014 18 / 20



ECEASST

[GG12] P. Gazzillo, R. Grimm. SuperC: Parsing All of C by Taming the Preprocessor. SIG-
PLAN Not. 47(6):323–334, June 2012.

[GJ08] D. Grune, C. J. H. Jacobs. Parsing Techniques: A Practical Guide. Springer, New
York, second edition, 2008.
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[KGO11] C. Kästner, P. G. Giarrusso, K. Ostermann. Partial preprocessing C code for vari-
ability analysis. In Proceedings of the 5th Workshop on Variability Modeling of
Software-Intensive Systems. Pp. 127–136. ACM Press, 2011.
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